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ABSTRACT
Our work is motivated by a simple question: can we de-
sign a simple routing protocol that ensures robust perfor-
mance across networks with diverse connectivity character-
istics such as meshes, MANETs, and DTNs? We identify
packet replication as a key structural difference between pro-
tocols designed for opposite ends of the connectivity spectrum—
DTNs and meshes. We develop a model to quantify un-
der what conditions and by how much replication improves
packet delays, and use these insights to drive the design of
R3, a routing protocol that self-adapts replication to the ex-
tent of uncertainty in network path delays. We implement
and deploy R3 on a mesh testbed and a DTN testbed. To
the best of our knowledge, R3 is the first routing protocol
to be deployed and evaluated on both a DTN testbed and a
mesh testbed. We evaluate its performance through deploy-
ment, trace-driven simulations, and emulation experiments.
Our results show that R3 achieves significantly better delay
and goodput over existing protocols in a variety of network
connectivity and load conditions.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Store and
forward networks, Wireless communication

General Terms
Design, Experimentation, Performance

Keywords
Wireless routing, forwarding, replication

1. INTRODUCTION
Routing in wireless networks has seen a huge body of work

over the last decade as networking researchers have been
identifying diverse target environments such as mesh net-
works, mobile or vehicular ad hoc networks (MANETs), and
disruption-tolerant networks (DTNs). A variety of current
or foreseeable applications motivate this research such as
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extending the reach of the Internet [31, 2, 17], wildlife mon-
itoring [24, 5], content distribution [20], tactical operations,
etc. In response, researchers have developed a number of
routing protocols tailored for specific points such as meshes,
MANETs, or DTNs along a diverse connectivity spectrum.

Although much research has been expended on specific
points along the connectivity spectrum, little attention has
been devoted to designing a protocol that is robust to di-
verse connectivity characteristics. Indeed, state-of-the-art
routing protocols designed for one environment either work
poorly or break down completely in others. For example,
mesh protocols based on traditional link-state or distance
vector routing break down in DTNs where a contemporane-
ous end-to-end path is unavailable. Most proactive as well as
on-demand MANET protocols also assume the availability
of a contemporaneous end-to-end path. Likewise, DTN pro-
tocols commonly use packet replication to reduce delays, but
packet replication performs poorly in predictable, well con-
nected mesh networks. We experimentally show (§2) that
the performance penalty of fielding state-of-the-art protocols
(or straightforward optimizations thereof) outside of their
target environments can be severe.

Our work is motivated both by the diversity of existing
network environments and the compartmentalization of ex-
isting routing protocols. We start with the following ques-
tion: can we design a wireless routing protocol that ensures
robust performance across diverse and varying connectivity
characteristics all the way from well-connected mesh net-
works to always-partitioned DTNs? The pursuit of this ques-
tion is rooted in concerns more practical than just the in-
tellectual challenge it offers. As wireless networks prolif-
erate, users are likely to encounter environments with in-
creasingly varying connectivity. We show in §2 that there
are already several examples of real-world network deploy-
ments that exhibit diverse connectivity characteristics, e.g.,
spatially-varying connectivity as in a WiFi mesh intercon-
nected with a vehicular DTN or temporally-varying connec-
tivity [13] where the underlying topology sometimes resem-
bles a MANET and at other times a DTN. A self-adapting
protocol can significantly improve performance compared to
protocols designed with specific assumptions about connec-
tivity characteristics.

To design a self-adapting protocol, we look at routing
protocols designed for diametrically opposite ends of the
connectivity spectrum—well-connected mesh networks and
always-partitioned DTNs—and observe that a critical struc-
tural difference between the two is packet replication, a
mechanism that yields significant delay benefits for the lat-



ter but yields little benefit for and often hurts the former.
We develop a simple model to quantify under what condi-
tions and by how much replication improves packet delays.
Although the simple model ignores effects of load and in-
terference, it enables us to formally show that replication
yields significant delay gains if and only if path delays exhibit
high unpredictability without making any other assumptions
about the underlying delay distribution.

Based on this model’s insights, we design and implement
R3, a routing protocol that self-adapts replication to the
unpredictability of path delays as well as the load in the
network. R3 achieves these properties using the following
key insights. First, as per the model, it monitors the distri-
bution of path delays unlike traditional DTN routing pro-
tocols that simply monitor the expected delay. Second, it
leverages the empirical finding that replicating each packet
along a small number of paths suffices to capture most of
the achievable replication gain. Third, R3 uses load-aware
replication that allows it to be responsive to changing load
conditions. R3 turns off replication and switches to single-
path forwarding when it determines that the actual delay is
significantly higher than the estimated delay.

We implemented and deployed R3 on a 16-node mesh
testbed and a 20-node vehicular DTN testbed. We exten-
sively evaluate R3 using (1) our prototype deployment, (2)
trace-driven simulation experiments based on a hybrid mesh-
DTN testbed, DieselNet-Hybrid, and a MANET testbed [13],
and (3) emulation experiments over a mesh testbed designed
to emulate network topologies with varying levels of con-
nectivity all the way from well-connected meshes to highly
disconnected DTNs. We validate our simulator using results
from our deployment experiment. Our key results are as fol-
lows: (1) R3 achieves up to 2× better delay and 1.3× better
goodput compared to a naive “multi-configuration” protocol
that simultaneously runs a mesh and DTN routing protocol
and dynamically selects one of the two routes depending on
the connectivity. (2) When the connectivity is fixed at the
well-connected (or sparsely-connected) extreme, R3 achieves
delay and goodput comparable to the state-of-the-art pro-
tocols tailored for that extreme. (3) In sparsely-connected
networks under high load, R3 improves delay and goodput
by up to 1.4× and 1.3× respectively compared to RAPID, a
state-of-the-art DTN routing protocol, i.e., R3 at the least
is a better DTN routing protocol. We also show that the
overhead of R3 is only 0.5% of the total data transfered.

More broadly, although we focus on quantitative perfor-
mance metrics in this paper, our position is that a common
self-adapting routing protocol merits investigation for rea-
sons beyond just performance. First, it can simplify the in-
terconnection of diverse wireless networks and thereby spur
longer-term growth and innovation. On the other hand, hav-
ing different protocols for different environments increases
the engineering complexity of maintaining multiple code-
bases and the management complexity of tuning them for
different environments. Second, it enables separation of con-
cerns, e.g., a duty-cycling algorithm for a sensor network can
be designed without worrying about whether or to what ex-
tent the underlying topology remains connected and how it
might affect routing performance. A first step towards quan-
tifying the strength of these arguments is to go through the
exercise of designing and implementing a self-adapting rout-
ing protocol—a key contribution of this paper.

2. WHY DESIGN FOR DIVERSITY?
In this section, we experimentally make the case for a self-

adapting routing protocol for networks with diverse connec-
tivity characteristics. First, we show that state-of-the-art
routing protocols perform poorly outside the specific envi-
ronment for which they are designed. Second, we present
real-world examples of networks exhibiting significant tem-
poral and spatial diversity in connectivity characteristics.

2.1 Performance outside target environments
State-of-the-art wireless routing protocol designs deeply

embed assumptions about the connectivity characteristics of
the underlying network. For example, in sparsely-connected
DTNs, packets are routed by replicating copies through mul-
tiple nodes. In contrast, in well-connected mesh networks,
packets are forwarded over a single path to the destination.

To understand how protocols perform outside their tar-
get environment, we conduct a simple experiment compar-
ing the performance of several DTN, MANET and mesh
routing protocols, namely, RAPID [8], Random replication,
DTLSR [16], AODV [29] and OLSR [3]. The first two are
replication protocols for sparsely-connected networks, and
the latter three are forwarding protocols for intermittently-
disconnected or well-connected networks. We conduct trace-
driven experiments based on a sparsely-connected testbed
DieselNet-DTN and deployment-based experiments on a well-
connected mesh testbed (Figure 8).

We make simple modifications to the above protocols so
that DTN protocols can work in a mesh and vice-versa. We
choose workload parameters to focus specifically on low and
high network load. A more detailed description of the mod-
ifications as well as the experimental setup is deferred to §6,
which also presents a more exhaustive exploration of proto-
col, workload, and environment parameters.

Figure 1(a) shows that in a well-connected mesh, replica-
tion using RAPID increases delay by about 2× compared to
OLSR, the best forwarding protocol. Replication wastes re-
sources and yields little benefit in well-connected networks.

However, the situation reverses in sparse networks. Fig-
ure 1(b) shows that in the DTN environment DieselNet-
DTN, replication routing using RAPID yields almost a 2×
reduction in delay compared to DTLSR, the best forward-
ing protocol. Even random replication significantly reduces
delay compared to forwarding protocols.

Replication is not always beneficial in sparse networks.
Figure 1(c) shows that replication can hurt performance in
sparse networks when the offered load is high. Under high
load, replication increases the delay in DieselNet-DTN by
15% over forwarding. We observe similar trends for goodput
across different networks and loads (not shown in figure).

Taken together, these results suggest that existing pro-
tocols work poorly outside of the specific environment for
which they are designed. This state of affairs would not
be terribly disturbing if real networks exhibited stable con-
nectivity characteristics, i.e., a given network always either
looked like a DTN or like a mesh. However, we find sig-
nificant temporal and spatial diversity in realistic network
testbeds, as described next.

2.2 Temporal and spatial connectivity diver-
sity in real-world networks

Figure 2(a) shows that the connectivity, i.e., fraction of
connected node-pairs in the Haggle network varies tempo-
rally. Haggle [13] is an opportunistic network formed by 8
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(b) DieselNet-DTN: low load (20 pkt/hour/flow)
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Figure 1: Each boxplot shows min, max, 25%, 75% quartiles, median, and mean delays. All experiments use 30

concurrent flows. The delay of a flow is the average delay of all packets in the flow. Replication benefits significantly

in the DieselNet-DTN network under low load but hurts performance in well-connected mesh. Replication hurts

performance under high load in the DieselNet-DTN network.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  1  2  3  4  5  6  7  8  9

hour

Fr
ac

tio
n o

f c
on

ne
cte

d n
od

es

(a) Haggle network: Connectivity varies temporally.
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Figure 2: Networks that exhibit varying connectivity

characteristics temporally and spatially

mobile devices carried by users and one stationary device in
the Intel Cambridge Lab. Figure 2(a) shows that the connec-
tivity of the Haggle network changes dynamically between
10% and 80% as a result of user mobility. Connectivity can
also vary temporally due to other causes such as node fail-
ures or duty cycling in sensor networks.

Similarly, Figure 2(b) shows that the DieselNet-Hybrid
bus network’s connectivity varies spatially. DieselNet-Hybrid
is a hybrid mesh-DTN testbed consisting of 20 buses and a
number of open access points (APs) in a 4 sq.mile area. In
some areas, several APs cluster together forming a mesh
network, as shown in the figure. Buses are connected either
when they come in contact with the APs or other buses.
Figure 2(b) shows that the connectivity of buses varies with
geographical location. We divide the whole region into 9
grids and number them in increasing order of the total num-
ber of bus-AP and bus-bus contacts per day. For example,
Figure 2(b) shows that the total number of contacts is over
500 in grid 8 and 9, but is below 100 in grids 1, 2, and 3.

Changes in network connectivity across location is often
the result of the difference in wireless penetration. For exam-
ple, in the hybrid mesh-DTN topology of DieselNet-Hybrid,
buses are well connected in urban centers with high WiFi
AP density (as shown by the mesh clusters in Figure 2(b)),
but are poorly connected as they move to less urban areas.

Recent measurement studies show that such variations in
connectivity can occur even in cellular networks [10].

Mesh protocols today rarely utilize the connectivity avail-
able in DTN areas with poor WiFi penetration. However,
exploiting hybrid mesh-DTN networks and utilizing the con-
nectivity offered by disruption-prone DTNs when available
(e.g., bus-bus contacts in DieselNet-Hybrid) can significantly
increase wireless capacity. For example, Balasubramanian et
al [9] show that the performance of delay-tolerant Web ap-
plications can be improved using a sparse-DTN when avail-
able. Similarly, Hui et al [23] show that delay-tolerant and
opportunistic communications can double the throughput
of a well-connected mesh network. Thus, in order to fully
exploit the potential of hybrid networks, protocols should
self-adapt to changing connectivity characteristics.

3. QUANTIFYING REPLICATION GAIN
To address the challenge of designing a self-adapting rout-

ing protocol, we begin by identifying packet replication as a
key structural difference between routing protocols designed
for well-connected and sparsely-connected networks. Thus,
it is important to understand under what network and load
conditions should replication be used over forwarding.

To this end, we present a simple analytical model to first
understand the benefits of replication in terms of the net-
work characteristics, ignoring the impact of load and inter-
ference. The model shows formally that replication yields
high delay gains if and only if network path delays are highly
unpredictable. Although the model makes several simpli-
fying independence assumptions, it yields insights into the
best-case gain of replication. In the next section, we design
R3 so as to adapt replication based on measured deviations
in the observed delays from those predicted by the model,
thereby accounting for load or interference effects.

3.1 Model
We quantify the benefit of replication in terms of end-to-

end delay improvement. To this end, we model the end-to-
end delays of the different paths connecting a source and
destination pair. Figure 3 shows a node pair with source
S, destination D, and n different (possibly multi-hop) paths
connecting them. The end-to-end delays of the paths are
represented by random variables X1, · · · , Xn respectively.

We make a simplifying assumption that the random vari-
ables X1, · · · , Xn are independent. Note that this assump-
tion is rather simplistic as it implies the paths are fully dis-
joint and there is no interference between packets traversing
different paths and thus ignores any effects induced by load.
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Figure 3: Model

Forwarding and replication choose from among these paths
for routing, but in different ways. We assume forwarding
sends a packet on the path with the minimum expected de-
lay, and replication sends copies of a packet on all paths.
Let µ and µ(1) denote the expected delay from S to D using
forwarding and replication respectively, then

µ = min{E[X1], E[X2], ..., E[Xn]} (1)

µ(1) = E[min{X1, X2, ..., Xn}] (2)

The random variable representing the delay when using
replication, min{X1, X2, ..., Xn}, is also commonly referred
to as the first-order statistic. It is well known [14] and easy
to show that µ ≥ µ(1), and we define the ratio µ/µ(1) to be
the replication gain.

3.2 How to compute the replication gain?
The replication gain is defined as µ/µ(1). Let m be the

path with minimum expected delay. It is straightforward to
show (see [35]) that the replication gain is

µ

µ(1)

=

∫ +∞

0

P [Xm > x]dx∫ +∞

0

n∏
i=1

P [Xi > x]dx

(3)

Eq. 3 presents an important insights: Computing the repli-
cation gain, and in turn deciding whether to replicate, re-
quires knowledge of the delay distribution of the different
paths (Xi’s), not just their expected values (E[Xi]

′s).
State-of-the-art replication protocols often make replica-

tion decisions based on the expected delay[34, 32] or make
assumptions about the delay distribution a priori [8, 34,
37, 32, 7]. For example, RAPID [8] assumes that the de-
lay distribution is exponential, and therefore estimates the
replication gain of k replicas to be k-fold relying only on
expected delays. However, the k-fold replication gain as-
sumption does not hold when the delay distribution is not
exponential, e.g., in predictable mesh networks, two repli-
cas are unlikely to halve the delay. Therefore, we design R3
(§4), which makes replication decisions based on the delay
distribution, but makes no assumptions about the distribu-
tion a priori. Our evaluations (§6) shows that using the
delay distribution can significantly improve performance of
routing protocols over only using the expected values.

3.3 When is the replication gain high?
Intuitively, replication helps when the delays are highly

unpredictable. For example, consider a source and desti-
nation connected by two paths whose delays are given by
random variables X1 and X2. If X1 is always equal to 1
second and X2 is always equal to 3 seconds, then replica-
tion yields no benefit compared to simply choosing the first
path. Now suppose that X1 is 0.1s in 90% of the cases and
10s in 10% of the cases, and X2 is 0.3s in 90% of the cases
and 30s in 10% of the cases. The mean delays of X1 and X2

are still about 1s and 3s respectively. However, replication

P
[X

≤
x
]

P [X ≤ x] = 1 − e−x
1

0
E[X]

x

low ε

high ε
P [X ≤ x] = Φ(

x − 1

0.5
)

exponential distribution 

normal distribution N(1,0.52)

Figure 4: Distributions with more values below the mean

have lower predictability

results in a mean delay of about 0.2s, a 5× improvement
compared to the shortest path forwarding. We formally de-
fine predictability of delays as follows.

Definition 1. The predictability of a random variable X is
the smallest ε such that its cumulative density below εE[X]
is at least 1− ε, i.e., P [X ≤ εE[X]] ≥ 1− ε.

Note that ε = 1 always satisfies the condition in the defini-
tion (as P [X ≤ E[X]] ≥ 0), so predictability is well defined
and lies between 0 and 1. Low predictability (i.e., highly
unpredictable delays) means that the delay is much smaller
than the mean most of the time, but the mean is inflated by
occasional large values. Figure 4 shows a pictorial example
of distributions with low and high predictability.

In the previous example, when X1 is always 1 second,
ε = 1. When X1 is 0.1s in 90% of the cases and 10s in 10%,
the predictability ε = 0.1. We arrive at these predictability
values by solving the equation P [X1 ≤ εE[X1]] ≥ 1−ε. Intu-
itively, as in the example, lower predictability implies higher
replication gain.We formalize this claim using the following
theorem.

Theorem 1. For a source-destination pair connected by
n ≥ 2 paths, the delays of the paths are independent and
identically distributed (i.i.d) as denoted by X.
(a) If X has predictability ε, then the replication gain is at
least 1

1−(1−ε)2 , i.e., low predictability implies high replication

gain.
(b) If the replication gain is G ≥ 1, then X has predictabil-

ity at most G−
1

n+1 , i.e., high replication gain implies low
predictability.

The relation between replication gain and predictability
generalizes to independent but nonidentical distributed ran-
dom variables. We define relative predictability as:

Definition 2. For a set of random variables X1, · · · , Xn,
let Xm have the minimum expected delay. Then the relative
predictability of a random variable Xi is the smallest δ such
that P [X ≤ δE[Xm]] ≥ 1− δ.

Theorem 2. For a source-destination pair connected by
n ≥ 2 paths, the delays of the paths are independently but
non-identically distributed as denoted by X1, · · · , Xn and
E[Xm] = min{E[X1], · · · , E[Xn]}
(a) If there exists a variable Xi 6= Xm with relative pre-
dictability δ, then the replication gain is at least 1

1−(1−δ)2 ,

i.e., low predictability implies high replication gain.
(b) If the replication gain is G ≥ 1, and there exists Xi such

that P [Xi ≤ G−
1

n+1E[Xm]] = max1≤j≤n P [Xj ≤ G−
1

n+1E[Xm]],

then Xi has relative predictability at most (G−
1

n+1 ) i.e., high
replication gain implies low predictability.

The proofs for both theorems are presented in [35].
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Figure 5: Replication gain across node pairs. Two paths

get most of the gain on both traces.

3.4 Implications
The theorems yield an important implication: replication

gain grows unbounded as the predictability approaches 0.
Furthermore, as the theorems hold for any n ≥ 2, even two
paths can yield unbounded gains. To study how replication
gain increases with the number of paths used for replication
in practice, we perform trace-driven analysis on DieselNet-
DTN and Haggle. The traces log inter-contact times be-
tween each pair of nodes (details are deferred to §6), which
yields a link-state graph with each link annotated with an
empirically measured distribution of delay values. The in-
dividual link delay distributions are used to compute the
end-to-end delay distribution of a path. We use these dis-
tributions to estimate the replication gain using Eq. 3 when
two, three, four and all paths are used for replication respec-
tively. Figure 5 shows that two paths give between 65%
and 75% of maximum gain in real traces, and the marginal
benefit of using additional paths is small.

4. DESIGN AND IMPLEMENTATION
In this section, we present R3, a routing protocol that

self-adapts the level of replication to network and load con-
ditions. R3’s design is driven by the following insights re-
vealed by our model (§3) and analysis of existing routing
protocols (§2): (1) replication gain depends on the distribu-
tion of path delays, not just the mean value; (2) two paths
suffice to capture much of the replication gain; (3) under
high load, replication can hurt performance.

R3 consists of three main components—(i) estimating the
end-to-end path delay distribution, (ii) selecting the best
replication path based on the distributions, (iii) reigning in
replication according to load.

4.1 Delay estimation
The model presented in §3 quantifies the replication gain

as a function of the end-to-end delay distribution. How-
ever, estimating the delay distribution in a unified manner
across diverse networks is non-trivial. For example, in well-
connected mesh networks, ETT [19], Per-hop RTT [6] or
similar metrics are used to estimate link delays, but these
metrics are unsuitable to estimate delays in disruption-prone
environments where there are no persistent links. Similarly,
in sparse networks, inter-contact times [8, 7, 32] are often
used to measure link delays, but they are not meaningful
in mesh environments where links are persistent. Instead,
R3 uses a unified metric to capture link delays in both well-
connected and sparse networks.

4.1.1 Link delay metric
We define link delay as the sum of the link availabil-

ity delay and the delay to successfully transfer the packet

Availability delay X

Inter-contact time Y

node contacct
packet arrival

time

Figure 6: Availability delay X and inter-contact time Y

across the link. In sparse-networks, the availability delay
contributes significantly to the link delay, while in well-
connected networks, the delay to successfully transfer the
packet is the significant contributor to the link delay. In this
subsection and the next, we ignore load-dependent queuing
delays and address them in §4.3.
Link availability delay: This delay is the time until which
the link remains down. In mesh networks, this time is
zero for nodes that are connected. In disruption-prone net-
works, this time is often approximated by the expected inter-
contact time between the corresponding nodes. However,
there is a subtle but important distinction between the avail-
ability delay and the inter-contact time.

LetX denote the availability delay and Y denote the inter-
contact time between two uncorrelated nodes (Figure 6).
Then, as per [26]:

P [X ≤ x] =
1

E[Y ]

∫ x

0

(1− P [Y ≤ y])dy (4)

and

E[X] =
E[Y ]

2
+
σ2(Y )

2E[Y ]
(5)

where σ2(Y ) denotes the variance of Y .
In general, E[X] is not equal to E[Y ], contrary to explicit

or implicit assumptions made by prior routing protocols [8,
33, 7, 32]. For example, if Y represents periodic node meet-
ings, i.e., the variance is 0, then X is uniformly distributed
between 0 and E[Y ], so E[X] = E[Y ]/2. If Y is uniformly
distributed in the interval [a, b], then E[Y ] = (a+ b)/2 and
E[X] = a/6 + b/3. To enable delay estimation for arbitrary
distributions, R3 explicitly measures the availability delay
distribution X.
Delay to successfully transfer the packet: This delay
depends on the transmission delay, propagation delay, and
the loss rate of the link. To incorporate loss rates, the delay
to transfer packets includes the delay incurred in retrans-
mitting lost packets.

4.1.2 Estimating link delay
The total link delay is measured using link probes. Each

node broadcasts probes every second and one-hop neighbors
who receive the probe immediately send an acknowledge-
ment. If a probe is acknowledged, the sender estimates the
link delay as half of the corresponding round-trip time. If
a probe is not acknowledged, the sender estimates the cor-
responding round-trip time as the time since sending the
unacknowledged probe and receiving an acknowledgement
(for a subsequent probe). Thus, the delays for acknowledged
probes incorporate the transmission and propagation delays,
and the delays for unacknowledged probes incorporate the
delay introduced by unavailability and loss.

Each node computes a summary of the link delay distri-
bution obtained from the samples collected using the probes



as above. This summary consists of the mean value and
the decile values (i.e., the tenth, twentieth, thirtieth, etc.
percentiles) for each of its neighbors. These eleven values
constitute a link-state advertisement (LSA). Nodes periodi-
cally disseminate the LSA to all other nodes by piggybacking
them on the link probes, and thereby maintain a link-state
graph of the network with each link annotated with its delay
distribution summary as reported by the most recent LSA.
R3 implicitly assumes that delay distributions are station-
ary in the short-term, i.e., recent past is predictive of the
immediate future, similar to the assumption existing proto-
cols make about expected delay or loss rate.

4.1.3 Estimating path delay
The path delay is computed as the sum of its constituent

link delays. The expected delay of a path is the sum of
the expected delays of its constituent links. However, the
path delay distribution is the convolution of its constituent
link delay distributions. More precisely, let Xn denote the
end-to-end delay of a path consisting of n links, and let
Y1, Y2, · · · , Yn denote the constituent link delays. Let Xi =
Y1 + Y2 + · · · + Yi, 1 ≤ i ≤ n, denote the delay of the path
consisting only of the first i links. Then, Xi = Xi−1+Yi and
the distribution of Xi is the convolution of the distributions
of Xi−1 and Yi. In this way, a node iteratively computes the
delay distributions of paths from the link delay X1 to the
total path delay Xn.

The convolutions are computed by discrete link delay val-
ues obtained from the decile values in the LSAs. The end-to-
end path delay distribution as computed above may consist
of many more than ten values, however this distribution is
only used locally by a node to select paths as described next.

4.2 Path selection
Next, we describe how R3 selects paths for replication

based on the delay distributions. The simplistic model in
the previous section predicts more replication gain by using
more paths, but in practice, load and interference effects
will limit the achievable gain. Furthermore, the trace-driven
analysis in §3 suggests that, even without load, two paths
yield much of the replication gain. So, our implementation
of R3 limits replication along at most two paths.

A node selects the first path by running Dijkstra’s shortest
path algorithm. The algorithm takes as input the expected
delay of links and outputs the path with minimum expected
delay for each destination. A node selects the second path
by choosing one that minimizes the combined two-path de-
lay. The choice of the second path depends on path delay
distributions, not just their expected values. Let X1 denote
the delay on the first path with the minimum expected de-
lay as computed above and X2, · · · , Xm denote the delays
of other candidate paths. The expected delay D1,i of repli-
cating along both paths is

D1,i =

∫ +∞

0

P [X1 > x]P [Xi > x]dx (6)

A node picks as the secondary path (possibly partially
joint with the first path) the path that minimizes D1,i,
2 ≤ i ≤ m, where D1,i is computed as above. Since the
delay estimation algorithm using the decile values results in
a discrete random variable, R3’s implementation computes
D1,i as

D1,i =

N∑
k=0

P [X1 > k∆]P [Xi > k∆]∆ (7)

Link probe period 1 second
LSA dissemination period 10 seconds
Route recalculation period 30 seconds

Hop threshold for pruning path 2
Replication threshold for adapting to load 2

Table 1: Parameters

for a suitably small interval ∆ and the sum is over integers
0 ≤ k < N , where N is the smallest integer such that N∆
exceeds the largest observed delay across all candidate paths.

It is straightforward to extend equations (6) and (7) to
select the best combination of k − 1 other paths for k > 2.
In §6, we show that this increases computational complexity
but yields little additional benefit and can in fact hurt per-
formance in realistic network and load scenarios we consid-
ered. To further limit useless replication, R3 uses the second
path to replicate packets only when D1,i < 0.9 · E[X1], i.e.,
the replication gain is at least 1.1.

The number of paths to a destination can be exponential
in the size of the network, so a brute force search for the
best path combination can be expensive. R3 uses two sim-
ple techniques to prune the set of candidate second paths.
R3 only considers paths whose hop count are within a hop
threshold of the first path. Second, if a path is discarded, all
paths longer than it are discarded.

4.3 Load-aware replication
R3 as explained so far ignored the impact of load. How-

ever, under high load conditions, replication yields little ben-
efit and can in fact severely hurt performance (even when
limited to two paths). So, R3 uses a load-aware scheme to
switch from replication to forwarding.

Each source node tracks the actual delay of replicating
packets along two paths by having the destination send a
packet acknowledgment for the earliest delivered copy of
each packet. If the actual two-path delay exceeds a repli-
cation threshold of the estimated two-path delay, the node
treats it as a sign of network congestion and reverts to single-
path forwarding along the shortest path.

The node keeps monitoring the actual two-path delay by
sending infrequent probe packets on the second path. It
switches back to replication when the actual two-path de-
lays falls below the replication threshold of the estimated
two-path delay. Our experiments in §6 suggest that this sim-
ple heuristic is sufficiently responsive to high load enabling
R3 to achieve performance comparable to state-of-the-art
forwarding protocols.

4.4 Implementation details
R3 source-routes data packets by including the entire path

in the packet header in order to avoid routing loops. When
the destination receives the packet, it sends an acknowledg-
ment reporting the time of receipt on each path along which
it received the packet. If the absolute delay values are on
the order of minutes or longer (as in DTNs), R3 uses the
timestamp reported in the acknowledgment to approximate
the one-way path delay. This assumes loosely synchronized
clocks across nodes, which we expect to hold in practice. If
the absolute delay values is small on the order of seconds
or shorter (as in meshes), R3 estimates one-way path delay
as half the round trip delay to receive the acknowledgment.

We send link probes and probe acknowledgements as broad-
cast packets to avoid retransmissions by the 802.11 MAC.
We also give them the highest priority in the wireless driver



Day 1 2 3 4 5 6 7 8 9 10
Load (pkt 5 10 15 20 25 30 35 40 45 50
/hour/flow)
Avg delay .41 .43 .51 .57 .63 .69 .73 .79 .82 .89
(hour)
Percentage 92 88 91 91 88 84 83 83 81 81
delivered (%)

Table 2: Deployment results of R3 on DieselNet-DTN

so that they are inserted at the head of the driver queue
and don’t experience high queuing delay as reported in [18].
To keep routing overhead low, R3 nodes propagate LSAs
only if the expected delay or any of the decile values change
by more than 10%. Each node has a limited buffer, and it
removes old packets when the buffer is full.

Table 1 shows the parameters used in our implementation.
We pick these parameters based on our experiments.

5. DEPLOYMENT
We deployed a prototype of R3 on a well-connected mesh

testbed and a highly disconnected vehicular testbed. To our
knowledge, R3 is the first routing protocol that is imple-
mented on both a mesh and a vehicular testbed.

5.1 Vehicular deployment
We deployed R3 on a vehicular testbed, which we refer to

as DieselNet-DTN. DieselNet-DTN comprises of 35 public
transport vehicles operating in a 150 sq. mile area, out of
which 20 are on the road everyday, on an average. Each
vehicle is equipped with a Hacom OpenBrick 1GHz Intel
Celeron M system running Linux 2.6 and MadWiFi cards.

5.1.1 Vehicular deployment results
We measured the routing performance of R3 on ten week-

days by generating increasing loads from five packet per hour
per flow to fifty packet per hour per flow. The measure-
ment results are shown in Table 5. The average packet delay
across days is between 0.41 hour and 0.89 hour and the av-
erage percentage of packets delivered are between 81% and
92%.

5.1.2 Using the deployment results for validation
While we evaluate the performance of R3 using our de-

ployment, for a broader evaluation and for comparisons, we
conduct trace-driven experiments using a variety of traces.
One of the traces is collected from our vehicular testbed,
where we collect GPS traces from our vehicles and com-
pare multiple protocols on the same trace. We validate our
simulator by comparing simulation result on R3 against the
10-days measurements from the deployment. Figure 7 shows
the average delay of the deployment results and the simula-
tor. Delays measured using the simulator were averaged over
5 runs and the error-bars show a 95% confidence interval.
The close correlation shows the accuracy of our simulator.

5.2 Mesh deployment
We deployed a prototype of R3 on the Mesh testbed re-

ferred to as Mesh. Mesh is a well-connected wireless mesh
testbed consisting of 16 nodes in one floor of our computer
science building (Figure 8). Each node is an Mac Mini com-
puter running Linux 2.6 with 802.11b Atheros/MadWiFi
wireless card. The cards are configured to send at 5.5Mbps.
RTS/ CTS is turned off, and the cards are set to ad hoc
mode. The R3 prototype runs as a user-space daemon. Path
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lengths vary between 1 and 5 hops. We defer results from
the mesh deployment to Section 6.5.

6. EVALUATION
The evaluation of R3 is broadly categorized into the fol-

lowing categories (1) Varying connectivity: We show that
R3 is robust in diverse networks and can adapt to chang-
ing connectivity better than protocols that are designed for
specific environments, (2) Varying load: We show that R3
adapts well to changing load, (3) Analysis: We analyze the
overhead of R3 and isolate the reasons for the better perfor-
mance of R3, and (4) Homogenous networks: We show that
in a specific environment, the performance of R3 is compa-
rable to state-of-the-art protocols designed for the specific
environment.

6.1 Experimental setup

6.1.1 Trace-driven evaluation
Our trace-driven evaluation is based on traces from three

different testbeds referred to as Haggle, DieselNet-Hybrid,
and DieselNet-DTN and use the QualNet simulator [4]. We
summarize the statistics of all testbeds in Table 3. Recall
that the DieselNet-DTN testbed was also our deployment
testbed, and we validated our simulator using traces col-
lected from DieselNet-DTN.

Haggle [13] is an opportunistic network with temporally
diverse connectivity (Figure 2(a)). The trace consists of a
list of contacts in the format (i, j, s, e), where i and j
are two nodes, s and e are the start and end time of a con-
tact between them. DieselNet-Hybrid is a hybrid mesh-DTN
testbed with spatially diverse connectivity. The testbed con-
sists of 20 buses in a 4 sq.mile area forming a sparse network
and 40 mesh APs. The mesh APs in the testbed form sev-
eral mesh clusters (shown in Figure 2(b)), and the buses have
continuous connectivity to the mesh APs when in range of
the mesh cluster, forming a well-connected network. When
a bus is not in a mesh cluster, it routes data through other
buses using DTN routing. The DieselNet-DTN testbed is a
sparsely-connected network where we remove the mesh clus-
ters from the DieselNet-Hybrid testbed.



Num of nodes Connectivity Load interval
Mesh 16 Well [1, 6]

connected pkt/sec/flow
Haggle 9 Temporally [0.5, 3]

varying pkt/min/flow
DieselNet- 60 Spatially [0.5, 3]
Hybrid varying pkt/min/flow
DieselNet- 20 Sparsely [5, 50]
DTN connected pkt/hour/flow

Table 3: Testbeds used in the evaluation

In DieselNet-Hybrid and DieselNet-DTN, we a priori infer
the GPS coordinates of the APs in the mesh cluster and log
the GPS coordinate of each bus. Any two nodes in the trace
are said to be in contact when they are within 100 meters
of each other, as inferred from their GPS locations.

Given the length of a contact between two nodes (that
is obtained from the contact schedule in Haggle and from
the GPS coordinates in DieselNet-Hybrid and DieselNet-
DTN), QualNet simulates data transfer during the period
of the contact. The data rate is set to 5.5Mbps using two-
ray pathloss model and rayleigh fading model.

6.1.2 Emulation-based evaluation
To further stress-test R3’s performance in diverse connec-

tivity scenarios, we use the mesh testbed to emulate net-
works with changing connectivity (but without emulating
effects of mobility). We let each node to be in an on or off
state, and vary the on/off duration according to an exponen-
tial distribution. We vary the mean of the exponential distri-
bution to get different connectivity, and as before, we define
connectivity according to the fraction of connected nodes.
The connectivity (or the fraction of connected nodes) in-
creases from 0.01 to 1, ranging from sparsely-connected net-
works to well-connected networks. We conduct 30 minute
experiments at each connectivity level. Figure 11(a) shows
the mean on/off time of each node and the fraction of con-
nected nodes over time.

6.1.3 Alternate routing protocols
We compare R3 against the following protocols:
Replication-based: (i) RAPID [8], a DTN routing pro-

tocol that makes replication decision based on packet util-
ities and (ii) Random, a simple replication-based protocol
that replicates packets with a fixed probability of 0.5.

Forwarding-based: (i) DTLSR [16], a DTN routing pro-
tocol based on link-state forwarding that uses delays as the
link metric, (ii) OLSR [3], a mesh routing protocol based
on link-state forwarding that uses ETX [15] as the link met-
ric, and (iii) AODV [29], a mesh routing protocol based on
distance-vector forwarding using the hop count metric.

Multi-configuration: We implement a“multi-configuration”
protocol referred to as SWITCH. SWITCH concurrently
runs both OLSR and RAPID and switches between the two
depending of whether a node locally perceives itself as being
in a mesh or in a DTN. SWITCH forwards packets using
OLSR if there is a contemporaneous end-to-end path re-
ported by OLSR; otherwise it replicates packets via RAPID.
SWITCH nodes make routing decisions independently for
each packet, so a packet may switch mid-route from replica-
tion to a forwarding route or vice-versa.

We implemented SWITCH, RAPID, Random and DTLSR
in our Mesh testbed and in the QualNet simulator, and mod-
ify existing implementations of AODV [1] and OLSR [3].

While evaluating the above protocols in environments they
are not designed for, we make some straightforward changes
for a fair comparison. AODV and OLSR assume a con-
temporaneous end-to-end path. To make AODV and OLSR
work (i.e., deliver any packets at all) over sparsely-connected
networks, we allow each node to buffer data packets until the
packets are transferred; if the buffer is full, then we purge the
packets. RAPID’s design based on inter-contact times and
transfer opportunities makes it unusable as-is on a mesh, so
we modify it to use expected delays or ETT [19] (specifically
in Eq. 8 in [8]) in mesh networks. We preserve RAPID’s as-
sumption of exponentially distributed delays, i.e., k replicas
of a packet reduce delay k-fold, as that is central to its design
and ignores the nature of actual delay distributions.

To reduce clutter, we defer the results of Random and
AODV to a technical report [35]. Random consistently per-
forms worse than R3 and RAPID, and AODV consistently
performs close to OLSR.

6.1.4 Load and metrics
We generate 30 concurrent flows between randomly chosen

source-destination pairs in all experiments. In the DieselNet-
Hybrid testbed, where nodes can either be a bus or an AP,
packets either flow from a bus to the AP or vice versa. We
vary the rate of the flows to change the network load. Table
3 shows the load interval on each testbed. Each packet is of
size 1.5KB and node buffers are limited to 1MB.

We quantify the performance of the protocols in terms of
delay and goodput. We measure the average delay across all
packets, where the delay of undelivered packet is the time
it has spent in the network. We measure goodput as the
average rate of packet reception over the experiment period.

6.2 Experiments with varying connectivity

6.2.1 Haggle: Temporally diverse connectivity
Figure 9 shows the delay and goodput of different proto-

cols over Haggle. Figure 2(a) previously showed the connec-
tivity, i.e., the fraciton of connected nodes, in Haggle over
time. The load is set to 1 packet/minute/flow, which rep-
resents a total load of 270 packets/min across the network.
The delay and goodput are measured every half hour.

Figure 9 shows that R3 consistently performs better than
SWITCH, RAPID, OLSR, and DTLSR under varying con-
nectivity. R3 improves delay by up to 1.6× and improves
goodput by up to 1.3× over the second best protocol SWITCH.
We note that SWITCH tunes its routing algorithm accord-
ing to the network connectivity. When the fraction of con-
nected nodes drops below 0.1 (in the first and last half
hour) or increases above 0.7 (between 1.5 and 2 hours) in
Figure 2(a), the corresponding performance in Figure 9 of
SWITCH is comparable to R3. The two connectivity ranges
can be loosely characterized as“sparsely-connected”or“well-
connected”. In other words, in the two ends of the connectiv-
ity spectrum, a multi-configuration protocol that switches
routing according to connectivity performs similar to an
adaptive protocol such as R3. However, when the network
connectivity cannot be classified as either well-connected or
sparsely connected (fraction of connected nodes between 0.1
and 0.7), R3 outperforms SWITCH. We analyze the under-
lying reasons further in Secton 6.4.2.

Since RAPID, DTLSR, and OLSR perform worse than R3
and SWITCH in other diverse connectivity environments,
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Figure 9: [Haggle] Temporally varying connectivity: De-

lay and goodput are measured every half hour. R3 im-

proves delay by up to 1.6× and goodput by up to 1.3×.

we defer their results to a technical report [35] and plot
only SWITCH’s performance for clarity of presentation in
the rest of the graphs. RAPID, DTLSR and OLSR per-
forms much worse than R3 and SWITCH, because they
don’t adapt to changing connectivity. RAPID performs com-
parably to R3 and SWITCH in the first and last half hour
of Figure 9(a), which confirms that it is designed to work in
sparsely-connected networks. However, its replication pol-
icy wastes resources and hurts when network connectivity
improves. DTLSR and OLSR as forwarding protocols only
work well in mostly well-connected networks.

6.2.2 DieselNet-Hybrid: Spatially diverse connec-
tivity

We evaluate R3 on DieselNet-Hybrid that exhibits spa-
tially diverse connectivity as shown in Figure 2(b). The to-
tal number of contacts in each grid is shown in Figure 10(a).
We set the load to 1 packet/minute/flow and conduct the
experiment over half a day of the trace data. Delay in a grid
is the average delay of all packets received in this grid, i.e.,
the packets whose destination is a static AP in the grid or a
mobile bus travelling in this grid when it receives the packet.
Recall that for an undelivered packet, we count its delay as
the time it spends in the network. Thus if the undelivered
packet is destined to an AP, its delay is counted in the delay
of the grid in which the AP locates; if it is destined to a
mobile bus, its delay is counted in the delay of the grid in
which the bus travels at the end of the experiment.

Figure 10(b) shows the average delay of packets received in
each grid. R3 improves delay by up to 2.1× over SWITCH.
The improvement of R3 varies across grids. In grids 1, 2
and 8, 9, where the network is either sparsely connected or
well-connected, R3 has delay improvement of around 1.4×
and 1.5×. In grids 4, 5 and 6, where the connectivity cannot
be classified as either sparsely connected or well-connected,
R3 has an improvement of 2.1× over SWITCH. This trend
is similar to the Haggle results shown earlier in Figure 9.

6.2.3 Mesh: Emulating diverse connectivity
Figure 11(b) shows the average delay in the emulated

mesh testbed every half hour. We set the load to 1 pkt/min/flow
in this experiment. Similar to our observation in Haggle
(Figure 9) and DieselNet-Hybrid (Figure 10(b)), R3 im-
proves delay by up to 2× over SWITCH when connectiv-
ity varies between 0.1 and 0.8 (from the time 1 hour to 8
hour). R3 performs close to SWITCH in both sparse con-
ditions of less than 0.1 fraction of connected nodes and in
well-connected environments of greater than 0.8 fraction of
connected nodes.
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Figure 10: [DieselNet-Hybrid] Spatially varying connec-

tivity: R3 has 2.1× better delay than SWITCH.
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Figure 11: [Mesh] Emulated connectivity patterns: R3

improves delay by up to 2×.

6.3 Experiments with varying load
The above experiments evaluate R3 under a fixed network

load. We now evaluate it under varying load. We compare
the following protocols: R3, R3 without load-aware adap-
tation, and SWITCH. The load for each flow is increased
from 0.5 packets/minute to 3 packet/minute. In Haggle, for
example, this represents a total of 135 to 800 packets/min.
The experiment duration is 9 hours on Haggle and half a
day on DieselNet-Hybrid. We measure the average delay of
all packets at the end of each experiment.

Figure 12 shows that R3 performs well across varying
loads and improves delays by up to 1.8× in Haggle and 2.2×
in DieselNet-Hybrid. Even even R3 does not adapt to load,
it improves delays by up to 1.35× on Haggle and 1.40× on
DieselNet-Hybrid over SWITCH.

Figure 13 compares the packet delay CDF of R3 and
SWITCH under two load conditions in Haggle. Low load
is set to 1 packet/minute/flow and medium load is set to
2 packet/per/minute per flow. As load increases, the per-
formance difference between R3 and SWITCH increases.
At low load, the median delay improvement of R3 over
SWITCH is 1.6×, while at medium load, the median de-
lay improvement is 2.1×. By design, R3 adapts replication
to the load, but, SWITCH does not and continues aggressive
replication hurting performance especially when network re-
sources are stressed due to high load.

6.4 Analysing R3

6.4.1 Overhead of R3
Although the previous experiments implicitly incorporated

the effect of routing overhead for all protocols, we explic-
itly analyze the routing and computation overhead of R3.
Different protocols incur different overheads, depending on
what information they exchange with their neighbors (i)
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Figure 12: Performance under varying load: R3 im-

proves delay by upto 1.8× on Haggle and upto 2.2× on

DieselNet-Hybrid.
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Figure 13: [Haggle] Delay CDF under varying load: R3

improves median delay by 1.6× under low load, and by

2.1× under medium load.

R3: link-state announcement and packet acknowledgments,
(ii) RAPID: information about packet replicas and contact
information, (iii) DTLSR: link state announcements, (iv)
OLSR: link state announcement and other control messages,
(v) SWITCH: the routing overhead of RAPID + OLSR. We
compute the routing overhead as the percentage of the total
traffic data.

Figure 14 shows the routing overhead of different proto-
cols on Haggle and DieselNet-Hybrid. R3 has less than 0.5%
routing overhead across both testbeds, though it’s overhead
is higher than DTLSR and OLSR. The previous experiments
suggest that the benefits of R3 justifies this increase in over-
head. The fact that the DieselNet-Hybrid network has 60
nodes suggests that R3 scales well with network size. The
routing overhead of DTLSR and OLSR decreases as load
increases because they do not incur per-packet overhead.
SWITCH and RAPID incur the highest overhead because
they disseminate packet replica locations in addition to in-
formation about past node contacts.

R3’s computation overhead stems from: (1) estimating
the path delay distribution, which is a function of the num-
ber of links in the path, and, (2) selecting k − 1 secondary
paths that combine best with the primary path, which is the
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Figure 14: Routing overhead as a percentage of total

traffic data. R3 has less than 0.5% overhead.

Haggle DieselNet DieselNet
-Hybrid -DTN

No. of paths 14.6 23.8 15.2
Avg. no. links per path 2.4 3.7 3.1
Path combinations (k = 2) 14.6 22.8 15.2
Path combinations (k = 3) 45.3 160.2 62.6

Table 4: Computational overhead on different testbeds
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Figure 15: [Haggle] Analyzing SWITCH forwarding.

function of the number of path combinations. The average
hop count of the paths is less than 4 on all testbeds, thus
computing the convolution doesn’t induce much complexity.
However, the number of path combinations increases expo-
nentially with the number of replication paths, k, as shown
in Table 4, so the empirical observation that a small num-
ber of paths suffice to yield most of the replication gain is a
fortunate one for R3.

6.4.2 Why R3 outperforms SWITCH?
R3 outperforms SWITCH due to two reasons: (1) SWITCH

vacillates between different routing protocols based on each
node’s local view resulting in inconsistent and sub-optimal
routes; (2) SWITCH (or the underlying RAPID protocol)
makes poor replication decisions compared to R3 resulting
is longer queues and increased packet delays. To validate
these claims, we perform the following analyses.

Figure 15(a) shows the number of times SWITCH switches
routing protocols (in this case, OLSR and RAPID) to deliver
a packet. We count for each packet, the maximum number
of routing switches of all its copies, where routing switch oc-
curs when a packet is routed by OLSR and then switches to
RAPID, or vice versa, in two consecutive hops. For exam-
ple, when the packet is routed either by OLSR or RAPID
throughout its route, the number of routing switches for the
packet is 0. Figure 15(a) shows that 50% of the packets ex-
perience at least one routing switch and 30% of the packets
experience two routing switches or more. These inconsisten-
cies suggest that SWITCH makes some unnecessary replicas
that increase load-dependent queuing delays, especially for
packets that are only forwarded along a single route.

Figure 15(b) shows the average queue lengths at nodes
when using R3 and SWITCH. SWITCH has on an average
3× longer queues compared to R3. The higher queue lengths
in SWITCH results in longer packet delays. The reason
for the inflated queue lengths is SWITCH’s (or RAPID’s)
aggressive replication that does not adapt replication either
to load or to the extent of delay uncertainty.

6.4.3 Fairness
We also evaluate R3 in terms of fairness. We generate 30

concurrent backlogged flows and Figure 16 shows the CDF of
goodput across flows in Haggle. R3 outperforms SWITCH
for every percentile and the median gain is 1.25×. The Jain’s
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Figure 17: Average delay when R3 uses k = 2, 3, 4, 5 repli-

cation paths. k = 2 (default R3) gets most of the repli-

cation benefit; more paths hurt under high load.

fairness indexes for R3 and SWITCH are 0.85 and 0.81, re-
spectively. R3 is fairer than SWITCH, indicating that R3
improves goodput without hurting fairness.

6.5 Homogeneous connectivity
Finally, we conduct experiments in a fixed connectivity

network and choose two end points of the connectivity spec-
trum: sparsely-connected and well-connected networks.

6.5.1 Sparsely-connected networks
Figure 18 shows that under low load, R3 performs com-

parably to RAPID, a replication routing protocol, on the
DieselNet-DTN testbed. However, R3 achieves 1.4× delay
and 1.3× goodput improvement under high load. This is
because RAPID does not adapt its replication to the load
and can waste resources while R3’s load-aware replication
enables better performance under high load. DTLSR and
OLSR perform much worse compared to both RAPID and
R3 as DTLSR does not use replication and OLSR is not
designed for mostly disconnected networks.

6.5.2 Well-connected networks
Figure 19 was conducted on our mesh deployment (Sec-

tion 5.2), and shows that R3 has similar performance to
OLSR, a mesh protocol on the mesh testbed. As expected,
R3 has up to 2× delay and 2.2× goodput improvement over
RAPID, since RAPID is not designed for meshes.

7. RELATED WORK
Our work differs from prior work primarily in its goal—

to design and implement a simple routing protocol that
achieves robust performance across wireless networks with
diverse connectivity characteristics—that to our knowledge
has not been pursued before. To address this goal, R3’s lib-
erally borrows insights from a large body of prior work in
wireless routing as discussed below.

Replication routing, also known as epidemic routing [36],
multi-copy routing [32], or controlled flooding [22] in the lit-
erature, has been well studied over the last decade [27, 33,
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Figure 19: [Mesh] Well-connected network: R3 performs

within 8% of OLSR, a mesh protocol.

8, 30, 12, 34, 28, 36, 32]. Unlike R3 however, most exist-
ing replication routing protocols are primarily designed for
highly disconnected networks where pairs of nodes meet each
other infrequently. Furthermore, although existing protocols
leverage replication to improve delays in DTNs, the question
of when replication helps and by how much has not received
careful attention. Given our goals, a foundational as well
as trace-driven analysis of this question forms an important
focus of our work (as in §3 and §2).

Many DTN routing protocols make explicit or implicit
assumptions about the inter-meeting of nodes. For example,
RAPID [8] assumes that the meeting times are exponentially
distributed; Thrasyvoulos et al. [33, 34] assume a random-
walk mobility model; These assumptions can restrict their
applicability to other environments. For example, RAPID
assumes that two replicas will halve the delay, an assumption
that is unlikely to hold in well-connected meshes. Even in
DTNs, if the mobility schedule is known a priori, as may
be the case if buses stick to a fixed schedule, replication is
unnecessary.

In comparison, R3 explicitly measures the distribution of
path delays and uses the nature of this distribution to control
replication, so it is applicable to broad spectrum of mobil-
ity or disconnection patterns. This idea is similar in spirit
to Francois et al. [21] who develop a theoretical routing
framework based on known delay distributions to replicate
packets so as to achieve statistical delay guarantees in DTNs
with unconstrained bandwidth. In comparison, our results
in §3 do not assume knowledge about the underlying de-
lay distribution and our primary focus is on a design and
implementation effort targeting diverse wireless network en-
vironments with realistic bandwidth constraints.

Existing replication protocols use several schemes to con-
trol replication such as probabilistic replication [22, 27], util-
ity replication [33, 8], prioritizing transmit order [30, 8], ac-
knowledgments to remove useless packet [12], and explic-
itly bounding replicas [34, 33]. R3’s design shares some of
these ideas including bounding the number of replicas to
two, but additionally compares actual packet delays to pre-



dicted packet delays to judge the effectiveness of replication
and turn it off as needed, thereby making it more responsive
to load or interference.

We were able to compare R3 against only a small num-
ber of state-of-the-art protocols for which implementations
were available to us. R3 by no means is intended to sub-
sume the staggering diversity of existing routing protocols.
For example, R3’s design may be inefficient in settings to
which a geographic (forwarding-based) routing protocol is
better suited, e.g., when the node mobility pattern is known
a priori. Combining R3 with complementary cross-layer op-
timizations such as opportunistic routing [11], network cod-
ing [25], etc. or application-specific optimizations such as
information retrieval [9] etc. also requires more research.
We believe that investigating all of these broad research is-
sues related to a unified routing protocol for diverse wireless
networks requires the context of a concrete (even if prelimi-
nary) proposal on the table, which is R3.

8. OPEN ISSUES AND CONCLUSIONS
Although we started out with an ambitious goal—to de-

velop a simple routing protocol that ensures robust perfor-
mance across diverse wireless networks—our work in ret-
rospect is but a first step towards that goal leaving open
several questions for future research. First, our evaluation
is limited to connectivity traces from a small number of
real-world networks and synthetically emulated connectiv-
ity patterns, which may not generalize to other connectivity
patterns. For example, the empirical observation that two
paths achieve the most replication gain may not hold, in
which case generalizing R3 to use k > 2 paths will increase
its computational as well as design complexity. Second, our
simple model ignores the effects of load and interference and
extending it, e.g., to compute the delay gain of replication
given a feasible demand matrix, link delay distributions, and
interference model is an open problem.

Acknowledgments We gratefully acknowledge the feed-
back we received from Manikandan Somasundaram, our shep-
herd Edward Knightly and anonymous reviewers. This work
was supported in part by NSF grants CNS-0845855, CNS-
1040781, and CNS-0910671.

9. REFERENCES
[1] Aodv. http://moment.cs.ucsb.edu/AODV/aodv.html.
[2] Google wifi for mountain view. http://wifi.google.com/.

[3] Olsr. http: //www.olsr.org/.

[4] Qualnet. http://www.scalable-networks.com/products.
[5] Turtlenet. http://prisms.cs.umass.edu/dome/turtlenet.

[6] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou. A
multi-radio unification protocol for ieee 802.11 wireless
networks. BroadNets’04.

[7] A. Al Hanbali, A. A. Kherani, and P. Nain. Simple models
for the performance evaluation of a class of two-hop relay
protocols. NETWORKING’07.

[8] A. Balasubramanian, B. N. Levine, and A. Venkataramani.
Dtn routing as a resource allocation problem. Sigcomm’07.

[9] A. Balasubramanian, B. N. Levine, and A. Venkataramani.
Enabling interactive applications in hybrid networks.
Mobicom’08.

[10] A. Balasubramanian, R. Mahajan, and A. Venkataramani.
Augmenting mobile 3g using wifi: Measurement, design,
and implementation. MobiSys, 2010.

[11] S. Biswas and R. Morris. Exor: opportunistic multi-hop
routing for wireless networks. SIGCOMM’05.

[12] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine.
Maxprop: Routing for vehicle-based disruption-tolerant
networks. INFOCOM’06.

[13] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and
J. Scott. Impact of human mobility on the design of
opportunistic forwarding algorithms. Infocom, 2006.

[14] A.-M. Croicu and Y. M. Hussaini. On the expected optimal
value and the optimal expected value. Applied Mathematics
and Computation, 2006.

[15] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing.
MobiCom’03.

[16] M. Demmer and K. Fall. Dtlsr: delay tolerant routing for
developing regions. NSDR, 2007.

[17] A. Doria, M. Uden, and D. P. Pandey. Providing
connectivity to the Saami nomadic community. 2nd Int.
conf. Development by design, 2002.

[18] R. Draves, J. Padhye, and B. Zill. Comparison of routing
metrics for static multi-hop wireless networks. SIGCOMM,
2004.

[19] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio,
multi-hop wireless mesh networks. MobiCom, 2004.

[20] J. Eriksson, H. Balakrishnan, and S. Madden. Cabernet:
Vehicular Content Delivery Using WiFi. MOBICOM’08.

[21] J.-M. François and G. Leduc. Routing based on delivery
distributions in predictable disruption tolerant networks.
Ad Hoc Netw., 2009.

[22] K. A. Harras, K. C. Almeroth, and E. M. Belding-Royer.
Delay tolerant mobile networks: Controlled flooding in
sparse mobile networks. IFIP Networking, 2005.

[23] P. Hui, A. Lindgren, and J. Crowcroft. Empirical evaluation
of hybrid opportunistic networks. COMSNETS, 2009.

[24] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife
tracking: design tradeoffs and early experiences with
zebranet. SIGARCH Comput. Archit. News, 2002.

[25] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard.
Symbol-Level Network Coding for Wireless Mesh Networks.
SIGCOMM’08.

[26] L. Kleinrock. Theory, Volume 1, Queueing Systems.
Wiley-Interscience, 1975.

[27] A. Lindgren, A. Doria, and O. Schelén. Probabilistic
routing in intermittently connected networks. SIGMOBILE
Mob. Comput. Commun. Rev., 2003.

[28] S. Nelson, M. Bakht, and R. Kravets. Encounter-based
routing in dtns. INFOCOM, 2009.

[29] C. E. Perkins and E. M. Royer. Ad-hoc on-demand
distance vector routing. The Second IEEE Workshop on
Mbile Computing Systems and Applications, 1999.

[30] R. Ramanathan, R. Hansen, P. Basu, R. Rosales-Hain, and
R. Krishnan. Prioritized epidemic routing for opportunistic
networks. MobiOpp, 2007.

[31] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S. Keshav.
Low-cost communication for rural internet kiosks using
mechanical backhaul. MobiCom 2006.

[32] T. Spyropoulos, K. Psounis, and C. Raghavendra. Efficient
routing in intermittently connected mobile networks: The
multiple-copy case. IEEE/ACM Trans. Netw., 2008.

[33] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Spray
and focus: Efficient mobility-assisted routing for
heterogeneous and correlated mobility. PERCOMW’07.

[34] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Spray
and wait: an efficient routing scheme for intermittently
connected mobile networks. WDTN’05.

[35] X. Tie, A. Venkataramani, and A. Balasubramanian.
Robust routing in wireless networks with diverse
connectivity. Technical report, UMASS, 2011.

[36] A. Vahdat and D. Becker. Epidemic routing for partially
connected ad hoc networks. Technical report, Duke
University, 2000.

[37] Y. Wang, S. Jain, M. Martonosi, and K. Fall. Erasure-
coding based routing for opportunistic networks.
WDTN’05.


