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ABSTRACT

Due to the inherent measurement noise in microarray experi-
ments, heterogeneity across samples, and limited sample size,
it is often hard to find reliable gene markers for classifica-
tion. For this reason, several studies proposed to analyze
the expression data at the level of groups of functionally re-
lated genes such as pathways. One practical problem of these
pathway-based approaches is the limited coverage of genes
by known pathways. To overcome this problem, we propose
a new method for identifying effective subnetwork markers
by overlaying the gene expression data with a genome-scale
protein-protein interaction network. Experimental results on
two independent breast cancer datasets show that the subnet-
work markers lead to more accurate classification of breast
cancer metastasis and are more reproducible than both gene
and pathway markers.

Index Terms— Protein-protein interaction (PPI) net-
work, subnetwork markers, cancer classification.

1. INTRODUCTION

Given the high throughput genomic data from microarray
studies, one challenge is to find bio-markers associated with
disease states. Significant amount of work has been done to
identify gene markers that can be used for disease classifi-
cation. However, due to the inherent measurement noise in
microarray experiments, heterogeneity across samples, and
limited sample size, it is often hard to find reliable gene mark-
ers. Moreover, the gene markers are often selected indepen-
dently although some of them may be actually functionally
related. For this reason, the selected gene markers often con-
tain redundant information that may lead to degradation of
classification performance.

To address this problem, several studies proposed to in-
terpret the expression data at the level of groups of genes that
are functionally related, for example, known biological path-
ways [1, 2, 3, 4]. One advantage of using pathway markers is
that we are able to reduce the effect of the measurement noise
and that of the correlations between genes within the same

pathway. This can be achieved by capturing the overall ex-
pression changes of a given pathway by jointly analyzing the
expression levels of its member genes. It has been demon-
strated that pathway markers are more reliable compared to
gene markers and lead to better or comparable classification
performance. Furthermore, pathway markers can provide bi-
ological insights into the underlying mechanisms of different
disease phenotypes. One practical problem of this pathway-
based approach is that the currently known pathways cover
only a limited number of genes. This may exclude key genes
with significantly expression changes across different pheno-
types. Moreover, many pathways in public databases often
overlap with each other, which may also introduce correla-
tions between some of the selected pathway markers.

The availability of large protein-protein interaction(PPI)
networks provides us a possible way to alleviate these prob-
lems. Recently, there have been research efforts to identify
subnetwork markers by overlaying the gene expression data
with a protein-protein interaction network [5]. In [5], they
first found significantly differentially expressed seed genes
and then greedily grew the subnetworks from the seeds such
that the mutual information between the subnetwork activity
scores and the class labels was maximized. It has been shown
that subnetwork markers have good reproducibility and lead
to more accurate classification.

In this paper, we introduce a new method for identifying
effective subnetwork markers from a PPI network by per-
forming a global search for differentially expressed linear
pathways using dynamic programming. Overlapping path-
ways are optimally combined into subnetworks, which are
used as bio-markers for classifying breast cancer metasta-
sis. This paper is organized as follows. We first describe
the algorithm in the following section. In Sec. 3, we used
this algorithm to identify subnetwork markers and evaluate
their effectiveness based on two independent breast cancer
datasets. We discuss the obtained results and conclude this
paper in Sec. 4.

2. IDENTIFICATION OF SUBNETWORK MARKERS

Given a large PPI network, we want to find subnetwork mark-
ers whose activity scores are indicative of the disease states of



interest. For this purpose, we first need a method for inferring
the subnetwork activities and evaluating their discriminative
power. Currently, there exist different ways for computing
the activity score of a given group of genes [4]. We have
shown that the probabilistic inference scheme proposed in [4]
outperforms many other existing methods. Thus, we adopt
this activity inference scheme for finding subnetwork markers
whose activity scores are highly discriminative of the disease
states. However, finding the subnetwork markers with max-
imum discriminative power in a PPI network based on the
selected inference method is computationally infeasible. For
this reason, we propose an algorithm for identifying effective
subnetwork markers which is motivated by a simpler scheme
proposed in [6]. This scheme has been shown to be effec-
tive in approximately evaluating the discriminative power of
pathway markers [4].

The general outline of the proposed algorithm is as fol-
lows. Based on the scoring scheme suggested in [6], we first
search for differentially expressed pathways using dynamic
programming. Then, the top pathways that overlap with each
other are optimally combined into a subnetwork based on the
activity inference method proposed in [4]. The identified sub-
network is removed from the PPI network, and the above pro-
cess is repeated to find multiple non-overlapping subnetwork
markers. The overall scheme is illustrated in Fig. 1.
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Fig. 1. Illustration of the proposed algorithm.

2.1. Evaluating the discriminative power of pathways

A linear pathway λ = {g1, g2, · · · , gn} in a given PPI net-
work G is defined as a group of genes, where gi and gi+1 are
connected for i = 1, · · · , n− 1 . Assume that the expression
level xi of a gene gi follows the distribution fk(xi) under
phenotype k, where k = 1, 2. The log-likelihood ratio [4]
between two phenotypes is computed as follows

αi(xi) = log(f1(xi)/f2(xi)). (1)

We evaluate the discriminative power of the gene gi by com-
puting the t-test statistic score of the log-likelihood ratio
αi(xi), denoted as tα(gi). The discriminative power of the

pathway λ can be assessed by taking the average absolute
t-score of the log-likelihood ratios of its member genes.

S(λ) =
∑
gi∈λ

|tα(gi)|/n. (2)

The above scoring scheme can be used for finding the top lin-
ear pathways in the network G as we describe in the following
section.

2.2. Searching discriminative pathways

Let G = (E, V ) denote the PPI network, where V is the set
of nodes (i.e., proteins), E is the set of edges (i.e., protein
interactions). Suppose there are N proteins in G, we can rep-
resent E as an N -dimensional binary matrix. For any protein
pair (va, vb),where va, vb ∈ V , we letE[va, vb] = 1, if va, vb
are connected; E[va, vb] = 0, otherwise. Based on the path-
way scoring scheme defined in Sec.2.1, we search for top dis-
criminative pathways using dynamic programming. We de-
fine λ(vi, l) as the optimal pathway among all pathways with
length l and ending at vi, whose score is denoted as s(vi, l)

s(vi, l) =
∑

vθ∈λ(vi,l)

|tα(vθ)|.

Here, only pathways with length l ≤ L are considered. The
algorithm is defined as follows.
(i)Initialization: l = 1, ∀vi ∈ V ,

s(vi, l) = |tα(vi)|.

(ii) Iteration:
for l = 2 to L,

for ∀vi ∈ V ,

s(vi, l) = max
vj
{s(vj , l − 1) + tα(vi) +

log(E[vi, vj ])}, (3)
v∗j = arg max

vj
{s(vj , l − 1) + tα(vi) +

log(E[vi, vj ])}, (4)

if s(vi, l) > 0, then

λ(vi, l) = λ(v∗j , l − 1) ∪ {vi}.

end
end

(iii) Termination:
for ∀vi ∈ V, 1 ≤ l ≤ L,

S(λ(vi, l)) = s(vi, l)/l. (5)

Although the above algorithm finds only the top pathway
for every (vi, l), we can easily modify it to get the top M dis-
criminative pathways. Then, the complexity of this algorithm
is O(ML ·N2).



2.3. Combining pathways into subnetwork

Based on (5), we choose the m top scoring pathways Λ =
{λ1, λ2, · · · , λm} whose lengths are within a given range
[Lmin, Lmax]. Next, the pathways in Λ are combined into
a subnetwork Gs so that its discriminative power R(Gs) is
locally optimized. This process is carried out as follows.
(i) Gs ← λ1,Gtemp ← Gs, i = 1.
(ii) i = i+ 1; If λi ∩ Gs 6= ∅, Gtemp ← Gtemp ∪ λi.
(iii) If R(Gs) < R(Gtemp), Gs ← Gtemp; else Gtemp ← Gs.
(iv) Go to (ii) if i < m; otherwise, terminate.
In order to estimate the discriminative power of a subnetwork,
we used the activity inference method in [4] to infer the actual
activity score of Gs. Then, R(Gs) is computed as the t-test
statistics of the subnetwork activity score.

After obtaining a subnetwork Gs, we removed it from
the network G by setting E[vs, vi] = E[vi, vs] = 0,∀vs ∈
Gs, vi ∈ G. Then, the whole process was repeated based on
the updated network to find additional subnetwork markers.

3. EXPERIMENTAL RESULTS

We demonstrated the effectiveness of the identified subnet-
works in two different ways based on two independent breast
cancer datasets. First, we evaluated the discriminative power
of the subnetwork markers. Second, subnetwork markers
were applied to the classification of breast cancer metastasis.

3.1. Datasets

We obtained two independent breast cancer datasets from
the large-scale expression studies in [7] (referred as the USA
dataset) and [8] (referred as the Netherlands dataset). The
USA dataset contains 286 samples with 107 metastasis and
179 metastasis-free samples. The Netherlands dataset con-
tains 295 samples with 79 metastasis and 216 metastasis-free
samples. The PPI network has been obtained from [5], which
contains 57,235 interactions among 11,203 proteins. Since
not all proteins have corresponding genes in the microarray
platforms used by the two breast cancer studies, we used the
induced network which contains 9,079 proteins and 48,734
interactions for the USA dataset, and 5,541 proteins and
28,034 interactions for the Netherlands dataset.

3.2. Discriminative power of subnetwork markers

For each dataset, 50 subnetwork markers were identified us-
ing the proposed method. The parameters were set to M =
20, Lmax = L = 8, Lmin = 5, and m = 100. For the USA
dataset, the mean size of the identified subnetwork markers
was 19.2 with a standard deviation of 10.2. For the Nether-
lands dataset, the average was 18 and the standard deviation
was 9.6.

To assess the discriminative power of a given subnetwork
marker, we computed its activity score using the inference

method proposed in [4] and estimated its t-test statistic score.
Pathways were sorted in the decreasing order of t-score. Av-
erage t-scores of the top K = 10, 20, 30, 40, 50 subnetworks
are shown in Fig. 2A and Fig. 2B. For comparison, the top 50
pathways in the C2 curated gene sets in MsigDB1(Molecular
Signatures Database), which contains 639 known biological
pathways, were identified based on each dataset. Then, the
discriminative power of the selected pathway markers was
computed in the same way. We also estimated the discrim-
inative power of the top 50 genes covered by the identified
subnetwork markers. As we can see from Fig. 2A and Fig. 2B,
subnetwork markers are more discriminative than both path-
way and gene markers.

To compare the reproducibility of different markers, we
identified the top 50 markers based on one dataset and eval-
uated on the other dataset. Figures 2C and 2D show that
the subnetwork markers retain higher discriminative power
across different datasets.
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Fig. 2. Discriminative power of different markers. A, B:
Markers were identified using a particular dataset and tested
on the same dataset. C, D: Markers were identified using one
dataset and evaluated based on the other dataset.

3.3. Classification performance

To evaluate the classification performance of the classifiers
based on subnetwork markers, we performed the follow-
ing within-dataset and cross-dataset cross-validation experi-
ments.

In within-dataset experiments, the top 50 subnetwork
markers identified using one of the two breast cancer datasets
were used to build the classifier. The dataset was divided
into five folds of equal size, one of them was withheld as
test set and the remaining four were used for training the

1http://www.broadinstitute.org/gsea/msigdb/index.jsp



classifier. In the training set, three folds were used to rank the
subnetwork markers in the increasing order of p-value and
build the classifier based on logistic regression, while one
fold was used for feature selection. We started with the top
ranked subnetwork marker and built the classifier by adding
features sequentially. If the AUC metric [9] on the feature
selection set increased, the additional feature was kept; oth-
erwise, we discarded it and tested the remaining ones. The
above experiment has been repeated 500 times based on 100
random five-fold splits. The average AUC was reported as
the classification performance. Similar experiments have
been performed using pathway and gene markers, respec-
tively. The two bar charts on the left of Fig. 3 show that the
subnetwork markers significantly improved the classification
performance.

To evaluate the reproducibility of subnetwork markers, we
performed the following cross-dataset experiments. We iden-
tified the top 50 subnetwork markers based on one dataset
and performed the same cross-validation experiment which
had been used in the within-dataset experiments on the other
dataset. The experimental results are shown in the two bar
charts on the right of Fig. 3. As before, the classification per-
formance of subnetwork-based classifiers significantly out-
perform that of the classifiers based on gene or pathway mark-
ers.
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Fig. 3. Classification Performance. Bar charts labeled
USA and Netherlands are the results of the within-dataset
experiments. Bar charts labeled Netherslands-USA and
USA-Netherlands are results of the cross-dataset experiments
where markers were identified based on the first dataset and
tested based on the second one.

4. DISCUSSION AND CONCLUSION

In this paper, we proposed a new method for identifying ef-
fective subnetwork markers in a PPI network. The proposed
method finds top scoring pathways using dynamic program-
ming and combines them into a subnetwork to optimize the
discriminative power of the resulting subnetwork markers. In
this work,the activities of the identified subnetwork markers
were inferred using the probabilistic inference scheme pro-
posed in [4]. There are several advantages of the proposed

method. First of all, the genome-scale PPI network used
in this paper provides a better coverage of the genes in mi-
croarray studies compare to pathways obtained from public
databases. Second, we construct the subnetworks based on
differentially expressed pathways instead of starting from
single genes, therefore the result subnetworks may be more
robust. Moreover, the probabilistic inference scheme leads to
the identification of better subnetwork markers since it can
more reliably assess their discriminative powers. As shown in
this paper, classifiers based on the subnetwork markers iden-
tified using the proposed method achieve higher classification
accuracy in both within and cross dataset experiments.
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