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Abstract

The integral image is typically used for fast integrating
a function over a rectangular region in an image. We pro-
pose a method that extends the integral image to do fast
integration over the interior of any polygon that is not nec-
essarily rectilinear. The integration time of the method is
fast, independent of the image resolution, and only linear to
the polygon’s number of vertices. We apply the method to
Viola and Jones’ object detection framework, in which we
propose to improve classical Haar-like features with polyg-
onal Haar-like features. We show that the extended fea-
ture set improves object detection’s performance. The ex-
periments are conducted in three domains: frontal face de-
tection, fixed-pose hand detection, and rock detection for
Mars’ surface terrain assessment.

1. Introduction

The integral image [4] is a linear transform of an image
[18], that allows integration of a function over the interior
of any axis-aligned' rectangle in the image in constant time.
It has been widely used in many computer vision applica-
tions, such as (in chronological order): template matching
[11], Haar-like features [24], integral histograms [20], spa-
tial pyramid matching [10], region covariances [23], his-
tograms of oriented gradients (HOGs) [28], scale-invariant
features (SIFTs) [7], speeded up robust features (SURFs)
[2], bilateral filtering [21], and medical anatomy detection
[31.

Many applications in computer vision involve one or
both of the following tasks: 1) extracting information from
a specified region, and 2) comparing two regions of the
same shape. However, the shape is restricted to rectilin-
ear, because that is what an integral image can only ad-
dress. Conversely, objects in real life do not have recti-

li.e., parallel to the axes of the image coordinate system

hoangducvietdung@gmail.com

Viet-Dung D. Hoang Tat-Jen Cham
School of Computer Engineering
Nanyang Technological University, Singapore

astjchaml@ntu.edu.sg

B2 "4

face hand

i

>

head (HC)

N &®
“ ‘i‘,

car traffic sign

license plate

Figure 1. Some common targets for object detection. If the re-
gion of interest is known, it may be better to use a polygon than
a rectangle to approximate the domain of integration, as more un-
wanted area can be avoided. With this work, fast integration over
a polygonal region is possible, in time independent of the image
resolution.

linear shapes. Integration over a rectangle’s interior may
incur some noise from unwanted regions (e.g., background
or occlusion). Better results can be achieved if a polygonal
shape is used for integration. Figure 1 shows some common
targets often used in object detection.

Some extensions of the integral image in which edges are
rotated were proposed in [1, 3, 5, 13, 16]. In these methods,
the image is physically or virtually rotated until the edges
of the region of integration are aligned vertically or horizon-
tally, and an integral image is pre-computed for each rotated
image. In another direction [25], which is a straightforward
extension of the integral image, the domain of integration is
generalized from a rectangle to an axis-aligned polygon.

The core idea of the integral image is to decompose a
rectangular integral or a rectilinear polygonal integral into a
finite weighted sum of pre-computed rectangular integrals.
However, this decomposition imposes a strong restriction to
the polygonal integral of interest: the set of edge slopes of
the polygon must not exceed 2. In other words, it is impos-
sible for the integral image and its variants [1, 3, 5, 13, 25]
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to integrate over the interior of a polygon that has at least 3
different edge slopes, a triangle for example.

In this paper, we present an integration method that elim-
inates the above-mentioned restriction. The set of edge
slopes can be specified by the user. The speed of our polyg-
onal integration method is as fast as that of the integral im-
age, in time independent of the image resolution and only
linear to the polygon’s number of vertices. To achieve this
speed, we replace the core idea of the integral image with a
different idea. We show that a polygonal integral can be
decomposed into a finite weighted sum of pre-computed
right-triangular integrals. We also show how these right-
triangular integrals can be pre-computed fast, using dy-
namic programming.

An extensive set of applications directly benefit from fast
polygonal integration[ 10, 11, 20, 21, 23, 28]. By replacing
a rectangular region with a polygonal region, one may ob-
tain the same kind of information, but with better accuracy.
We restrict ourselves to one of the most popular applica-
tions of the integral image: Haar-like features. Using the
object detection method of Viola and Jones [24] as the base
framework, we show that by extending Haar-like features
from rectangular features to polygonal features, an object
detector’s performance is improved.

The rest of the paper is organized as follows. Section 2
reviews work related to the integral image. Section 3 de-
scribes our fast polygonal integration method. Section 4
gives experimental results in object detection with Haar-like
features extended to polygonal Haar-like features. Section
5 summarizes the work and gives conclusions.

2. Related Work

The history of integral image techniques is arguably re-
lated to that of Haar-like features. The integral image was
first introduced in computer graphics in 1984 [4], but was
not widely used in the computer vision community until its
prominent use in Viola and Jones’ real-time object detection
framework twenty years later [24]. Initially, the integral im-
age was used to evaluate, in constant time, the sum of pixels
in a rectangle of a Haar-like feature.

Given an image I of size M x N, let I[z, y| denote the
pixel intensity at location (x,y), where 0 < z < M and
0 <y < N. Here, a pixel at location (x, y) is a unit square
with homogeneous intensity, and with its bottom-left cor-
ner’ located at coordinate (x,y) of the image coordinate
system. An integral image is an image J such that for every
pixel location (z,y) € T ={0,1,..., M} x{0,1,...,N},
Iyl = >0 <0 2y <, 12’ y']. When J has been com-
puted, integration over the interior of any rectangle with
bottom-left corner at (z,y), width w, and height h, can be

2We assume location (0, 0) is at the bottom-left corner of an image.
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Figure 2. Integral images for different orientations. (a): original
axis-aligned integral image. (b): 45°tilted integral image [13]. (c):
26.57°rotated integral image [1, 5].

computed with only 4 memory references:

IO

<z’ <z+w y<y' <ytw

Iz +w,y+h] + Iz,y] — Iz + w,y] — Iz, y + h).

I[z',y] = (D

Naturally, (1) is generalizable to address axis-aligned
polygons [25]. A simplification of the integral image also
exists [8]. In [13], Lienhart and Maydt proposed a 45°tilted
integral image (figure 2b) to deal with 45°rotated rectan-
gles. This extended the set of Haar-like features, and im-
proved the performance of Viola and Jones’ rapid object de-
tection framework. Continuing along this line, Barczak et
al. [1] and Du et al. [5] published similar techniques to ad-
dress Haar-like features rotated by 26.57°(figure 2c¢). Mes-
som and Barczak [16] also generalized the set of angles to
what they defined as integer-rotated 1 : n and n : 1 an-
gles. Instead of virtually rotating the image, Carneiro et al.
[3] physically rotated the image, and computed an integral
image for the rotated image.

Although these techniques build integral images from
virtually or physically rotated images, they use the core idea
of the integral image in decomposing a rectangular integral.
The decomposition is based on pre-computed axis-aligned
rectangular integrals, thus limiting the domain of integra-
tion to be rectilinear, and with at most 2 edge slopes. In
addition, these methods ignore pixels along an edge which
may not reside fully inside or outside a rectangle due to ro-
tation. Thus, some approximation to the true value of an
integral is introduced.

Our integration method removes the rectilinear restric-
tion and increases the number of edge slopes to as many as
the user wishes. Also, it does not ignore partial pixels as in
existing methods, as explained in what follows.

3. Fast Polygonal Integration

3.1. Problem Formulation

Let I be a 2D intensity function defined as I(z,y) =
I[|x], |y]], where |2]| and |y| are the largest integers not
greater than real numbers x and y, respectively. If either
x ¢ [0,M)ory ¢ [0,N), we assume I(z,y) = 0.



Algorithm 1 Fast Polygonal Integration
Require:
Pre-computed integrals G = {g(z,y,d)} {see (3)}
Polygon P with n vertices
Ensure: f(P)
1. S=0;
2: fori =1tondo
3 ifx; < z;y then

4 S+ = [(9(@ix1, Yit1. di) — 9(xi, yi, di)|;
5. elseif x; > ;11 then

6: S—=[(g(wiy1,Yir1,di) — g(xi,yi, di)l;
7. end if

8: end for

9: return S,

We represent a polygon by a list of vertex coordinates
in clockwise order. For example, in figure 3a, P =
[(1,1),(2,6),(6,5),(3,3),(5,2)]. We assume polygon P,
the domain of integration, is non-self-intersecting and has
integer-coordinate vertices. In addition, we assume that the
slope of every edge of P belongs to a pre-defined set D. Let
R(P) be the interior region of P. Our goal is to evaluate an
integral of function I over R(P), defined as:

f(P) = //R [y @)

3.2. Fast Polygonal Integration

As mentioned in section 1, the integral image decom-
poses a rectangular integral into a linear combination of pre-
computed rectangular integrals. This restricts the number of
edge slopes to exactly 2. To eliminate this restriction, con-
sider the following right-triangular integral:

f([(x,y),(x,O),(—oo,O)]) ifd=0
g(l’,y,d)z 0 ifd = o0
f([(z,y), (2,0), (x — 4,0)]) otherwisa)

where z € {0,...,M},y € {0,...,N},and d € D. The
integration domain corresponds to a right triangle with one
corner at point (z,y), one cathetus on the z-axis, and the
hypotenuse with slope d. An example of such a triangle is
illustrated in figure 3b. Note that, when d = 0, the triangle
is an axis-aligned rectangle cornered at (0, 0) and (z,y), as
the image is assumed to be zero for negative coordinates.
When d = Fo0, the triangle is a vertical line segment.

The decomposition of a polygonal integral into right-
triangular integrals is done in two steps. Given a polygon P
with n vertices: Aj(x1,y1), A2(x2,y2)s - - An(Tn, Yn),
let By, Bs,..., B, be the projections of Ay, As,..., A,
onto the x-axis respectively (figure 3a). In the first step,
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Figure 3. Two steps of fast polygonal integration.

using the trapezoidal rule, f(P) is decomposed into:

n

F(P)=>cif(Q), )

i=1

where (assuming A, 11 = Aj):

(1,[Ai, Aiy1, Biv1, Bi]) ifz; <z
(¢, Qi) =« (0,]]) ifx; = x4
(=1, [Aiy1, A, By, Biga]) ifxy > x4

)

Here, Q; represents a trapezoid and c¢; represents the sign
of the integral over @;. When z; = x;11, f(Q;) becomes
zero regardless of the value of ¢;. Thus, we set ¢; to 0.

In the second step, for each non-empty trapezoid Q;, let
d; be the slope of edge A;A;11. We further rewrite f(Q;)
as the absolute difference between two right-triangular in-
tegrals, as depicted in figure 3b:

F(Qi) = [(9(xig1, Yitr1, di) — 9(ws,95,ds)|. (6)

Therefore, a polygonal integral with n vertices is de-
composed into a linear combination of at most 2n right-
triangular integrals. In the next section, we show how to
quickly pre-compute the set G = {g(z,y,d)} of right-
triangular integrals for all possible values of z, y, and
d € D. With these integrals pre-computed, any polygonal
integration with edge slopes in D can be done in not more
than 2n memory references.

The pseudocode of the algorithm is summarized in algo-
rithm 1. Also note that when D = {0, +-00}, this technique
is equivalent to the axis-aligned integral image technique.

3.3. Pre-processing

The key issue in the pre-processing step is that different
slopes have different difficulties in integration. Integration
along horizontal lines and vertical lines are easy, as they are
parallel to the axes. A line with an irrational slope, how-
ever, is hard to integrate, because at each pixel intersected
by the line, the partition pattern is always different. Unless
some approximation to the pattern is introduced, whichever
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Figure 4. How g(z,y, d) is computed in time O(r).

‘ partitioned pixels ‘

algorithm that integrates along this line must visit every in-
tersected pixel. Hence, the time complexity to integrate is
at least linear to the image’s width or height.

On the other hand, the slope of a polygon’s edge with
integer vertices is always rational. More importantly, a line
with a rational slope produces a finite number of pixel par-
tition patterns. Consider, for example, a slope of positive
integer value n. When traveling along a line with this slope,
the pixel partition pattern repeats itself at every n inter-
sected pixels. In fact, the repetition in pixel partition pattern
is the key factor to our solution for fast computing the inte-
grals in G. Generalizing the above example, we notice that
for any rational slope d = n/m (n,m € Z and m > 0),
the integer vector vq = (m, n)/ ged(|n|, |m|) represents an
interval in 2D such that the partition patterns is periodic. In
other words, the partition pattern at any pixel location (z, y)
is the same that at the shifted location (x,y) + vg4.

We now describe how an integral g(x, y, d) for given val-
ues of z, y, and d can be computed quickly. By the defini-
tion in (3), when d = +oo, g(z,y,d) = 0. The case that
d = Qs trivial, we simply compute an axis-aligned integral
image. The problem is when d # 0. In this case, let L be
the line with slope d crossing the 2D integer point (x,y).
We choose (Z4,9q4) = sign(d)vy so that g, is positive.
Our focus is at the line segment from the 2D integer point
A = (z,y) to the 2D integer point C' = (x — Z4,¥ — Ja),
as illustrated in figure 4. Let 74 be the number of pixels
being partitioned by line segment AC'. It is provable that
ra = |Za| + [fal — 1.

When C lies outside the image, i.e., (x—Zq, y—0a) ¢ T,
both catheti of the right triangle domain of g(x,y, d) have
lengths not greater than r, (figure 4a). We partition this tri-
angle into two regions R; and Ry, where R; contains all
the pixels partially partitioned by L, and Ry contains all the
pixels that are fully inside the triangle. Since the number of
pixels in R, is r4, integration over R is equivalent to com-
puting a dot product in a r4-dimensional space, between the
intensities of the partial pixels and their corresponding pro-
portional areas covered by the triangle. One can rasterize
Ry (either vertically or horizontally) into no more than 74

Algorithm 2 Pre-processing

Require: Image I
Ensure: Integrals G = {g(x,y,d)} {see (3)}
1: Allocate 3D array GG, where G[z,y,d] is intended to
hold the value of g(z,y, d);
2: Assign G[-, -, 0] = J, the integral image of I;
3: foralld # 0 do
4. fory=0to N do

5: for x = 0to M do
6: if (x — &4,y — 9q) ¢ T then
7: Glz,y,d] = 0;
8: Let (z¢, yc) be the point of intersection be-
tween line L and the x-axis;
9: else
10: (zcyye) = (& — 24,y — Ja)s
11 G[$7y7d} = |G[.”L',yc,0} - G[vayC>O]| +
Glzc,yc, dl;
12: end if
13: Partition the intersected region between tri-
angle [(z,v), (z,yc), (xc,yc)]’s interior and
[0, M) x [0,N) into Ry and Ra;
14: Integrate I over Ry and R in time O(ry), and
add the sum to G[z, y, d];
15: end for
16:  end for
17: end for

18: return G|

unit-wide rectangles, and use an axis-aligned integral image
(e.g., g(+,-,0)) to integrate over each of them. This summa-
tion step can also be implemented as a dot product in a space
of at most 4 dimensions. Overall, the integral g(x,y, d) is
computed in time O(rg).

When (x — &4,y — §4) € T, we can define g(z,y, d)
(d # 0) in a recursive manner:

f([(l‘ - jday - gd)v (xay)v ($,y - yd)])
+‘g(1‘7y - Z?d70) - g(l’ - 'i:d)y - gd50>|
+g($ - jday - ded)- (7)

g(z,y,d) =

With reference to figure 4b, the first term corresponds to
the integral over triangle C AF, the absolute difference of
the middle term corresponds the integral over rectangle
CEBD, and the last term corresponds to the triangular in-
tegral cornered at C' and with slope d. Integration over tri-
angle C AFE is similar to the previous case. If g(-,-,0) and
g(x — &4,y — Ja, d) are previously computed, the total in-
tegration time is also O(rq).

Finally, all the integrals in G are computed using dy-
namic programming over x, y, and d, exploiting the re-
cursion in (7). Integrals g(-,-,0) are computed first, so
that they can be used for computing subsequent integrals.



Factor y iterates in ascending order, so that at any time,
g(x — &4,y — Ga,d) is computed before g(z,y,d) (ie.,
ya > 0). This pre-processing step’s pseudocode is shown in
algorithm 2.

The pre-processing step has space complexity
O(MN|D|), and time complexity O(MN|D|rp),
where rp = maxg4ep 4. In practice, the number of slopes
required by an application is small (typically |D| < 10) and
most of the commonly used slopes have small 4 (typically
rp < b). Methods that use the axis-aligned integral image
only require 2 edge slopes: D = {0, +c0} and rp = 1. In
the 45°titled integral image [13], D = {£1} and rp = 1.
In the 26°rotated integral images [I, 5], D = {-0.5,2}
or D = {0.5,—2} and rp = 2. With only 4 slopes
{0,£1,00} (and still rp = 1), one can integrate any
polygon whose edge orientations are multiples of 45°,
which is arguably sufficient for methods that extract 2D
rotation information like the SIFT descriptor [14].

In addition, it is provable that the space complexity
O(M N|D|) is optimal®, which means we cannot reduce the
size of the array G in algorithm 2 further. In this regard, the
time complexity can be considered as nearly optimal, since
factor rp is a relatively small number.

An implementation of our method will be available at the
open-source PyOpenCV* project.

4. Experiments on Polygonal Haar-like Fea-
tures

We have shown a method that can integrate over a polyg-
onal region fast. As a generalization of the integral image,
this work can be readily applied to a number of methods in
computer vision [2, 7, 10, 11, 20, 21, 23, 24, 28]. How-
ever, experimenting on all of them is outside the paper’s
scope. In the remaining of the paper, we show how the
work improves object detection, when rectangular Haar-like
features are extended to polygonal Haar-like features. We
focus on three domains: frontal face detection, fixed-pose
hand detection, and rock detection for Mars’ surface terrain
asssessment. Due to space limitation, we mainly report ex-
periments in face detection. All of our experiments were
conducted on an Intel(R) Core(TM)2 @ 2.67GHz Linux
platform with 2GB of RAM, using a single thread.

4.1. Face Detection

In face detection, Haar-like features are the most widely
used features to date. Currently, there are two trends that ex-
tend Haar-like features to improve face detection. One trend
is by rotating Haar-like features, as described in section 2.
The other is by adding more rectilinear shapes [12, 18] or

3 A proof for this claim is available in the supplementary material. We
omit it here since it is not too relevant to the discussion.
“http://code.google.com/p/pyopencv/

Figure 5. Eight types of polygonal Haar-like features were used
in addition to Viola-Jones’ four types of Haar-like features [24].
They were parameterized by (z, y, 01, 62, [03]). Scaling and trans-
lation were naturally incorporated in these parameters. Features
were generated from these types, rotated by multiples of 90°, and
mirrored. After all duplicate features were removed, a total of
210,366 features formed a polygonal feature pool.

o
-]

Figure 7. The first 8 features of the cascade. Each of them also
acted as a non-face rejector. For illustration, the background is the
mean of all the face patches in the training set.

F=id

by combining a few rectangular features into one [17]. Us-
ing the proposed method, we extended the feature pool to
a new set of parameterized polygonal Haar-like features, as
shown in figure 5. The parameters allowed the features to
shift and scale. Flipping and rotations by multiples of 90°of
the features were included. The new set extends classical
Haar-like features in both shape and in-plane orientation.
Note that all the edge orientations of the polygonal features
are multiples of 45°, which means D = {0, +1, +00}.

We conducted two experiments in face detection. A col-
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Figure 6. Face detection ROC curves: a) ROC curves of boosted classifiers with 20 features, b) ROC curves of boosted classifiers with 200

features, and ¢) ROC curves of the final cascades.

| Method/pool |A[B[ C [ D [ E[F][ G |
No of types 4 | 14] 15 3 19 | 4 | 12

Nooffeatures 50| 86| 113 1] 427 ] 296 | 50 | 210
(in thousands)

Table 1. Some statistics of the feature pools studied in section 4.1.

lection of 8,000 faces was gathered, containing 1,521 face
images from the BiolD Face Database’, and about 6,500
randomly selected frontal face images from Xiao et al.
[27]’s face dataset. We built a generator that selected known
face locations randomly, and resized them down to a base
patch resolution of 20 x 20 pixels, with some pertubation
bias [26]. We used the same collection of a few thousands
large images containing no faces of Wu et al. [26]. For test-
ing, we used the MIT+CMU standard test set, consisting of
130 grayscale images with 507 frontal faces [22]. Our main
interest was to study the discriminant power of feature ex-
traction when Haar-like features were extended.

The first experiment was done as follows. Using Viola-
Jones’ framework, we trained a cascade of 6 boosted clas-
sifiers that rejected 97% non-face patches at a cost of los-
ing 1% face patches. We collected 5,000 true positives and
5,000 false positives of the cascade to form a training set
that respresented a hard classification problem. Using the
training set and the asymmetric boosting method of Pham
et al. [19], we trained multiple boosted classifiers with the
same number of features. We varied the A parameter of the
method (i.e., a trade-off between F"AR and F'RR) to ob-
tain different ROC operating points®. The idea of training
a cascade was to avoid a trivial case in which the resultant
boosted classifiers would contain so few features that we
could not tell their differences [17, 19]. We considered 7
different methods for learning a weak classifier, whose dif-
ferences were mainly at their feature pools: A) Viola and

Shttp://www.bioid.com/downloads/facedb/index.php

6Compared to the traditional way of generating an ROC curve by train-
ing a single boosted classifier and varying the classifier’s threshold, the
method is more time consuming but more accurate [19].

Jones’ method [24] using a pool of 50,000 features (our
patch size was slightly bigger than theirs), B) [24]’s method
with the pool added with 45°tilted features [13], C) [24]’s
method with the pool added with 26°rotated features [5],
D) [24]’s method with Li and Zhang [12]’s feature pool of
steerable features, E) Pham and Cham’s fast weak-learning
method [ 18] with a feature pool of 300,000 rectilinear fea-
tures, F) Mita et al.’s co-occurent features learning method
[17] using [24]’s pool, and G) [24]’s method using our
polygonal feature pool. To be as fair as possible, we used
Discrete AdaBoost instead of RealAdaBoost to combine the
weak classifiers into stronger ones.

Figures 6a and 6b show the ROC curves we obtained by
learning multiple boosted classifiers with 20 features and
200 features, respectively. In the former case, all methods
that extend the feature pool outperformed Viola and Jones’
method. Mita et al.’s learning method (method F) only in-
creased the performance slightly. Our feature pool gave the
best performance, resulting in a marginable gain over the
other methods. In the latter case, the differences became
less obvious but our pool still gave the best performance.
This experiment shows that it is beneficial to use polygo-
nal Haar-like features at the front layers of the cascade. By
using polygonal Haar-like features, more negatives can be
rejected early, allowing the cascade to evaluate faster at the
same level of accuracy.

In the second experiment, we learned a face detector
for each of the 7 above-mentioned weak-classifier learn-
ing methods. We used Pham et al.’s multi-exit asymmetric
boosting method [19] to learn a cascade. Every exit node
was designed to have FAR < 0.7 and FRR < 0.001.
There were 32 exit nodes per cascade. Figure 6¢ depicts
the resultant ROC curves, obtained from testing the cas-
cades with the MIT+CMU test set. The most accurate cas-
cade curve belongs to the cascade that was trained using
our polygonal feature pool. Once again, the experiment
confirmed the usefulness of polygonal features. Figure 7
presents the first 8 weak classifiers in the cascade, which
also happened to be the cascade’s exit nodes.
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Figure 8. Two hand poses and their positive examples.

98600 0.0001 00002 0.0003 00004 0,005 98600 0.0001 00002 _0.0003 00004 0,005
false acceptance rate false acceptance rate

(a) palm (b) victory

Figure 9. Hand detection ROC curves: a) ROC curves associated
with the palm pose, b) ROC curves associated with the victory
pose.

4.2. Hand Detection

Haar-like features were also used in fixed-pose hand
detection[9, 17]. We conducted an experiment analogous
to section 4.1. Our setup was similar to that of [9, 17].
We trained detectors for detecting two different hand poses:
palm and victory (figure 8). For data collection, we took
video sequences at resolution 320 x 240 in which people
made two different hand poses in front of different back-
grounds. For each pose, we collected about 1,800 images,
of which 600 randomly selected images formed a test set
and the remaining images formed a training set for the pose.
A generator was built that selected known hand locations
randomly, and resized them down to a base patch resolu-
tion of 20 x 20 pixels, with some pertubation bias. Nega-
tive patches were generated from a sufficiently large set of
images containing no hand. Training the cascades was the
same as in section 4.1, except that each cascade had 28 exit
nodes, and only the weak classifier learning methods A, D,
F, and G were considered. These are the methods where
hand detection has been investigated with[9, 17].

Figure 9 depicts the ROC curves obtained from the ex-
periment. In both poses, the cascade trained with the polyg-
onal Haar-like features outperformed other cascades. The
gain was more obvious in the case of the victory pose.

4.3. Rock Detection for Terrain Assessment

In space research, terrain assessment is an important
problem for autonomous navigation of planetary explo-
ration rovers. Knowledge of the physical properties of ter-
rain surrounding a planetary rover allows the rover to fully
exploit its mobility capabilities [6, 15]. One critical chal-
lenge is how to detect rocks from other terrain properties,
as it allows the rover to avoid collision while navigating.

We conducted an experiment similar to sections 4.1 and

090 /~/‘ —
Lt S

0.85] / s // o

o 0.80f = 22 ‘;.'

067 0,04 0.06 008 0.10 012 014 016 0.18 0.20 0560 0.05 015 01 0.20
false acceptance raie false acceptance rate

a) 20 features b) 200 features

Figure 11. Rock detection ROC curves: a) ROC curves of boosted
classifiers with 20 features, and b) ROC curves of boosted classi-
fiers with 200 features.

4.2, to train two detectors that could detect rocks from im-
ages taken on Mars’ surface. The first detector used Pham-
Cham’s Haar-like features [ | 8], the second detector used the
polygonal Haar-like features. We used publicly available
images taken from NASA’s Mars Exploration Rover mis-
sions for training and testing the detectors. Rock regions in
30 images of resolution 1024 x 1024 were manually anno-
tated, each of which consisted of 10 to 50 rocks. We devel-
oped a generator to generate rock and non-rock patches of
resultion 20 x 20 from the annotated images. Some positive
examples are illustrated in figure 10.

Unlike the previous two domains, the rock detection
problem turned out to be rather tough for Haar-like features.
When training a cascade using each of the two feature pools,
we obtained first boosted classifiers with 67 and 49 weak
classifiers respectively, at FAR < 0.05 and FRR < 0.01.
In other words, a cascade would be even slower than a sin-
gle boosted classifier. Therefore, we abandoned the cascade
idea and only trained each detector with a single boosted
classifier. The ROC curves are reported figure 11. The
results confirmed that using polygonal features would im-
prove the accuracy of the detector.

4.4. Speed

Throughout the experiments, the average evaluation time
was 0.30us per feature polygonal Haar-like feature. The
integration time in average was about 0.023us per vertex,
which implied, for instance, 15 million triangular integra-
tions per second. The pre-processing time for a 320x240
image was 15.9ms. The average detection speeds of the
trained cascades are reported in table 2 and table 3. The
cascades trained using the polygonal feature pool ran the



[Method [ A[ B[ C[DJ[EJ[F] G |
| Face [78[87[85[92[96][76]105]

Table 2. Average detection speeds (in fps) of the 7 face detectors
when applied to the MIT+CMU test set.

[Method | A | D | F | G |
Palm [15.6 [ 17.7 [ 163 | 184
Victory | 128 [ 13.7 [ 13.4 | 145

Table 3. Average detection speeds (in fps) of the 4 hand detectors
when applied to testing video sequences at resolution 320 x 240.

fastest compared to other cascades in their domains.

5. Conclusions

We proposed a method for fast integrating a function
over the interior of an arbitrary polygon in an image. The
method integrated in time independent of the image resolu-
tion, and only linear to the number of vertices of the poly-
gon. We applied the method on improving Haar-like fea-
tures for object detection, by adding the feature pool with
polygonal Haar-like features. We showed empirically that
the extended feature pool led to improvement in detection
performance, both in accuracy and in speed. The experi-
ments were conducted in three domains: frontal face de-
tection, fixed-pose hand detection, and rock detection for
Mars’ surface terrain asssessment.
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