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Abstract: The uncertain information given by a random set on a finite space of 
singletons determines a set of probability distributions defined by the convex 
hull of a finite set of extreme distributions. After placing random sets in the 
context of the theory of imprecise probabilities, algorithms are given to 
calculate these extreme distributions, and hence exact upper/lower bounds on 
the expectation of functions of the uncertain variable. Detailed applications are 
given to consonant random sets (or their equivalent fuzzy sets) and to p-boxes 
(non-consonant random sets). A procedure is presented to calculate the random 
set equivalent to a p-box and hence to derive extreme distributions from a  
p-box. A hierarchy of non-consonant (and eventually consonant) random sets 
ordered by the inclusion of the corresponding sets of probability distributions 
can yield the same upper and lower cumulative distribution functions of  
the p-box. Simple numerical examples illustrate the presented concepts and 
algorithms. 
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1 Introduction 

In civil engineering practice, the growing need for rationally including uncertainty in 
engineering modelling and calculations is witnessed by the adoption of reliability-based 
EuroCodes or Load and Resistance Factor Design codes (Level I). More sophisticated 
reliability-based approaches are used in research or special practical problems (Levels II 
and III). This need, however, has been accompanied by the realisation of the limitations 
that affect probabilistic modelling of uncertainty when dealing with imprecise data 
(Walley, 1991). 

On the one hand, in the enlarged ambit of a multi-valued logic, alternative models of 
uncertainty have been propounded that attempt to capture qualitative or ambiguous 
aspects of engineering models. Particularly important models are based on the idea of 
fuzzy sets and relations, and positive applications have been reported in the fields of 
automatic controls in robotics and artificial intelligence, more generally in the field  
of optimal decisions and approximate reasoning. Less convincing and frequently charged 
with leading to unrealistic or unverifiable conclusions are the tentative applications of 
fuzzy models in predicting or simulating objective phenomena, for example to evaluate 
the reliability of an engineering design or to assess the reliability of an existing 
engineering system. 

On the other hand, new models of uncertainty have been formulated, based on a 
generalisation of the probabilistic paradigm, and in particular its objective interpretation 
as relative frequency of events. The main point is the consideration of ‘imprecise 
probabilities’ of events or ‘imprecise previsions’ of functions, based on the idea of 
bounded sets of probability distributions compatible with the available information  
or, alternatively, on the combination of a probability distribution (randomness) with 
imprecise events (set uncertainty). Because these models retain the semantics of 
probability theory, comparisons with probability theory are straightforward (Helton  
et al., 2006). 

The subjectivist formulation of this approach [theory of evidence (Shafer, 1976)] is 
compatible with a different interpretation based on statistics of objective but imprecise 
events (theory of random sets). When imprecise events are nested, it includes the notion 
of fuzzy set as a particular case. 

The aim of the paper is to present the second set of models of uncertainty in order  
to highlight their probabilistic content and to calculate expectation bounds for the  
system behaviour. After a quick review of the definitions and properties of imprecise 
probabilities and classification of the corresponding upper/lower bounds according to  
the order of Choquet capacities, the paper focuses on the theory of random sets, with 
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particular emphasis on fuzzy sets (consonant random sets) and p-boxes (non-consonant 
random sets that contain, as a particular case, the ordinary probability distributions). Both 
fuzzy sets and p-boxes are indexable-type random sets, i.e the imprecise events can be 
ordered and uniquely determined by an index varying from 0 to 1 (Alvarez, 2006). This 
property is very useful in applications involving numerical simulations. 

With reference to a finite probability space for a single variable, the paper continues 
by discussing the properties of the convex set of probability distributions (that has 
infinite cardinality), and of the finite set of extreme distributions generated by random 
sets, fuzzy sets, and p-boxes (Ferson et al., 2003). The finite sets of extreme distributions 
are particularly useful in evaluating exact expectation bounds for a real-valued function 
of the considered variable, in the case of both monotonic and not monotonic functions. 

The paper concludes with a simple and direct procedure to derive exact extreme 
distributions from a p-box by using its equivalent random set. 

2 Imprecise probabilities and convex sets of probability distributions 

2.1 Coherent upper and lower probabilities and previsions 

Let us consider a finite probability space (Ω, F, P), where F is the σ-algebra generated by 
a finite partition of Ω into elementary events (or singletons) S = {s1, s2…, sj ,… sn}. 
Hence, the probability space is fully specified by the probabilities P(sj), which sum up to 
1 (in the following: the ‘probability distribution’). 

Imprecise probabilities arise when the available information does not allow one to 
determine a unique probability distribution. In this case, the information could be given 
by means of upper and/or lower probability measures, μLOW(Ti), μUPP(Ti), of some events 
Ti ∈ F, or directly through a set of probability distributions, Ψ. 

The foundation of a theory of imprecise probabilities is mainly due to the work of 
Peter Walley in the 1980s/90s on a new theory of probabilistic reasoning, statistical 
inference and decision under uncertainty, partial information or ignorance [(Walley, 
1991), or for a concise introduction (Walley, 2000)]. In his work, the basic idea of 
upper/lower probabilities is enlarged to the more general concept of upper/lower 
previsions for a family of bounded and point-valued functions fi: S→Y=ℜ. For a specific 
precise probability distribution P(sj), the prevision is equivalent to the linear expectation: 

[ ] ( ) ( )      
j

P i i j j
s S

E f f s P s
∈

= ∑  (1) 

Since the probability of an event Ti is equal to the expectation of its indicator function 
(equal to: 1 if sj∈Ti, 0 if sj∉Ti), upper/lower previsions generalise upper/lower 
probabilities, which are special cases of previsions. 

Let us now focus on the information about the space of events in S given by upper 
and/or lower previsions, ELOW[fi] and EUPP[fi], for a family of bounded and point-valued 
functions fi, K. This is accomplished by the set, ΨE, of probability distributions P(sj) 
compatible with ELOW[fi] and EUPP[fi]: 

[ ] [ ] [ ]{ }:   E
LOW i P i UPP i iP E f E f E f fΨ = ≤ ≤ ∀ ∈K  (2) 
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ΨE is convex and closed. One is interested in checking two basic conditions for the 
suggested bounds: 

1 A preliminary, strong condition requires that set ΨE should be non-empty. If set ΨE 
is empty, it means there is something basically irrational in the suggested bounds. 
For example, the set ΨE is empty if ELOW[fi] > maxj fi(sj) or EUPP[fi] < minj fi(sj)  
(for upper/lower probabilities: μLOW(Ti) > 1 or μUPP(Ti) < 0). In the behavioural 
interpretation adopted by Walley, the functions fi are called gambles, and this  
basic condition is said to avoid sure loss. 

2 A second, weaker but reasonable condition requires that the given bounds (ELOW[fi] 
and EUPP[fi]) should be the same as the naturally extended expectation bounds that 
can be derived from ΨE (coherence according to Walley’s nomenclature): 

[ ] [ ]
[ ] [ ]

,

,

min

max   
E

E

LOW c i P i
P

UPP c i P i
P

E f E f

E f E f
∈Ψ

∈Ψ

=

=
 (3) 

In this case, one says that ELOW[fi] and EUPP[fi] are (lower and upper, respectively) 
envelopes of ΨE. 

If the given bounds are not coherent (i.e. they are not envelopes to ΨE) because they 
do not satisfy equation (3), the given bounds can be restricted without changing the 
probabilistic content of the original information, i.e. set ΨE. These restricted bounds, 
calculated by using equation (3), are called ‘natural extension’ of the given bounds 
ELOW[fi] and EUPP[fi]. For example if bounds are given for both function fi and the 
opposite −fi coherence requires the ‘duality condition’ EUPP[fi] = − ELOW[−fi] (equivalently 
for upper/lower probabilities of complementary sets Ti and Ti

c: μUPP(Ti) = 1− μLOW(Ti
c). 

The applications that follow are restricted to the special case when K is a set of 
indicator functions, i.e. previsions coincide with probabilities. In this special case, there 
is no one-to-one correspondence between imprecise probabilities and closed convex sets 
of probability distributions because several closed convex sets of probability distributions 
could give the same imprecise probabilities. This one-to-one correspondence only holds 
between previsions and convex sets of probability distributions when K is the set of  
all point-valued and bounded functions. In other terms, imprecise probabilities are less 
informative than previsions. 

2.2 Choquet capacities and alternate Choquet capacities 

An important criterion for classifying monotone (with respect to inclusion) measures of 
sets was introduced by Choquet in his theory of capacities (Choquet, 1954), which has 
been reviewed extensively in the literature, e.g. (Klir, 2006, § 4.2 and 4.3). Given a finite 
set S, let P (S) be the power set (set of all subsets) of S. A regular monotone set function 
μ: P (S) → [0, 1] | μ (∅) = 0, μ(S) = 1 is called 2-monotone (or a Choquet Capacity of 
order k = 2) if, given two subsets T1 and T2: 

1 2 1 2 1 2( ) ( ) ( ) ( )T T T T T T∪ ≥ + − ∩μ μ μ μ  (4) 

The dual coherent upper probability (μUPP(Ti) = 1 – μ(Ti
c)) is called Alternate Choquet 

Capacity of order k = 2, and satisfies the relation: 

1 2 1 2 1 2( ) ( ) ( ) ( )UPP UPP UPP UPPT T T T T T∩ ≤ + − ∪μ μ μ μ  (5) 
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Regular monotone dual set functions not satisfying equations (4) and (5) are called  
1-monotone (or Choquet Capacity and Alternate Choquet Capacity of order k = 1). More 
generally, monotone dual set functions (μLOW, μUPP) are k-monotone (Choquet Capacity 
of order k), and, respectively, Alternate Choquet Capacity of order k, if, given k subsets 
T1, T2 ….Tk, the following inequalities are satisfied. 

{ }
( )

{ }
( )

1
1 2

1,2..

1
1 2

1,2..

( ... ) ( 1)

( ... ) ( 1)

K
k ii KK k

K
UPP k UPP ii KK k

T T T T

T T T T

+

∈
∅⊂ ⊆

+

∈
∅⊂ ⊆

∪ ∪ ≥ − ∩

∩ ∩ ≤ − ∪

∑

∑

μ μ

μ μ
 (6) 

The following cases are notable in practice: 

• A precise probability distribution is both a Choquet Capacity and an Alternate 
Choquet Capacity of order k = ∞, that satisfies relations (6) as equalities. 

• Choquet and dual Alternating Choquet capacities of order k > 1 are coherent lower 
and upper probabilities, respectively. Indeed, necessary conditions for coherent 
upper/lower probabilities (Walley, 1991) are less restrictive; therefore, coherent 
lower probabilities are not necessarily Choquet capacities of order k > 1. See Walley 
(2000) and Wasserman and Kadane (1990) for some simple numerical examples. 

• Credal sets are defined as the set of probability distributions generated by assigning 
probability intervals [li, ui] to the i-th singleton in S (Klir, 2006, § 4.3 and 5.5). Their 
lower bound is a 2-monotone Choquet capacity, and their upper bound is a dual 
Alternating Choquet capacity. They are coherent when reachable, i.e. when the 
probability intervals satisfy, for all i ∈ [1, |S|]: 1j ij i

l u
≠

+ ≤∑  and 1j ij i
u l

≠
+ ≤∑  

(Klir, 2006, § 5.5). 

There is a strong connection between the order k and a one-to-one invertible set function 
μm: P (S) →ℜ called Möbius transform of the set function μ(T): 

( )( ) 1 ( ) |A Tm A T T A−= − ⊆∑μ μ , (7) 

whose inverse is: 

(T) ( ) T, T S;m m A A= ⊆ ∀ ⊆∑μ  (8) 

For the purposes of this study, the most interesting properties (see, e.g. Chateauneuf and 
Jaffray, 1989; Klir, 2006, § 2.3) are the following: 

1 A set function μ is monotone if and only if: 

( )
( ) 0; ( ) 1;   ( ) : ( ) 0

T S A T

m m T T S m A
∈ ⊆

∅ = = ∀ ∈ ≥∑ ∑μ μ μ

P

P  (9) 

and, therefore, ∀ j: μm({sj}) ≥ 0. 

2 If μ(T) is k-monotone and |T|≤ k then μm(T)≥ 0 

3 μ(T) is ∞-monotone if and only if: ∀ T∈P (S) : μm(T)≥ 0. 
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2.3 Extreme distributions 

For a given regular monotone set function μ, a permutation π(j) of the indexes of the 
singletons in the set S = {s1, s2…, sj ,… sn} defines the following probability distribution: 

( )( ) { }( )
( )( ) { }( ) { }( )

(j)=11

(j)=1 (j)=1 11 ,... ,...

j

k kj k

P s s

P s s s s s

=

−= >

=

= −

ππ

π ππ

μ

μ μ
 (10) 

The |S|! possible permutations define a finite set of probability distributions, EXT, 
together with its convex hull, ΨEXT. If the same permutation is applied to a pair  
(μLOW, μUPP) of dual regular monotone set functions, a pair of dual distinct probability 
distributions is generated, but both μLOW and μUPP always generate the same set EXT. 

Now, one would wonder what the relationship is between ΨEXT and the set Ψμ 
calculated for (μLOW, μUPP) by using equation (2). It turns out that the two sets could be 
different, and that they satisfy the inclusion: Ψμ ⊆ ΨEXT (see for example (Klir, 2006,  
§ 4.3.3) and (Walley, 2000) for simple numerical examples). Precisely: 

• For coherent monotone measures with k = 1, equation (10) could generate 
probability distributions in EXT that do not satisfy the bounds in equation (2);  
hence Ψμ could be strongly included in ΨEXT 

• For monotone measures with k > 1, all probability distributions in EXT (and in ΨEXT) 
satisfy the bounds in equation (2), and thus ΨEXT = Ψμ; EXT coincides with the set  
of the extreme points (or the profile) of the closed convex set Ψμ (Klir, 2006, 
pp.118–119). 

2.4 Expectation bounds and Choquet integrals for real valued functions 

When the sets Ψμ or ΨEXT are known, or when a generic set Ψ is assigned, the upper and 
lower expectation bounds for any real function f: S→ Y= ℜ could be calculated by 
solving the optimisation problems in equation (3) by substituting Ψμ, ΨEXT, or Ψ for ΨE, 
respectively. However, the Choquet integral (a direct calculation based on the dual 
upper/lower probabilities) is generally suggested in the literature to solve the problem 
more easily (e.g. Klir, 2006, § 4.5). 

Recall that the expectation of a point-valued bounded real function f:  
S→ Y=[yL, yR] ⊂ ℜ with CDF F(y) can be calculated as follows by using the Stieltjes 
integral and equivalent expressions: 

( ) [ ]

{ }

integrate
by parts

[ ] '

(1 ) ( )

( | ( ) )

R R R
R

L
L L L

R R R

L L L

R

L

y y y
y

y
y y y

y y y

R L L
y y y

y

L
y

E y f f dF yF y dy yF Fdy

y Fdy y F dy y P f d

y P T s S f s d

= = ⋅ = = −

= − = + − = + >

= + = ∈ >

∫ ∫ ∫

∫ ∫ ∫

∫ α

α α

α α

 (11) 
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Figure 1 Cumulative distribution function F and α–cuts for a point valued function f of a random 
variable s, with probability density function p(s) 

 

The second equality in equation (11) can be found, for example, in (Kolmogorov and 
Fomin, 1970, p.364), whereas Figure 1 displays the meaning of the α-cuts αT employed 
in the last passage. The Choquet integral is the direct extension of the last functional 
expression to a monotonic measure μ, for the ordered family of subsets αT, which depend 
on the selected function f: 

( , ) ( )
R

L

y

L
y

C f y T dαμ μ α= + ∫  (12) 

As we have seen in Section 2.3, many distributions may be associated to a monotone 
measure through equation (10). Indeed, the Choquet integral gives a numerical value that 
coincides with the expectation of the function f for a particular probability distribution. 
The latter distribution, for finite cardinality |S| of the space S, is obtained by the 
permutation leading to a monotonic (decreasing) ordering of the function values. 

Expectation bounds are therefore calculated by applying equation (11) to the dual 
upper/lower measures (μLOW, μUPP). This is equivalent to the following algorithm:  
find the permutations for μLOW and μUPP that re-order f in a decreasing fashion;  
apply equation (10) to these two permutations to obtain the two sought probability 
distributions; calculate the expectations of f by using these two distributions. The 
Choquet integral determines optimal bounds with respect to the set EXT (or ΨEXT) 
defined in Section 2.3: hence, for general monotone measures (k = 1), it can give larger  
bounds than the correct bounds calculated by using the extreme points of Ψμ; on the other  
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hand, for k > 1, the Choquet integral gives exact expectation bounds. Since previsions are 
expectations of functions [Section 2, equation (1)], the Choquet integral may be used to 
calculate the natural extension [right-hand sides of equation (3)] (Walley, 1991, p.130). 

3 Random sets 

3.1 General properties of random sets 

Among the different definitions of random set (Robbins, 1944; Robbins, 1945; Matheron, 
1975), we refer here to the formalism of the Theory of Evidence (Shafer, 1976; see also, 
Dubois and Prade, 1991), but with no particular limitation to the subjectivist emphasis of 
this theory. The original information is described by a family of pairs of nonempty 
subsets Ai (‘focal elements’) and attached mi = m(Ai)> 0, i=1, 2, …n (‘probabilistic 
assignment’), with the condition that the sum of all mi is equal to 1. The total probability 
of any subset T of S can therefore be bounded by means of the additivity rule. Shafer 
suggested the words Belief (Bel) and Plausibility (Pla) for the lower and upper bounds, 
respectively. Formally: 

( )

( )

: ( ) | ,   

               ( ) |

i i
UPP

i

i i
LOW

i

T S T Pla T m A T

T Bel T m A T

μ

μ

∀ ⊂ = = ∩ ≠ ∅

= = ⊆

∑

∑
 (13) 

Comparison with equation (8) demonstrates that Bel is the inverse Möbius transform of 
the non-negative set function m: hence Bel is a ∞-monotone set function, and Pla an 
alternate Choquet capacity of order k = ∞. Figure 2 illustrates the inclusions among 
different lower bound set functions, according to a hierarchy of decreasing generality, 
from coherent lower previsions to belief functions. 

Since k = ∞, as explained in Section 2.3,  Ψμ (calculated with equation 2 for  
μLOW = Bel, μUPP = Pla) coincides with the set ΨEXT, where EXT [calculated with equation 
(10)] is the set of extreme distributions that can be used to evaluate exact expectation 
bounds for a function of interest. From a computational viewpoint, the number of focal 
elements does not affect the algorithm for the expectation bounds. On the other hand, the 
cardinality of finite space S may affect the number of extreme probability distributions 
(the cardinality of EXT). However, if the only needed result is the expectation bounds, 
the algorithm does not require the calculation of the entire set of extreme distributions 
because it is enough to calculate the dual extreme distributions corresponding to a 
permutation that leads to a monotonic function. 

3.2 Fuzzy sets 

The conclusions in Section 3.1 also apply in the particular case of a consonant random 
set; i.e. when focal elements are nested, and hence can be ordered in such a way that: 

1 2 .... nA A A⊆ ⊆ ⊆  (14) 
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Consonant random sets satisfy the relation (Klir and Yuan, 1995, p.187) for any  
T1, T2 ⊆ S: 

( ) ( )1 2 1 2max ( ), ( )Pla T T Pla T Pla T∪ = , (15) 

Figure 2 Inclusions among sets of probability distributions generated by different lower  
bound functions 

 

And hence (similar to classical probability measures) they satisfy the following 
‘decomposability property’: the measure of uncertainty of the union of any pair  
of disjoint sets depends solely on the measures of the individual sets. Therefore, in  
the case of a consonant random set, the point-valued contour function (Shafer, 1976)  
μ: S → [0, 1]: 

{ }( ) ( )  j js Pla sμ =  (16) 

Completely defines the information on the measures of any subset T⊂S, exactly in the 
same way as the probability distribution P(sj) defines, although through a different rule 
(the additivity rule), the probability of every subset T in the algebra generated by the 
singletons. Indeed: 

( ) ( ) ( ) ( )max ;       e 1 max  
c

j j
j js T s T

Pla T s B l T sμ μ
∈ ∈

= = −  (17) 

Moreover, the Möbius inversion (7) of the set function Bel allows the (nested) family of 
focal elements to be determined through the set function m. 
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More directly, let us assume: 

( )( )

( )
( )( )

( )
( )( ) ( )( )

1

1

1 j

j|

jj|
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max 1
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max min ;           

0     

j i

j n
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i j
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n j j
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s

s

s s

−

−

<

<

+

= =

= =

=

μ α

μ α

α μ

α μ

α μ μ

α

 (18) 

The family of focal elements and related probabilistic assignments (summing up to 1)  
are given by, respectively: 

( ){ } 1|  ;       = -       i i
j j i i iA s S s m += ∈ ≥μ α α α  (19) 

The number of focal elements, n, is therefore equal to the cardinality of the range of S 
through μ; of course this cardinality is less than or equal to |S|, because some singletons 
could map on to the same value of Plausibility. 

For example Figure 3 displays the random set corresponding to a fuzzy subset of the 
space S ={s1, s2, s3, s4} with membership  μ(s1) = α2 , μ(s2) = μ(s3) = α1 =1, μ(s4) = α3. 
The random set is completely described by a stack of 3 rectangular hatched boxes: the 
width of each box identifies its focal element along the S-axis (a set of singletons), and 
the height of each box is equal to its probabilistic assignment. Hence, the total height of 
the stack is equal to 1. 

Figure 3 Nested focal elements and probabilistic assignment of the consonant random set 
equivalent to a fuzzy set 
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Figure 4 Nested focal elements and probabilistic assignment of the consonant random set 
equivalent to the fuzzy set in Example 1 

 

There is a narrow correspondence between consonant random sets and other 
decomposable measures of uncertainty: fuzzy sets and possibility distributions. This 
connection can clearly be envisaged using the dual representation of a fuzzy set through 
their α-cuts αA. They are classical subsets of S defined, for any selected value of 
membership α, by the formula: 

( ){ }|      A s S sα μ α= ∈ ≥  (20) 

When a fuzzy set is implicitly given through the (finite or infinite) sequence of its α-cuts 
αA, its membership function can be reconstructed through the equation: 

( ) ( )( )max    min ,   j A
s sα

α
μ α χ=  (21) 

where ( )A
sαχ  is the indicator function of the classical subset αA. 

By comparing equation (20) with equation (19), it is clear that the α-cuts αA of any 
given normal fuzzy set are a nested sequence of subsets of set S, and therefore they are 
the family of focal elements of an associated consonant random set: the membership 
function of normal fuzzy sets gives the contour function of the corresponding random 
sets, and the basic probabilistic assignment (for a finite sequence of α-cuts) is given by 
( ) 1

ii
i im A Aα α α += = − . 

By considering equation (17) from this point of view, the membership function of a 
fuzzy subset A allows measures of Plausibility and Belief to be attached to every classical 
subset T ⊆ S; this very different interpretation of a fuzzy set was recognised by Zadeh 
himself in 1978 (Zadeh, 1978), as the basis of a Theory of Possibilities defined by a 
possibility distribution numerically equal to μA(s), and later extensively developed by 
other authors, in particular Dubois and Prade (1988). 
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This comparison suggests a probabilistic (objective or subjective) content of the 
information summarised by a fuzzy set and allows one to evaluate (by means of the set 
EXT) exact expectation bounds for real functions of a fuzzy variable. Although the 
discussion was restricted to finite discrete variables, the conclusion can be extended to 
continuous variables as well. By using the interpretation of a fuzzy set as a consonant 
random set (Choquet capacity of infinite order in Figure 2), the following example shows 
how the information contained in a fuzzy set on S can be used to calculate upper and 
lower bounds on the expectation of a function defined on S. 

Example 1: Let S = {s1, s2, s3, s4}, and consider the point-valued function f(sj) defined  
by the mapping: {s1, s2, s3, s4}  {5, 20, 10, 0}. The fuzzy set on S is measured by  
the set of membership values {0.0, 0.1, 1.0, 0.1}. Equation (18) give: α1 = 1; α2 = 0.1;  
α3 = 0. The associated consonant random set is defined by the set of pairs { (A1 = {s3}, 
m1 = 1.0 – 0.1 = 0.9), (A2 = { s2, s3, s4}, m2 = 0.1 – 0 = 0.1)}, as displayed in Figure 4. 

The permutation leading to a monotonic decreasing ordering of the function f(sj)  
is the following: 

(π(s2) = 1, π(s3) = 2, π(s1) = 3, π(s4) = 4). Table 1 shows the corresponding dual 
extreme distributions according to equation (10) and the dual set functions Pla and Bel. 
Table 1 Dual extreme distributions for Example 1 

T Pla(T) PEXT,UPP(s) Bel(T) PEXT,LOW(s) 

T1 = {s2} 0.1 P(s2) = Pla(T1) = 0.1 0.0 P(s2) = Bel(T1) = 0.0 

T2 = {s2, s3} 1.0 P(s3) = Pla(T2) – Pla(T1) = 0.9 0.9 P(s3) = Bel(T2) – Bel(T1) = 0.9 

T3 = {s2, s3, s1} 1.0 P(s1) = Pla(T3) – Pla(T2) = 0.0 0.9 P(s1) = Bel(T3) – Bel(T2) = 0.0 

T4 = S 1.0 P(s4) = Pla(T4) – Pla(T3) = 0.0 1.0 P(s4) = Bel(T4) – Bel(T3) = 0.1 

Hence, the upper expectation is given by the expectation calculated by using ,EXT UPPP : 

EUPP[f] = [ ]
,EXT UPPPE f  = 20 × 0.1 + 10 × 0.9 + 5 × 0.0 + 0.0 × 0.0 = 11; 

and the lower expectation is given by the expectation calculated by using ,EXT LOWP :  

ELOW[f] = [ ]
,EXT LOWPE f  = 20 × 0.0 + 10 × 0.9 + 5 × 0.0 + 0 × 0.1 = 9. 

As explained in Section 2.4, the same results can be obtained through the Choquet 
integral [equation (12)]: 
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3.3 p-boxes 

Given a finite space S, a set ΨF of probability distributions is implicitly defined by a  
p-box, i.e. lower and upper bounds, FLOW(sj) and FUPP(sj), on the cumulative distribution 
functions F(sj) (Ferson et al., 2003; Ferson and Hajagos, 2004): 

{ }( ){ }1: ( ) ( ) ,..., ( ), 1toF
LOW j j j UPP jP F s F s P s s F s j S= ≤ = ≤ =ψ  (22) 

The set ΨF is non-empty if FLOW(sk)≤ FUPP(sj) for any k ≤ j. 
However, coherence clearly requires stronger conditions: the bounds FLOW(sj) and 

FUPP(sj) should be non-negative, non-decreasing in j, and both must be equal to 1 for  
j = |S| (Walley, 1991, § 4.6.6). 

Explicit evaluation of set ΨF can be obtained by solving the constraints (22) for the 
probabilities of the singletons P(sj), i.e.: 
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 (23) 

A simple iterative procedure can be used. For example, the explicit solution of the  
first two constraints is shown in Figure 5: observe that the p-box defines 4 (case a) or 5 
(case b) extreme points of the projection of set ΨF on the two-dimensional space  
(P(s1), P(s2)). 

The interval bounds for the probability of the singletons are given by the intervals: 

[l1, u1] = [FLOW(s1), FUPP(s1)], 

[l2, u2] = [max(0, FLOW(s2) – FUPP(s1)), FUPP(s2) – FLOW(s1)] 

However, the set ΨF* generated by the same interval probabilities thought of as being 
non-interactive could be much larger. Indeed, provided that the last constraint in (22) is 
satisfied, the extreme points U=(u1, u2) and L=(l1, l2) could be in ΨF* together with the 
entire Cartesian product [l1, u1] × [l2, u2]. 

More generally, the interval probabilities for singleton {sj } are given by the intervals: 

( ) ( )( ) ( ) ( )1 1[ , ] max 0, ,j j LOW j UPP j UPP j LOW jl u F s F s F s F s− −
⎡ ⎤= − −⎣ ⎦

 (24) 
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Figure 5 Explicit solution of the first two constraints in equation (23): case  
(a): FLOW(s2) – FUPP(s1)>0; case (b): FLOW(s2) – FUPP(s1)<0. Projection of set  
ΨF is shown hatched  

 
(a) 

 
(b) 

The extreme points of the projection of set ΨF on the j-dimensional space (P(s1), …, 
P(sj)) can be derived from each extreme point on the j–one-dimensional space, by 
considering that the sum P(s1)+ …+P(sj) must be bounded by FLOW(sj) and FUPP(sj). 

A constructive algorithm to evaluate the extreme distributions compatible with  
the information given by a p-box can be obtained by selecting the set, EXT, 
corresponding to the cumulative (non-decreasing) distribution functions jumping  
from FLOW(sj) to FUPP(sj) at some points sj and from FUPP(sk) to FLOW(sk) at other points sk 
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(or at least non-decreasing values of F, case b) in Figure 5). Of course, the set  
EXT contains the distribution functions corresponding to the bounds of the p-box: 
PEXT,LOW(sj) = FLOW(sj) – FLOW(sj-1); PEXT,UPP(sj) = FUPP(sj) – FUPP(sj-1). 

The same set EXT (and therefore the same set ΨR=ΨF of probability distributions) can 
be given by an equivalent random set, R, with focal elements and probabilistic 
assignment derived from the p-box by using a rule quite similar to the algorithm for 
deriving an equivalent random set from a normal fuzzy set (when the membership 
function is meant as a possibility distribution; see § 3.2). 

With the aid of Figure 6, define: 
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 (25) 

and define: 

( ) ( ){ } ( ) 1; ;i i
j UPP j i LOW j i i iA s S F s F s m A−

+= ∈ ≥ < = −α α α α  (26) 

Consequently: 

• the lower/upper probabilities for subsets T ⊆ S are Choquet capacities and Alternate 
Choquet capacities of infinite order, respectively (or Belief and Plausibility set 
functions, respectively) 

• the probabilistic assignment of the equivalent random set can alternatively be 
derived from the Belief function through the Möbius transform 

• the upper bounds uj of the singletons [equation (24)] give the contour function  
of the equivalent random set R. 

In Alvarez (2006) the procedure is extended to p-boxes on infinite spaces with general 
Fupp and Flow, thus deriving equivalent random sets with infinite focal elements given by 
the α-cuts of the upper/lower CDFs; Tonon (2008) deals with inclusion properties for 
discretisations of upper/lower CDFs. 
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Example 2: Let us consider S = {s1, s2, s3, s4} and the p-box defined in the first  
three columns of Table 2. The table also displays the bounds for the singletons.  
The upper bounds give the contour function of the associated non-consonant random set, 
R. Figure 7a depicts the five extreme points in (projections on) the two-dimensional 
space (P(s1), P(s2)) (case b in Figure 5). In the three-dimensional space (P(s1),  
P(s2), P(s3)), five extreme points belong to the triangle P(s1) + P(s2) + P(s3) = 0.7 (with 
P(s4) = 0.3), whereas five extreme points belong on the triangle P(s1) + P(s2) + P(s3) = 1 
(with P(s4) = 0). In the four-dimensional space (P(s1), P(s2), P(s3), P(s4)), 10 extreme 
distributions are obtained when P(s4) = 1 – P(s1) –P(s2) –P(s3). The extreme points PEXT,1 
and PEXT,2 correspond to the cumulative distribution functions FLOW(sj) and FUPP(sj), 
respectively. 

Figure 6 Random set equivalent to a p-box in a finite discrete space 

 

Table 3 presents the lower probabilities for all the nonempty subsets in S together with 
their Möbius transform m, which confirms the rules given by equations (25) and (26). 
The resulting focal elements and probabilistic assignments for R are calculated in Table 4 
and displayed in Figure 7b. The random set is completely described by a stack of 
rectangular boxes, each one describing a focal element and its probabilistic assignment. 
The focal elements are here ordered in such a way as to obtain a stack enclosed by the 
cumulative upper and lower bounds of the p-box. 
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Table 2 Lower/upper CDF and bounds of the singletons in Example 2 

sj FLOW(sj) FUPP(sj) FLOW(s - j) l= Bel({sj}) u=Pla({sj})=μ(sj) 
s1 0.0 0.2 0.0 0.0 0.2 
s2 0.1 0.3 0.0 max(0.0, 0.1 – 0.2) = 0.0 0.3 – 0.0 = 0.3 
s3 0.7 1.0 0.1 max(0.0, 0.7 – 0.3) = 0.4 1.0 – 0.1 = 0.9 
s4 1.0 1.0 0.7 max(0.0, 1.0 – 1.0) = 0.0 1.0 – 0.7 = 0.3 

Table 3 Set functions in Example 2; χi = i-th characteristic function 

i χi(s1) χi(s2) χi(s3) χi(s4) μLOW (Ai) mi= m(Ai) 

1  1 0 0 0 0.0 0.0 
2  0 1 0 0 0.0 0.0 
3  0 0 1 0 0.4 0.4 
4 0 0 0 1 0.0 0.0 
5 1 1 0 0 0.1 0.1 
6 0 1 1 0 0.5 0.5 – 0.4 = 0.1 
7 0 0 1 1 0.7 0.7 – 0.4 = 0.3 
8 1 0 1 0 0.4 0.4 – 0.4 = 0.0 
9 0 1 0 1 0.0 0.0 
10 1 0 0 1 0.0 0.0 
11 1 1 1 0 0.7 0.7 – 1 + 0.4 = 0.1 
12 0 1 1 1 0.8 0.8 – 1.2 + 0.4 = 0.0 
13 1 0 1 1 0.7 0.7 – 1.1 + 0.4 = 0.0 
14 1 1 0 1 0.1 0.1 – 0.1 + 0 = 0.0 
15 1 1 1 1 1.0 1 – 2.3 + 1.7 – 0.4 = 0.0 

Table 4 Set functions in Example 2 

i αi Ai mi= m(Ai) 

1  1 {s3 , s4} 1 – 0.7 = 0.3 
2  max(max(0, 0.1, 0.7), max (0.2, 0.3)) = 0.7 {s3} 0.7 – 0.3 = 0.4 
3  max(max(0, 0.1), max (0.2, 0.3)) = 0.3 {s2 , s3} 0.3 – 0.2 = 0.1 
4 max(max(0, 0.1, 0.7), max (0.2)) = 0.2 {s1, s2, s3} 0.2 – 0.1 = 0.1 
5 max(max(0, 0.1)) = 0.1 {s1 , s2} 0.1 – 0 = 0.1 
6 max(max(0)) = 0   

Table 5 Dual extreme distributions for Example 2 

T Pla(T) PEXT,UPP(s) Bel(T) PEXT,LOW(s) 

T1 = {s2} 0.3 P(s2) = 0.3 0.0 P(s2) = 0.0 

T2 = {s2, s3} 1.0 P(s3) = 0.7 0.5 P(s3) = 0.5 

T3 = {s2, s3, s1} 1.0 P(s1) = 0.0 0.7 P(s1) = 0.2 
T4 = S 1.0 P(s4) = 0.0 1.0 P(s4) = 0.3 
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Figure 7 Example 2 (a) 10 extreme points in the three-dimensional space (P(s1), P(s2), P(s3)); 
PEXT,1 and PEXT,2 correspond to the bounds FLOW(sj) and FUPP(sj) of the p-box.  
(b) equivalent random set R 

     
 (a) (b) 

Now, let us evaluate the expectation bounds for the same function considered in  
Example 1, i.e. the point-valued function f(sj) defined by the mapping: {s1, s2, s3, s4}  
{5, 20, 10, 0}. The extreme distributions are identified in Table 5: events T are the same 
as events T as in Table 1. Pla(T) and Bel(T) are calculated by using m from Table 3.  
The expectation bounds are: 

[ ] 5 0.0 20 0.3 10 0.7 0 0.0 13.0;
[ ] 20 0.0 10 0.5 5 0.2 0 0.3 6.0.

UPP

LOW

E f
E f

= × + × + × + × =
= × + × + × + × =

 

It is easy to show that the random set R determined by equations (25) and (26) is not the 
only random set compatible with the p-box: indeed, each compatible probability 
distribution is a particular random set compatible with the bounds of the p-box (with 
focal elements given by singletons). However, R must be considered as the natural 
extension of the information given by the p-box because the set ΨR determined by 
equations (25) and (26) includes all probability distributions compatible with the p-box 
(it is the convex hull of all extreme distributions) and hence it includes the set ΨR* of any 
other random set R* compatible with the p-box. Indeed, any other inner approximation of 
the p-box obtained through additional constraints reduces uncertainty and hence the set 
of the corresponding probability distributions. 

For example, when the maximum of the contour function defined by the p-box 
[equation (24)] with μ(sj)=uj) is equal to 1, the algorithm (17)–(18) can be used to derive 
a consonant random set compatible with the p-box: the focal elements are now the α-cuts 
of the contour function and the probabilistic assignment is again defined by the 
increments of α. In other words: the information given by the p-box, together with 
additional information suggesting that the structure of the underlying random set should 
be consonant, determines a consonant random set R’ and a corresponding set ΨR’ of 
probability distributions and of course ΨR’⊆ΨR. 
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Example 3: Table 6 presents a slightly modified p-box (with respect to the p-box 
discussed in Example 2): the value of FLOW(s2) has been decreased by 0.1 to 0, thus 
obtaining an outer approximation of the previous p-box. The 8 extreme points EXTF of 
set ΨF and the underlying non-consonant random set are shown in Figure 7 (a) and (b), 
respectively. The projection of ΨF onto the two-dimensional space (P(s1), P(s2)) now 
contains four extreme points because FLOW(s1) = FLOW(s2). Of course the set ΨF strongly 
includes the set of probability distributions in Example 2, displayed in Figure 6. 

Table 7 shows that the extreme distributions, which give the same expectation bounds 
as in Example 2 (compare with Table 5): hence E[f] = [6, 13]. 
Table 6 Lower/upper CDF and reachable bounds of the singletons in Example 3 

sj FLOW(sj) FUPP(sj) l= Bel({sj}) u=Pla({sj})=μ(sj) 
s1 0.0 0.2 0.0 0.2 
s2 0.0 0.3 max(0.0, 0.0 – 0.2) = 0.0 0.3 – 0.0 = 0.3 
s3 0.7 1.0 max(0.0, 0.7 – 0.3) = 0.4 1.0 – 0.0 = 1.0 
s4 1.0 1.0    max(0.0, 1 – 1.0) = 0.0 1.0 – 0.7 = 0.3 

Table 7 Dual extreme distributions for Example 3 

T Pla(T) PEXT,UPP(s) Bel(T) PEXT,LOW(s) 

T1 = {s2} 0.3 P(s2) = 0.3 0.0 P(s2) = 0.0 

T2 = {s2, s3} 1.0 P(s3) = 0.7 0.5 P(s3) = 0.5 

T3 = {s2, s3, s1} 1.0 P(s1) = 0.0 0.7 P(s1) = 0.2 

T4 = S 1.0 P(s4) = 0.0 1.0 P(s4) = 0.3 

Figure 8 Example 3: (a) eight extreme points in the three-dimensional space (P(s1), P(s2),  
P(s3)); PEXT,1 and PEXT,2 correspond to the bounds FLOW(sj) and FUPP(sj) of the  
p-box. (b) equivalent random set 
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Since now μ(s3) = 1, the contour function can be assumed to be a possibility distribution 
that defines a consonant random set R’; its corresponding set EXTR’ of extreme 
distributions is shown in Figure 9a. The set EXTR’ contains only 5 of the 8 extremes in set 
EXTF. These five extreme points are the vertices of a pyramid with vertex in PEXT,1 and 
quadrangular base on the equilateral triangle P(s4) = 1 – P(s1) – P(s2) – P(s3) = 0. Both 
EXTR’ and EXTF contain the extreme points PEXT,1 and PEXT,2, which correspond to the 
cumulative distribution functions FLOW(sj) and FUPP(sj), respectively. Table 8 shows the 
extreme distributions that give the expectation bounds of function f considered above. By 
comparing with Table 7, PEXT,UPP(sj) remains unchanged, but PEXT,LOW(sj) is now different 
and coincides with PEXT,1, hence, again: EUPP[f] = 13.0; while the lower bound increases 
to: ELOW[f] = 20 × 0.0 + 10 × 0.7 + 5 × 0.0+ 0 × 0.3 = 7.0. 

Figure 9 Consonant random set in Example 3: (a) five extreme points in the three-dimensional 
space; again PEXT,1 and PEXT,2 correspond to the bounds FLOW(sj) and FUPP(sj) of the  
p-box. (b) equivalent random set 

 

Table 8 Dual extreme distributions for the consonant random set in Example 3 

T Pla(T) PEXT,UPP(s) Bel(T) PEXT,LOW(s) 

T1 = {s2} 0.3 P(s2) = 0.3 0.0 P(s2) = 0.0 

T2 = {s2, s3} 1.0 P(s3) = 0.7 0.7 P(s3) = 0.7 

T3 = {s2, s3, s1} 1.0 P(s1) = 0.0 0.7 P(s1) = 0.0 

T4 = S 1.0 P(s4) = 0.0 1.0 P(s4) = 0.3 

The same procedure (to get a consonant random set) cannot be applied to the p-box 
discussed in Example 2 because the contour function maximum value is equal to 0.9 < 1 
(Table 2, last column). Observe that the random set shown in Figure 9b gives upper and 
lower CDF corresponding to the bounds of the p-box in Example 3, and hence outer 
approximations of the bounds of the p-box in Example 2; however, the set ΨR’ does not 
include the set ΨF in Example 2. 
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Consonant approximations of non-consonant random sets measuring variables  
(for example input variables of engineering systems) are very attractive. Indeed, the 
equivalent fuzzy sets can be used to evaluate the response of the system, or its reliability 
against limit states of failure or serviceability, using the powerful and robust procedures 
based on the ‘extension principle’ for function of fuzzy variables (see for example Tonon 
et al., 2000). However, as shown in the above examples, consonant approximations that 
yield the same lower/upper CDFs or even outer approximations of the lower/upper CDFs 
may not guarantee inclusion of the overall convex sets of compatible probability 
distributions. Hence, when the behaviour of a system is described by a non-monotonic 
function, using such consonant approximations may overestimate the system’s reliability, 
and thus lead to unsafe predictions. Bernardini and Tonon (2010) present conditions for 
the inclusion of the overall convex sets of compatible probability distributions. 

4 Conclusions 

Random sets, which combine aleatory and set uncertainty, appear to be a powerful 
generalisation of the classical probability theory. On the other hand, they are particular 
cases of a more general theory of monotone non-additive measures, Choquet capacities 
of different orders, coherent upper/lower probabilities and previsions. More precisely, 
belief functions are coherent lower probabilities and Choquet capacities of infinite order. 

The set of probability distributions compatible with the information given by a 
random set coincides with the natural extension of the belief/plausibility set functions, 
and also with the convex hull of a set of extreme distributions. Therefore, exact bounds 
on the expectation of any real-valued function can be derived through the Choquet 
integral or equivalently by a couple of dual extreme distributions. This property seems to 
be very useful in engineering applications, optimal design and decision-making under 
strong uncertainty conditions. 

Fuzzy sets and p-boxes can be considered as particular indexable-type random sets, 
whose set of focal elements ordered and uniquely determined by a single real number. In 
both the cases, simple rules were be given to derive the corresponding family of focal 
elements, the probabilistic assignment and the extreme distributions of the associated 
random set. 

Finally, the possibility of considering a hierarchy of random sets ordered by the 
inclusions of the corresponding sets of probability distributions has been highlighted.  
For example, conditions have been given to derive an included consonant random set  
(a fuzzy set) from the contour function of the random set corresponding to a p-box. 
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