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ABSTRACT
This paper develops a distributed cooperative control frame-
work to manage the performance of virtualized computing
environments. We consider a server cluster hosting multiple
enterprise applications on a set of virtual machines (VMs) in
which the system must dynamically optimize the CPU ca-
pacity provided to each VM in response to incoming work-
load intensity such that desired response times are satis-
fied. We solve the overall control/optimization problem by
decomposing it into a set of smaller subproblems that can
be solved cooperatively by individual controllers. Model-
predictive controllers, implemented locally within each server,
independently decide the CPU capacity to allocate to VMs
under their control such that the overall system’s perfor-
mance goals are satisfied. We experimentally validate the
proposed framework on a server cluster supporting three on-
line services, showing that our scheme is highly scalable, nat-
urally tolerates server failures, and allows for the dynamic
addition/removal of servers during system operation with-
out requiring changes to the overall control architecture.

Categories and Subject Descriptors
C.4 [Performance of systems]: Design studies, modeling
techniques, fault tolerance

General Terms
Algorithms, Performance, Management, Reliability

Keywords
Performance management, virtualization, model-predictive
control, distributed control

1. INTRODUCTION
Data centers host online services on distributed computing

systems comprising heterogeneous networked servers. On-
line services are enabled by enterprise applications, defined
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broadly as any software which simultaneously provides ser-
vices to a large number of users over a computer network.
Virtualization technology is a promising solution to support
multiple enterprise applications using fewer computing re-
sources. This technology enables a single server to be shared
among multiple performance-isolated platforms called vir-
tual machines (VM), where each VM can serve one or more
applications. Also, virtualization enables on-demand com-
puting where resources such as CPU, memory, and disk
space are allocated to applications as needed, based on the
currently prevailing workload demand, rather than stati-
cally, based simply on the peak workload demand. By dy-
namically provisioning virtual machines and turning servers
on and off properly, data center operators can maintain the
desired quality of service (QoS) while achieving higher server
utilization and lower power consumption.

A promising method for automating system management
tasks is to formulate them as online control problems in
terms of cost/performance metrics [4, 3]. We refer the reader
to Section 6 for a discussion on related work in this area.
Most proposed control techniques, however, are centralized
designs, aimed at managing the performance of a stand-
alone server or a small-scale system comprising a few servers.
Significant challenges must still be addressed to achieve real-
time control of a large-scale computing system with multiple
interacting components. For an optimization scheme to be of
practical value in a distributed setting, it must successfully
tackle the so-called “curses” of modeling and dimensionality.
The number of available tuning options is typically quite
large in distributed systems and the corresponding search
space grows exponentially with each new variable, making
centralized controller designs intractable. Complex, non-
linear, and possibly time-varying, component behavior as
well as component interactions must be accurately modeled
and carefully managed at run time to achieve system-wide
performance goals. Finally, the system management task is
further complicated when these components must commu-
nicate with each other to solve the overall problem.

Control theory provides techniques that can be used to re-
duce the computational burden of managing large-scale com-
puting systems. For example, concepts from approximation
or aggregation theory can be integrated within the control
scheme to make relevant approximations when construct-
ing dynamical models to predict system behavior, and when
optimizing the control variables issued to the system [10].
Another method, problem permitting, is to structure con-
trollers in a decentralized, hierarchical fashion wherein the
overall problem is decomposed into a set of simpler sub-
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problems and solved in cooperative fashion by multiple con-
trollers [11].

Previously, we had proposed some general concepts to de-
velop a decentralized control framework for resource provi-
sioning in distributed computing systems, and had used a
simulation-based case study to establish its feasibility [13].
Building on this work, we now develop and experimentally
validate a distributed control scheme to manage the per-
formance of virtualized computing environments. We con-
sider a heterogeneous and virtualized server cluster hosting
multiple enterprise applications on VMs, and processing a
time-varying workload. The problem of interest is to opti-
mize the CPU share provided to each VM to accommodate
dynamic changes in workload intensity to meet desired re-
sponse times. The overall control problem is decomposed
into a set of corresponding subproblems and each subprob-
lem is mapped to an underlying system component—in this
case, a server. Model-predictive controllers, implemented
locally within each server, work cooperatively to decide the
CPU shares of the VMs under their control to satisfy the
overall performance goals for the system.

The proposed framework has the following desirable char-
acteristics.

• Compared to a centralized controller implementation,
each controller in our architecture incurs a much lower
computational complexity since it only makes local
resource provisioning decisions for its server. Thus,
the framework is highly scalable as well as flexible, in
the sense that servers can be added/removed anytime
while maintaining the overall system performance.

• The framework can tolerate a certain number of server
and VM failures. The surviving components, without
being coordinated by a higher-level controller, can au-
tomatically adjust their control decisions accordingly
and continue to meet system-level objectives.

We validate the control framework using a testbed of het-
erogenous servers hosting Trade6, a stock-trading service
that allows users to browse, buy, and sell stocks. The clus-
ter processes a time-varying incoming workload, and results
demonstrate that our scheme is highly scalable, tolerates
server failures, and allows for the dynamic addition/removal
of servers during system operation.

The paper is organized as follows. Section 2 outlines an ar-
chitecture for managing the performance of large-scale com-
puting systems. Section 3 introduces the cluster testbed
used in our experiments. Section 4 constructs the dynami-
cal system models, and formulates and solves the optimiza-
tion problem, and Section 5 presents experimental results
validating the control framework. Section 6 discusses some
related work on managing the performance of virtualized
computing systems and Section 7 concludes the paper with
a discussion on future work.

2. CONTROL OF LARGE-SCALE SYSTEMS
When using control strategies to manage computing sys-

tems, it is readily apparent that centralized designs become
quickly intractable for larger systems. Fortunately, hierar-
chical or decentralized control, where multiple controllers in-
teract with each other to satisfy system-wide QoS goals, can
be used to reduce the dimensionality of the overall problem.
In a hierarchical structure, a controller is only responsible
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Figure 1: A hierarchical structure for managing
large-scale systems, comprising a supervisory con-
troller and a set of distributed controllers.

for optimizing the behavior of the component(s) under its
control while satisfying the constraints imposed on it by a
higher-level controller.

We now briefly outline a hierarchical solution for control-
ling a large-scale computing system hosting multiple enter-
prise applications. Fig. 1 shows the structure consisting
of a supervisory controller and distributed controllers local
to each server. The incoming application workload is dis-
patched to the appropriate VMs hosted within the servers.
The controllers within the hierarchy have the following re-
sponsibilities.

• The supervisory controller makes high-level switching
decisions based on the system state and estimates of
the incoming workload intensity that dictate which
physical servers are turned on or off.

• Local controllers on each server dynamically optimize
the CPU share provided to VMs under their control to
match the workload dispatched to the server.

The supervisor and the distributed controllers can coop-
erate to manage the power consumed by the overall system
while satisfying QoS requirements as follows. Since local
controllers tune the CPU share of VMs to closely match the
incoming workload, servers typically have spare processing
capacity available during periods of light workload. The
supervisory controller can use this knowledge to both in-
crease server utilization and reduce power consumption by
packing VMs into the fewest number of physical servers (by
migrating live VMs between servers) and shutting down the
extra machines. Another option is to simply shut down the
lightly loaded machines. The workload is then re-distributed
to VMs within the operational servers whose controllers will
tune the CPU share accordingly. Conversely, the supervisor
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Machine CPU Speed CPU Cores Memory

Apollo 2.3 GHz 8 8 GB

Poseidon 2.3 GHz 8 8 GB

Eros 1.6 GHz 8 4 GB

Demeter 1.6 GHz 8 4 GB

Rada 2.3 GHz 2 4 GB

Megatron 2.3 GHz 2 4 GB

Starscream 2.3 GHz 2 4 GB

Chronos 1.6 GHz 8 4 GB

Figure 2: Key system information for each of the
eight heterogeneous servers in the testbed.

can power up additional servers when the workload exceeds
the cluster’s current processing capacity.

For its part, the supervisor may not require a detailed be-
havioral model of the lower-level components (both servers
and local controllers) to make switching decisions. For in-
stance, the supervisor can continuously learn the behavior
of the distributed controllers in terms of how they tune the
VMs’ processing capacity in response to the incoming work-
load. So, over time, the supervisor can build an approximate
model that maps workload intensity and mix to a corre-
sponding processing capacity, and use this model to make
switching decisions that tune this processing capacity.

Hierarchical schemes have the potential to be highly scal-
able. First, treating the dashed box in Fig. 1 as a com-
ponent, the number of servers within this component can
be increased without affecting the overall control structure.
Secondly, an upper-level controller with essentially the same
logic as the supervisor can manage multiple such compo-
nents by switching them on/off.

This paper focuses on developing and validating the dis-
tributed controllers that operate under the guidance of the
supervisor. The design of the supervisory controller itself is
planned for future work.

3. THE EXPERIMENTAL SETUP
This section describes our experimental setup, including

the system architecture, the enterprise applications used for
the online services, and workload generation.

3.1 The Testbed
The computing cluster used in our experiments consists of

the eight servers detailed in Fig. 2, networked via a gigabit
switch. Virtualization of this cluster is enabled by VMware’s
ESX Server 3.5 running a Linux RedHat 3.2 kernel. The
operating system on each VM is SUSE Enterprise Linux
(Server Edition 10). The ESX server controls the disk space,
memory, and CPU share (in MHz) allotted to the VMs,
and provides an application programming interface (API)
to support the remote management of VMs. The controllers
use this API to dynamically assign CPU shares to the virtual
machines.

3.2 The System Architecture
Fig. 3 shows the two-tier architecture supporting three

web-based applications termed Gold, Silver, and Bronze us-
ing front-end application servers and back-end databases, as

well as the schematic of a local controller (to be discussed
later in Section 4).

The application tier comprises four servers, each hosting
three VMs. Each VM within a server is dedicated to one
of the Gold, Silver, or Bronze applications, and VMs resid-
ing on different servers but supporting the same application
form a virtual computing cluster. The local controller on a
server dynamically allocates the optimal CPU share to each
of its VMs in response to the incoming workload intensity.
Servers comprising the database tier are not virtualized and
we do not perform dynamic resource provisioning at this
tier. These servers run SUSE Enterprise Linux with DB2
as the database component and each machine supports a
dedicated database servicing a single application.

Incoming requests to an application are dispatched to
VMs within the corresponding virtual cluster in weighted
round-robin fashion with the weights being proportional to
CPU share. Thus, at the beginning of a control step, each
local controller transmits its most recent CPU-share decision
to the dispatcher. Since a VM’s CPU share reflects process-
ing capacity, the larger the CPU share, the more requests
that VM will receive.

To improve scalability of the distributed control architec-
ture, local controllers are developed as non-communicating
agents, wherein the aggregate processing capacity of the
computing cluster is inferred by each controller without ex-
plicit exchange of messages between controllers. This is
achieved by examining the dynamics of the global workload,
which is a shared system variable forming an implicit cou-
pling between the various local controllers. Each controller
independently estimates the incoming workload to the ap-
plications as well as the aggregate computing capacity of
other VMs in the virtual clusters, and then intelligently as-
signs CPU shares to VMs under its control1. Therefore,
if the controllers cooperate well during normal system op-
eration, then at any given time instant, the server cluster
would possess just enough aggregate processing capacity to
satisfy the response-time requirements of the time-varying
incoming workload.

Finally, one key issue to consider when designing a dis-
tributed control system is whether the decentralized con-
trollers operate synchronously in lockstep or asynchronously.
Consider the case where controllers operate synchronously.
They would observe the same external environment and sys-
tem state, and make the same decisions, causing the sys-
tem to oscillate. For example, suppose the incoming request
rate for an application increases at some time instant. Each
controller will observe this happening at exactly the same
time (their sampling times are synchronized), and since con-
trollers do not communicate with each other, each will in-
crease its VMs’ CPU share appropriately to consume the
increased workload. However, since all controllers take the
same action, the total processing capacity of the cluster will
be a lot higher than necessary. During the next time step,
the controllers will compensate for this situation by deceas-
ing CPU share to the VMs, and the cycle will repeat it-
self. This behavior may result in undesirable oscillations

1The problem formulation detailed in Section 4 can be ex-
tended in a straightforward way to also tune CPU operating
frequency to manage the power consumed by a single server.
The ESX virtualization layer does not support dynamic volt-
age scaling at this time, and so, we have not included CPU
frequency as a tuning knob in this paper.
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Figure 3: The system architecture hosting the online services. Local controllers on each server decide the
CPU share to assign to VMs under their control within the application tier.

within the system. To avoid this problem, controllers in
the proposed framework work asynchronously. By stagger-
ing the sampling times appropriately, we ensure that each
controller observes slightly different environment conditions
when making a control decision.

3.3 Applications and Workload Generation
The physical architecture shown in Fig. 3 hosts three web-

based services. Since the emphasis in this paper is on val-
idating the control framework, we simplified our system-
development effort by using the Trade6 application as the
basis for all three services. This simplification does not af-
fect the validation results reported in the paper, and other
enterprise applications such as DVDStore and RUBiS will
be deployed on the testbed as part of future work.

Trade6 is a stock-trading application which allows users
to browse, buy, and sell stocks. So, users can perform dy-
namic content retrieval as well as transaction commitments,
requiring database reads and writes, respectively. The ap-
plication logic for Trade6 resides within the IBM WebSphere
Application Server, which in turn, is hosted by a VM in the
application tier. The database component is DB2.

To simulate three separate online services, we elicit dif-
fering behavior from Trade6, in terms of response time,
as follows. The Gold service uses Trade6 configured with
a database size of 10, 000 users and 20, 000 stock quotes;
the Silver service uses a database with 2, 000 users and
4, 000 quotes; and the Bronze service uses a small database
with 100 users and 200 quotes. Trade6 is quite sensitive
to database size—that is, for the same incoming workload
intensity, the application exhibits different response times
for different database sizes. The response time typically be-
comes longer with larger database sizes.

We use Httperf [9], an open-loop workload generator, to

send browse/buy/sell requests to Trade6. Fig. 4 shows an
example of a time-varying incoming workload to each of the
three services. Request arrivals exhibit time-of-day varia-
tions typical of many enterprise workloads and the number
of arrivals can change quite significantly within a very short
time period. The workload used in our experiments was
synthesized, in part, using log files from the Soccer World
Cup 1998 Web site [2]. Also, the results presented in this
paper assume a sessionless workload, meaning requests are
assumed to be independent of each other and there is no
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need to maintain state information for multiple requests be-
longing to one user session.

4. CONTROL-ARCHITECTURE DESIGN
The proposed control architecture aims to operate the

computing cluster described in Section 3 most efficiently by
tuning its aggregate processing capacity to closely track the
incoming workload intensity. The QoS metric is stated in
terms of a desired response time for the hosted services.
This system-wide problem is decomposed into a set of sim-
pler subproblems and each is assigned to a local controller.
When these subproblems are solved independently, we ap-
proach the global solution.

Before describing our approach, we must note that not all
control problems can be decomposed in a distributed fash-
ion. However, it is well known that, given multiple subsys-
tems whose dynamics and operating constraints are uncou-
pled and whose local cost functions are quadratic, simply
having each subsystem independently optimize its local cost
function can potentially achieve the global optimal. The
performance management problem considered here falls in
this category, and we can decompose it into subproblems
for each server to solve such that the summation of the local
costs recovers the centralized cost.

4.1 The Local Control Scheme
Each local controller uses concepts from model-predictive

control (MPC) to solve the subproblem assigned to it. The
basic idea behind MPC is to solve a multi-objective opti-
mization problem that minimizes the cost function over a
given prediction horizon, and then periodically roll this hori-
zon forward [8].

Fig. 3 shows the MPC scheme implemented on each lo-
cal controller. Here, λ(k), co(k), cs(k), and x(k) denote the
request arrival rate for applications hosted on the system,
the cumulative CPU share of the cluster excluding the cur-
rent server, the CPU share of the current server, and the
system state, respectively. During control step k, a Kalman
filter predicts the request rate λ̂(l) along the prediction hori-
zon and an exponential-weighted moving-average (EWMA)
filter estimates ĉo(l). Using these estimates and the system
model, the optimizer finds a sequence of control actions c̃s(l)
along the prediction horizon minimizing a specified objective
function. Then, the first action c̃s(k) in the sequence is sup-
plied to the system and the rest are discarded. The above
process is repeated when updated system and environment
information becomes available at time k + 1.

4.2 The Server Model
This section shows how to obtain a behavioral model cap-

turing the dynamics of a server hosting multiple VMs (ap-
plications). For ease of notation, we use the subscript i to
denote the ith service class—that is, i = 1, 2, and 3 denote
the Gold, Silver, and Bronze services, respectively. So, a
VM hosted on server j, supporting service i is denoted as
VMij .

From the local controller’s viewpoint, the dynamics of the
virtual cluster supporting service i at time step k is

xi(k + 1) = xi(k) + Ts · ui(k), (1)

where xi(k) is the system state representing unprocessed
client requests (queue size), Ts is the controller sampling

period, and ui(k) is the control input representing the dif-
ference between the request arrival rate for service i and
the corresponding processing rate. As shown in (2), ui(k)

contains three terms: λ̂i(k), the estimated arrival rate for
service i; μ̂io(k), the estimated aggregate processing rate of
other VMs in the virtual cluster (excluding the local VM on
this server); and μis(k), the processing rate of the local VM.

ui(k) = λ̂i(k) − μ̂io(k) − μis(k) (2)

The arrival rate λ̂i(k) is predicted via a Kalman filter us-
ing previously observed values. The aggregate processing
rate μ̂io(k) of other VMs in the virtual cluster is obtained
from their corresponding CPU share ĉio(k) (also estimated
locally by the server). We conduct detailed profiling exper-
iments to determine a mapping coefficient ri which maps
a given CPU share (in GHz) to a corresponding processing
rate as

μ̂io(k) = f (ĉio(k)) = ri · ĉio(k). (3)

The profiling experiments are detailed in Section 5.
We can estimate ĉio(k) locally on a server without any

explicit communication with other servers as follows. Recall
that incoming requests are distributed to VMs based on their
respective CPU share. Let λio(k − 1) and λis(k − 1) denote
the arrival rate to the local VM, and to other VMs in the
virtual cluster, respectively, and let cio(k−1) and cis(k−1)
be the corresponding CPU shares. We then have

λio(k − 1)

cio(k − 1)
=

λis(k − 1)

cis(k − 1)
,

and so,

cio(k − 1) =
cis(k − 1)

λis(k − 1)
· λio(k − 1)

=
cis(k − 1)

λis(k − 1)
· [λi(k − 1) − λis(k − 1)].

After obtaining cio(k−1), the local controller uses an EWMA
filter to estimate ĉio(k) for the current control interval as

ĉio(k) = (1 − η) · ĉio(k − 1) + η · cio(k − 1),

where 0 ≤ η ≤ 1 is a weighting factor.
Let us now revisit (2). As λ̂i(k) and μ̂io(k) are uncontrol-

lable from a local controller’s viewpoint, they are considered
as a control input ûio(k) emanating from other VMs in the
virtual cluster, where

ûio(k) = λ̂i(k) − μ̂io(k).

Since μis(k) is controllable, it is the local control input
uis(k), where

uis(k) = μis(k) = ri · cis(k),

and cis(k) is the CPU share of the local VM supporting
service i. Then (2) becomes

ui(k) = ûio(k) − uis(k) (4)

and (1) can be rewritten in terms of uis as

xi(k + 1) = xi(k) + Ts · [ûio(k) − uis(k)]. (5)

Now, we can construct the dynamic model that includes all
three services hosted on the server as

x(k + 1) = Ax(k) + Bu(k) (6)
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where

A = I, x(k) =

⎡
⎣x1(k)

x2(k)
x3(k)

⎤
⎦ , B = Ts

[
I −I

]
,

u(k) =

[
ûo(k)
us(k)

]
, ûo(k) =

⎡
⎣û1o(k)

û2o(k)
û3o(k)

⎤
⎦ , and us(k) =

⎡
⎣u1s(k)

u2s(k)
u3s(k)

⎤
⎦ .

So, (6) can be finally written as

⎡
⎣x1(k + 1)

x2(k + 1)
x3(k + 1)

⎤
⎦ = I

⎡
⎣x1(k)

x2(k)
x3(k)

⎤
⎦ + Ts

[
I −I

]
⎡
⎢⎢⎢⎢⎢⎣

û1o(k)
û2o(k)
û3o(k)
u1s(k)
u2s(k)
u3s(k)

⎤
⎥⎥⎥⎥⎥⎦

. (7)

4.3 The Optimization Problem
The QoS requirement for the computing cluster is speci-

fied in terms of a response time to be achieved by the ser-
vices. To ensure that the response time satisfies QoS goals
while simultaneously reducing the CPU share provided to
the VMs, one must maintain the request-queue length near
a certain set point and closely match the cluster’s processing
rate (which is controllable) to the request arrival rate (which
is uncontrollable).

The objective function v(k) for a one step lookahead con-
troller interprets the above problem as one of maintaining
both x and u near their set points x̄(k), x̄(k + 1), and ū(k)
during each control interval. So,

v(k) = [x(k) − x̄(k)]′P[x(k) − x̄(k)]

+ [u(k) − ū(k)]′Q[u(k) − ū(k)]

+ [x(k + 1) − x̄(k + 1)]′P[x(k + 1) − x̄(k + 1)], (8)

where ′ denotes matrix transpose. Also, we have

P = p

⎡
⎣p1 0 0

0 p2 0
0 0 p3

⎤
⎦ and Q = q · I.

Since (8) is a multi-objective optimization function, p and q
are weights reflecting the tradeoff between queue length and
CPU share, as specified by the system designer, and p1, p2,
and p3 are weights reflecting the relative priorities between
the Gold, Silver, and Bronze services. Now, if

x̄k+1
k =

[
x̄(k + 1)

x̄(k)

]
, P̃ =

[
P 0
0 P

]
, Q̃ = Q,

Φ =

[
I
A

]
, and W =

[
0
B

]
.

then, substituting the above equations into (8), we get the
standard quadratic form of the objective function in terms
of the control-input vector u(k) as

v(k) = a + b′u(k) +
1

2
u(k)′Gu(k), (9)

where

a = e(k)′P̃e(k) + ū(k)′Q̃ū(k),

e(k) = Φx(k) − x̄k+1
k ,

b = β(k) + Γx(k),

β(k) = −2(W′P̃x̄k+1
k + Q̃ūk),

Γ = 2W′P̃Φ, and

G = 2(Q̃ + W′P̃W).

As described before, the control input ûo(k) is based on
the global request arrival rate and other servers’ CPU share,
therefore not tunable from the current local controller’s per-
spective. Each local controller must also satisfy dynamic
operating constraints when solving the above optimization
problem, in terms of a lower and upper bound, cil and ciu,
respectively, on each VM’s CPU share. Moreover, the com-
bined CPU share provided to the three VMs should not
exceed cmax, the maximum CPU capacity available on the
server. The dynamic operation constraints are⎧⎨

⎩
ûo(k) = ûo(k)
cil ≤ cis(k) ≤ ciu

Σcis(k) ≤ cmax

(10)

Since processing rate and CPU share are related by the pa-
rameter r, and since the control decisions us(·) are in terms
of a processing rate for each VM, we use

Hb =

⎡
⎣

1
r1

0 0

0 1
r2

0

0 0 1
r3

⎤
⎦ and Hm =

[
1
r1

1
r2

1
r3

]

to convert the original constraints in (10) to those in terms
of processing rate as⎧⎨

⎩
ûo(k) = ûo(k)
cl ≤ Hb · us(k) ≤ cu

Hm · us(k) ≤ cmax

(11)

Finally, combining (9) and (11), we formulate the MPC op-
timization problem as

min
u(k)

a + b′u(k) +
1

2
u(k)′Gu(k) (12)

subject to ⎧⎨
⎩

ûo(k) = ûo(k)
cl ≤ Hb · us(k) ≤ cu

Hm · us(k) ≤ cmax

This problem, when solved using the Matlab function quad-
prog, returns a vector ũ(k) where

ũ(k) =

[
ûo(k)
ũs(k)

]
.

Once ũ(k) is obtained, we map it back to the corresponding
CPU share c̃s(k) using the relationship

c̃s(k) = Hb · ũs(k). (13)

The controller then applies c̃s(k) to all the VMs resid-
ing on the server—in our case, three—and communicates
this information to the dispatcher which then distributes the
incoming requests appropriately based on each VM’s CPU
share.
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5. EXPERIMENTAL RESULTS
The control framework has been validated using the testbed

from Section 3 and we discuss some key results from the
experiments. The distributed controllers are implemented
as Java programs, invoking the necessary Matlab routines
packaged within a stand-alone C executable. Controller im-
plementations incur very low run-time overhead to solve
their respective optimization problems: typically, under 3
sec. The starting times of local controllers on the four servers
are staggered slightly so that they operate asynchronously.
Here, the setting is tc1 = 30 second, tc2 = 60 second,
tc3 = 90 second, tc4 = 120 second. The sampling period
of each controller is set to Ts = 120 seconds.

We set the incoming request rate to change every 30 sec-
onds, and to ensure that the estimated rate adequately cov-
ers any variability in the actual arrival rate about 95% of the
time, the original Kalman estimate is modified as λ̂ + 2σ,
where σ is the standard deviation between the actual and
predicted values. The weighting factor in the EWMA filter
is tuned to η = 0.3. To maintain some minimal processing
capacity on each VM, the lower bound on CPU share is set
to 1.5 GHz, and since the ESX server restricts the maximum
number of cores that a VM can use on a server to four, the
upper bound is set to 8 GHz for VMs residing on Apollo and
Poseidon, and 6 GHz for those on Eros and Demeter.

Finally, the weights p1, p2, and p3 in the objective function
are set to 3, 2, and 1, respectively, so that the controller
prioritizes the Gold, Silver, and Bronze services correctly.
The weights p and q are set to 2 and 1 respectively, giving
greater priority to depleting the request queue over assigning
lower CPU shares to the VMs.

5.1 Building System Models via Profiling
We now detail the profiling experiments performed to ob-

tain the parameter ri that maps a VM’s CPU share to a
corresponding processing rate for each service i. Also, since
the system’s QoS goal is specified in terms of a response
time to be achieved by the services, we describe how this
response time is chosen.

Fig. 5 shows the response times achieved by a VM hosting
the Gold service as a function of CPU share, arrival rate,
and workload mix2. Consider the case where the VM is
provided a fixed CPU share of 3 GHz. Requests are then
sent to the VM with an increasing arrival rate to generate
the corresponding response times. As long as the arrival
rate is below 50 req/s, the VM achieves a relatively steady
response time below 200 ms. However, if the arrival rate
exceeds 50 req/s, the response time increases dramatically
from around 200 ms to thousands of ms. This jump indicates
an unstable system in which the arrival rate has exceeded the
VM’s processing rate. So, we conclude that a 3 GHz VM can
process approximately 50 req/s before queuing instability
occurs. If the VM’s CPU share is further constrained, say
to 2 GHz, its maximum processing rate is constrained to
about 30 req/s.

The above procedure is repeated, collecting data on the
processing rates achieved by the VM for different CPU shares.
Fig. 6 summarizes the processing rates achieved by a VM for
each of the Gold, Silver, and Bronze services as a function
of CPU share. Since a stable response time of around 200

2The experiments reported in this paper assume a workload
mix of 50% browse requests and 50% buy requests.
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Figure 5: Average response times achieved by a VM
hosting the Gold service as a function of request
arrival rate and the CPU share provided to it.

App 1 GHz 2 GHz 3 GHz 4 GHz
Gold 15 req/s 30 req/s 50 req/s 60 req/s
Silver 20 req/s 30 req/s 55 req/s 70 req/s
Bronze 20 req/s 40 req/s 55 req/s 85 req/s

Figure 6: The processing rates achieved by VMs for
each of the three services as function of CPU share.

ms seems achievable, it is set as the QoS metric for the ser-
vices. With Matlab function cftool, the mapping factors in
(3) for the services are obtained as r1 = 15.5, r2 = 17.5, and
r3 = 20.17.

5.2 Normal System Operation
During normal system operation, decentralized controllers

must cooperate to closely match the aggregate CPU share of
each virtual cluster to the incoming request rate. Fig. 7 sum-
marizes the performance of virtual clusters serving the Gold
and Silver services, respectively. Focusing on Fig. 7(a), we
see that the workload gradually increases before t = 2, 100
seconds and decreases thereafter, and the cumulative CPU
share assigned to the VMs tracks this trend quite well.

We now focus on the VMs within the Gold virtual clus-
ter, specifically VM11 and VM12 whose operation is shown in
Fig. 8. Before t = 2, 100 seconds, the controller on Server
1 estimates the arrival rate to increase and infers that the
current cumulative CPU share will be insufficient to handle
this increase. Therefore, it increases VM11’s CPU share ac-
cordingly to match the arrival and processing rates. After
t = 2, 100 seconds, the workload begins to diminish, and the
controller tunes the CPU share lower. The average response
times for requests dispatched to VM11 remain under 200 ms,
satisfying the desired QoS. Other VMs in the virtual cluster,
for example VM12 on Server 2 behave similarly. However, as
controllers operate asynchronously, they sample at different
times, observing slightly different environment inputs such
as the overall request arrival rate. As a result, controllers
typically provide different inputs to VMs under their control.

Fig. 7(b) summarizes the performance of the virtual clus-
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(a) Gold virtual cluster.
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(b) Silver virtual cluster.

Figure 7: CPU share provided to the virtual clusters serving the Gold and Silver services as a function of
arrival rate.
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(a) Performance of VM11 on Server 1
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(b) Performance of VM12 on Server 2

Figure 8: The performance of selected VMs on different servers, both processing Gold requests.

Response time Gold Silver Bronze
Mean 72.05 ms 61.11 ms 57.98 ms

Standard deviation 25.84 ms 19.82 ms 29.01 ms
Num. violations 2 0 3

% violations 0.17% 0% 0.25%

Figure 9: Performance of the overall system during
normal operation in terms of mean response times
achieved and the number of QoS violations.

ter serving Silver requests, showing that short bursts and
fluctuations in the workload are tracked well. Finally, Fig. 9
summarizes the performance of the entire system during nor-
mal operation, assuming no server failures. The results indi-
cate that the distributed controllers cooperate well to main-
tain the QoS metrics.

5.3 Removal/Addition of Servers
Experiments also indicate that the distributed framework

is highly scalable and fault tolerant. In other words, the dy-
namic addition or removal (failure) of servers do not have a
lasting affect on overall system performance. When a chunk
of CPU share is added or removed from the cluster, other
controllers detect this change within one or two control steps
and tune CPU share accordingly.

Fig. 10 summarizes the performance impact on the Gold
virtual cluster when server 4 is turned off to simulate a fail-
ure and then reintegrated at a later time. The server is
removed from the system at t = 3, 000 seconds and rein-
tegrated at t = 6, 000 seconds. At t = 3, 000 seconds, we
see a big drop-off of about 3, 500 MHz in the cluster’s aggre-
gate CPU share, which then rebounds back quickly in about
210 seconds, that is, in less than 2 control steps, since the
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Figure 10: Performance of the Gold virtual cluster
when Server 4 is turned off at t = 3, 000 sec. and then
reintegrated at t = 6, 000 sec.

controller sampling period is 120 seconds. Fig. 11 focuses
in on how VMs in the Gold cluster react to the failure af-
fecting Server 4. Controllers on other servers, for instance,
Server 1, infer the loss in computing capacity and increase
their respective CPU shares to accept a bigger fraction of
the Gold workload. The cumulative CPU share of the sur-
viving VMs still tracks the incoming workload closely and
the response time remains, for the most part, under 200 ms.
At t = 6, 000 seconds, Server 4 is restored with an initial
CPU share of 3, 000 MHz, and the other controllers corre-
spondingly reduce the CPU shares to their respective VMs.

6. RELATED WORK
During the past several years, feedback control theory has

been applied to a variety of performance management prob-
lems in computing systems [4]. In particular, PID control
has been successfully used for task scheduling [6], QoS adap-
tation in web servers [1], load balancing [7], and CPU power
management [12]. Typically, a linear system with an un-
constrained state space and a continuous input/output do-
main is assumed, and a closed-loop feedback controller is
designed under stability and sensitivity requirements. More
advanced state-space and multi-input multi-output (MIMO)
methods accommodate multi-objective cost functions with
constraints when optimizing performance. In [14], for ex-
ample, a MIMO controller manages the power consumed by
a cluster by shifting power between the various servers with
respect to their performance needs, thereby manipulating
the cluster’s total power consumption to be lower than the
specified power budget.

More recently, control-theoretic methods have been pro-
posed to manage virtualized computing environments, in-
cluding power management and CPU usage [15, 5]. In [5],
the authors combine feedback control of response times with
predictive control of environment disturbances (e.g., work-
load fluctuation) to control the CPU share of a single VM.
We also see the use of hierarchical control strategies to man-
age multiple VMs in a coordinated fashion [17, 15, 16]. In
[17], a two-level optimization scheme using fuzzy logic allo-

cates CPU shares to VMs processing two enterprise applica-
tions on a single host. A global controller arbitrates requests
for CPU share from local controllers within VMs, aiming to
maximize the profit generated by the server. The authors
of [15] construct a two-layer control architecture for virtu-
alized servers to reduce power consumption while achieving
application-level QoS. They use a MIMO approach in the
primary loop to balance the load among VMs so that ev-
ery VM has generally the same performance. The second
loop controls CPU frequency for power efficiency based on
the performance level achieved by the primary loop. The
authors of [16] develop a hierarchical scheme to adjust the
CPU shares of VMs hosting an application whose compo-
nents are spread over web, application, and database tiers,
to achieve end-to-end response time targets.

To summarize, we note that a large majority of the control-
theoretic methods aimed at performance management are
centralized designs. Decentralized decision making and hi-
erarchical control of computing systems is a recent phe-
nomenon and significant challenges must still be addressed
to achieve real-time control of large-scale systems. We be-
lieve that the distributed control framework described in this
paper is an important step in this direction.

7. CONCLUSIONS
We have developed a distributed control framework to

manage the performance of cluster hosting multiple enter-
prise applications on a set of virtual machines (VMs). The
system must dynamically optimize the CPU capacity pro-
vided to each VM in response to incoming workload intensity
such that desired response times are satisfied. The system-
level problem of deciding the optimal CPU shares to VMs is
decomposed into multiple identical sub-problems, and each
sub-problem is solved in a cooperative fashion by controllers
local to each server. The proposed method has been vali-
dated using a cluster of heterogeneous servers hosting the
Trade6 enterprise application. Experimental results confirm
that the control architecture is quite scalable, adapts quickly
to workload fluctuations, and allows for the dynamic addi-
tion/removal of servers during system operation.

Going forward, we will develop and validate the hierarchi-
cal structure discussed in Section 2 by designing the higher-
level supervisory controller to make appropriate switching
decisions for the system.
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Figure 11: Reaction of VMs within the Gold cluster in response to the failure of Sever 4.
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