
1 Constraint forces: D'Alembert's principle

Many forces that one deals with in mechanics are speci�ed straightforwardly in

terms of direction and magnitude. Constraint forces are di�erent. The strength

of a constraint force is whatever it takes to maintain the associated restriction

on the motion of the system. A very familiar constraint from freshman physics

is the requirement that a sliding block stay on an incline. The constraint

force is the normal force the incline provides to counter the component of

the weight in that direction. For a single particle, a holonomic constraint is

a restriction that the particle live on a smooth surface or curve, which may

change with time. Corners and edges are diÆcult things to deal with, and

technically disqualify a constraint from being holonomic. If the motion never

comes near the edge, however, you can always pretend it doesn't exist. For

systems of many particles, the unconstrained con�guration space is Q0 = E3N ,

a 3N -dimensional Euclidean space with three coordinates for each particle.

Holonomic constraints restrict the con�guration to a smooth lower-dimensional

\surface" within this space. Sometimes the reduction in dimension is very

dramatic. A rigid body for instance has a gazillion constraints keeping all the

particles in their proper relative positions.

Although the magnitude of the forces which maintain constraints cannot

always be determined easily, there is a general principle about their direction,

which goes by the name

D'Alembert's principle:

Freeze the con�guration of a mechanical system and the

constraint forces Fc
� acting on it at some instant. Let

Æx� be in�nitesimal variations of the positions staying

within Q(t). Then

ÆW =
def X

�

Fc
� � Æx� = 0:

This covers both time-independent and time-dependent constraints. For

the moment, we'll think about only time-independent holonomic constraints,

so that the motion must always lie on some �xed smooth con�guration space

Q � Q0. In�nitesimal variations of position conforming to the constraint Q(t)

are sometimes called `virtual displacements'. Then D'Alembert's principle says

that the constraint forces do no work under virtual displacements. To under-

stand it, consider �rst a single particle constrained to some (2-d) surface. The
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principle is equivalent to the statement that the constraint force is perpen-

dicular to surface. If it were not, the constraint force would be pushing the

particle in some direction within the constraint surface. That clearly makes

no sense. By de�nition, the constraint acts only to keep the particle on the

surface and doesn't care precisely where on the surface it is. The work done

by the constraint force under some tiny displacement measures the degree to

which the force wants the particle to move in that direction. Once this simple

case is understood, the general one is not far behind. The tiny motions which

satisfy the constraint may be more complicated, but the idea is precisely the

same. ÆW indicates the degree to which the constraint forces are encouraging

the system to move in the direction speci�ed by fÆx�g. The very de�nition of

a constraint says that it is indi�erent to which direction things move as long

as they conform to the constraint. So, ÆW must be zero.

We can also extend the form which says that the constraint force is per-

pendicular to the constraint surface by making appropriate de�nitions (this

will be more generally useful,too). Arrange the forces on the various particles

into one long vector

Fc =

0
BBBB@

Fc
1

Fc
2

...

Fc
N ;

1
CCCCA

and the coordinates of all the particles into another one

X =

0
BBBB@

x1

x2

...

xN :

1
CCCCA

Now we agree that dot products of such giant vectors are to be taken by

multiplying each of the corresponding 3N components together, i.e.,

Fc � ÆX =
def X

�

Fc
� � Æx�:

Then, D'Alembert's priciple says that the constraint force Fc is orthogonal to

the constraint surface, since it is orthogonal to any direction ÆX tangent to it.
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So that's it for time-independent constraints. Time-dependent constraints

are a little trickier, but not much. Now we are dealing with a constraint

surface Q(t) � Q0 which moves as time passes. The motion of the surface

is everywhere and at all times perpendicular to itself. This is a matter of

de�nition again. Shift a plane parallel to itself. Have you really changed

anything? No. The only di�erence from the time-independent case is that the

constraint forces are now required not to maintain zero velocity orthogonal to

the surface, but a possibly non-zero component in those directions. (there can

be many directions orthogonal to the surface Q(t) { consider a bead sliding on

a wire for a very simple example.) Thus, the same argument as before carries

over. The constraint forces are, in this case also, totally indi�erent to motion

tangent to Q(t).

You can make up arguments that look fancier, but they have this idea

hidden in their starting points.

2 brief review of variational calculus

2.1 Functionals depending on a single function

Let's recall some of the basic results from the calculus of variations. Going

back to the beginning, consider a functional

I[y] =

Z b

a

f(y(x); y0(x); x) dx: (1)

The domain of I is the smooth functions having speci�ed values y(a) = ya
and y(b) = yb at the endpoints. You can take `smooth' to mean suÆciently

di�erentiable to make the manipulations meaningful. (In the current context,

twice continuously di�erentiable will do { but that's a technical matter which

you shouldn't worry about.)

Now alter y(x) slightly by adding �h(x) to it, with h(a) = h(b) = 0 (so as

not to disturb the values of the function at the endpoints). The shape of this

deformation is speci�ed by h(x) and the size is controlled by �. Then the value

of the functional I changes by

I[y + �h]� I[y] =

Z
ff(y(x) + �h(x); y0(x) + �h0(x); x)� f(y(x); y0(x); x)g dx

= �

Z X
i

ÆI

Æy(x)
h(x) dx +O(�2): (2)
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yy+εh

h

O(�2) indicates a `correction term' which vanishes at least as fast as a constant

times �2 as � ! 0. The �rst factor inside the integral is called the functional

derivative of S (with respect to y(x)) and is given by

ÆI

Æy(x)
=

�
@f

@y
�

d

dx

@f

@y0

� �����
y(x);y0(x)

: (3)

This formula is central to the whole business, but you already have derivations

available from several sources, so I won't repeat it here.

The name `functional derivative' requires a little explanation. First, di�er-

entiating equation (2),

d

d�
I[y + �h]

���
�=0

=

Z X
i

ÆI

Æy(x)
h(x) dx: (4)

Now consider a special choice of h, the `bump function' depicted in �gure

2.1, with an area one under it and centered at x0. ÆI=Æy(x) is a continuous

function, so if the bump is made narrow enough,

d

d�
I[y + �h]

���
�=0

�
ÆI

Æy(x0)
:

The functional derivative ÆI=Æy(x) measures the response of I to a change of

the function y near x.

In a similar vein, an analogy can be drawn to a function f(x1; : : : ; xn) of

n variables, which we view as cartesian coordinates in a Euclidean space. The

change in f under a small displacement of the argument is

f(x+ �y)� f(x) = �
X
i

[rf ]iyi +O(�2): (5)
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The structures of Eqns. (5) and (2) are exactly parallel. It is almost as though

ÆS=Æqi(t) and hi(t) were the components of in�nite dimensional vectors, each

di�erent i and t corresponding to a di�erent component, except that instead

of a sum over the t label we have an integral. This is a good rough way to

think about it.

A slightly di�erent notation one often encounters is

ÆI =

Z
ÆI

Æy(x)
Æy(x) dt: (6)

This says the same thing as Eq. (2). The variation �h of the trajectory has

become Æy. ÆI is the `�rst-order' variation of I, the meaning of which is

obtained by putting the � back in.

Starting at any point, you can �nd a local minimum of a function f by

just pushing that point backwards against the gradient rf until you reach

a point where the gradient vanishes. There's no guarantee you'll ever �nd a

minimum, but going downhill is the best way to �nd the bottom of the valley

if it has one. To be completely honest, it may not be a minimum in a strict

sense. Consider z(x; y) = x2. The described procedure will run you down to

x = 0 without changing y, because the function is horizontal in that direction.

Now, we can do exactly the same thing with functionals. Take the speci�c

example,

I[y] =

Z b

a

(y0)2 dx:

Then, you quicky compute

ÆI

Æy(x)
= �y00(x):

Figure 2.1 shows a function (solid line) which runs between the speci�ed en-

points. At each point along the graph, attach an arrow of length jÆI=Æy(x)j

and pointing up if the functional derivative is negative, down if it's positive,

i.e. opposite ÆI=Æy(x). pointing up if By the foregoing discussion, it should be

clear that shifting y in the direction of the arrows at every point will reduce

the value of the functional I. To be very speci�c, if you take

h(x) = �
ÆI

Æy(x)
;

and plug this into equation (2), you will see that every point x gives a negative

(or maybe zero) contribution to the integral and I is bound to decrease. So
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shift y a bit, which gives the dotted curve, recompute the functional derivative,

draw new arrows, shift a bit more,... and eventually you will reach a point

where ÆI=Æy � 0 (close anyway). No further shift of y will reduce I. (At least

to �rst order in the shift. There's always the possibility of saddle points, of

course, just as with ordinary functions, e.g. z = x2 � y2 at x = y = 0). What

you will wind up with in this example is a straight line. The I you're trying

to minize is the integral of (y0)2. y0 = 0 would surely do that, but it's not

allowed because it's got to go from A to B. The best you can do is a straight

line between them.

So now you have obtained a function y0 for which

d

d�
I[y0 + �h]

���
�=0

= 0

for every allowed h in equation (2). Equivalently,

ÆI

Æy(x)

���
y0

= 0 at all x;

or ÆS = 0 (equation 6), which in turn is the same thing as

�
@f

@y
�

d

dx

@f

@y0

������
y0;y

0

0

= 0:

This is the functional analog of a critical point, and there's nothing wrong

with calling it that. A di�erent language is customary, however. We say that

I is stationary at y0.
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2.2 Functionals depending on many functions

In our use of the functional calculus, the single function y will be replaced

by the trajectory of a mechanical system, i.e. positions as a function of

time. So we have to think how all this gets modi�ed. If we have a func-

tional I[y1; y2; : : : ; yn] depending on y1, y2,..., yn, we can, for the most part,

think of it as a functional I[y] of a vector-valued function y(x). Then y1, y2,

..., yn are the components of this vector. Notice that it may perfectly well

have more than three components. This assumes that the yi are independent

of each other. Drawing arrows as was done in �gure 2.1, you'd get something

x

y2

y 1

Figure 1: A function y(x) taking values in a two-dimensional space

like �gure 1. Note that the arrows here are all parallel to the y1-y2 plane, they

don't have any x-component. This picture gets a little unwieldy and it's easier

to supress x entirely and just draw the projection into the y1-y2 plane. If you

do that, you'll get pictures like �gure 2. You must remember that the curve

here is parametrized by x. To minimize I, drag each point along the direction

of the arrow, being careful to keep its x-label attached.

Since each yi can be varied independently of the others, a stationary func-

tion y for I must be stationary under variations of each yi alone, leaving all

the other y's �xed. What that means is that the stationarity condition is given

by the collection of Euler equations

ÆI

Æyi(x)

���
y0

=

�
@f

@yi
�

d

dx

@f

@y0

i

������
y0;y

0

0

= 0; for all i: (7)
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y1

y2

Figure 2: Projection of y(x) into the y1-y2 plane.

An important thing to notice: any complete set of coordinates will work

here. The condition
d

d�
I[y + �h] = 0

does not depend upon what coordinates we use to describe the functions y(x)

and h(x). So stationarity of I is completely independent of such a choice.

Whatever coordinates we choose, we'll still get a set of n Euler equations. The

explicit form in terms of the y's will depend upon that choice because when f

is rewritten in terms of new ones, it will look di�erent. That's a good thing,

because a smart choice of coordinates may make the equations much simpler.

3 Hamilton's Principle and Newton's Equa-

tion of Motion

For each con�guration space trajectory q(t) of a mechanical system between

an initial time t0 and �nal time t1, we de�ne the action

S[q] =

Z t1

t0

L(q(t); _q(t); t) dt

where the Lagrangian is

L = T � U
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for a purely mechanical system. This notion is the main character in Hamil-

ton's Principle, which can be taken as the fundamental principle of mechanics,

replacing Newton's Laws. Hamilton's Principle asserts that

The actual trajectory of a system between initial con�guration

q at time t0 and �nal con�guration q at time t, is one which

makes the action stationary.

If the system is subject to constraints, it is implicitly understood that

the action is to be restricted to trajectories which actually obey them. In

other words, if you vary the trajectory to one which violates the constraints,

Hamilton's Principle doesn't tell you what will happen.

We need to see that this is equivalent to Newton's equation of motion

(2nd Law) in order to accept it as an alternative fundamental principle. To

make things more concrete, we'll focus on the speci�c example of a single

particle constrained to lie in a surface Q. Our particle is then acted upon by a

constraint force and another force which derives from a potential U(r). When

you have understood this, you should have no diÆculty whatever in dealing

with the general case. (If you want to be even more speci�c, you could think

about a sphere. Then the constraint is jrj2 = R2.)

Now, pick any trajectory r(t) with the designated starting and ending

points. From

L = T � U =
1

2
mj _rj2 � U(r)

evaluate

ÆS

Ær(t)
=

@L

@r
�

d

dt

@L

@ _r
= �

@U

@r
�
dp

dt
: (8)

This is a vector at each point of your chosen trajectory. Since �@U=@r is the

force provided by the potential, Newton's 2nd law asserts that, in order for

the particle to move along your chosen trajectory,

Fextra =
dp

dt
�
@U

@r

is the force which must supplied from somewhere besides the potential U .

But there is only one other source of forces on the particle, the costraint. The

constraint force, by its very nature acts perpendicular to the constraint surface
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δS
δq

δx

Q

Figure 3: When ÆS=Ær is perpendicular to Q, the action is stationary to vari-

ations of the trajectory which stay within Q.

Q. Putting these last two equations together

ÆS

Ær(t)
= �Fextra: (9)

Now, on the one hand, Newton assures us that, unless this vector is per-

pendicular to Q at all points of the trajectory, we've made a bad guess { the

trajectory is wrong. On the other hand, the variational calculus says that we

can reduce the action S[q] of the trajectory by shifting it along the direction

Fextra. Since we're not going to allow the trajectory to be pulled o� the con-

straint surface Q, we can only shift along the projection of ÆS=Ær into the

plane tangent to Q. Thus, restricted to trajectories lying in Q, the action is

stationary precisely when ÆS=Ær is perpendicular to Q. (See �gure 3) In other

words, when ÆS=Ær is perpendicular to Q at all points of the trajectory, there

is no way

ÆS =

Z
ÆS

Ær(t)
Ær(t);

can be anything but zero if Ær is tangent to the surface.

Conclusion: Newton's Law is satis�ed for precisely the same trajectories that

make the action stationary among trajectories which satisfy the constraint.
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3.1 parting shots

One very nice things about the Lagrangian approach is that we can avoid

dealing with the constraint forces explicitly. We simply set up the variational

principle for motions which are conformant to the constraint and go from there.

We also are free to use any coordinates to describe the motion in Q. This is

indeed possible using Newtonian methods, too, but it's generally a lot more

cumbersome.

But, if we like, we are also free to use coordinates on the bigger con�g-

uration space Q0, and incorporate the constraint by a Lagrange multiplier

function. Namely, we can usually express a constraint as g(X(t)) = t. This

is actually very easy. Just �nd the constraint surface Q(t) and de�ne g to be

equal to t there! (Problems with multi-valuedness are illusory, since this only

need work for short intervals of time and small pieces of con�guration space)

For example, a bead on a wire rotating around the z-axis is constrained to

� = !t in spherical coordinates, so take g(r) = �=!. Then, since the con-

straint force acts perpendicular to the surface of constant g, it can be faked by

use of a possibly time-dependent potential �(t)g. We just have to tune �(t) to

ensure that the resulting motion really does follow the constraint.

11


