The pressure curve for a rubber balloon
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An equation is derived relating the internal pressure of a rubber balloon to its radius. The
theoretical pressure curve is shown to be experimentally verifiable in the case of low to
moderate extensions, as long as the effects of hysteresis are ignored. The problem of the
equilibrium configuration of two interconnected balloons is also discussed.

I. INTRODUCTION

It has long been known that rubberlike materials do
not deform according to Hooke’s Law. (A rubberlike ma-
terial is defined as any which, after being stretched to many
times its original dimensions, will resume those dimensions
immediately on release of tension.) After the discovery of
vulcanization in 1839, a great deal of effort was spent to
experimentally determine the properties of natural rubber,
but no adequate analytical treatment of the subject ap-
peared until a hundred years later, in a paper by James and
Guth.! Their model treated rubber as a network of long,
flexible molecular chains, which are randomly linked to
form a coherent structure. It is the links, introduced by the
curing process, which determine the overall form of the
material under zero stress. Using statistical methods, a set
of equations was derived relating the force on a cube of
rubber to its temperature and relative elongation. The
equations have since been confirmed experimentally,? at
least in the case of small to moderate linear extensions, and
have served as a basis for numerous experimental and the-
oretical investigations.

The purpose of this paper is to describe the application
of James and Guth’s theory to a simple problem, namely,
finding the air pressure inside of a spherical rubber balloon
as a function of its radius. In Sec. II, we obtain the pressure
equation analytically. In Sec. III, we describe a simple
apparatus for measuring a balloon’s pressure, and the re-
sults obtained with it. In Sec. IV, the pressure curves are
compared, and the discrepancies are explained in a quali-
tative fashion. The results are then applied to a simple ex-
ample, that of the equilibrium configuration of two inter-
connected balloons.

II. THEORETICAL PRESSURE CURVE

James and Guth’s stress-strain relations for a rectangular
parallelopiped of rubber may be written3

fi= L,[kKT<L°>2_pV]’ )

where f; is the externally applied force in the i direction, L;
is a linear dimension, k is Boltzmann’s constant, K is a
constant related to the number of possible network con-
ﬁ§uratlons of the sample, T is the absolute temperature,
is an unstretched dimension, p is the internal (hydro-
statlc) pressure, and V is the volume of the sample (assumed
here to be a constant?). Thus, the force consists of two parts:
the first one (caused by the network) gives a tendency to
contract, while the second gives a tendency to expand.
Assuming an isothermal extension, Eq. (1) becomes
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fi = (CY/L)(N} = Cap), (2)

with \; = L;/L? the relative extension. In the case of a
thin-walled spherical shell, all the force which acts to stretch
the rubber is directed tangentially to the surface. The radial
force (i.e., the force acting to compress the shell wall) may
therefore be set equal to zero, so that

A2 = (t/19)2 = Cop, (3)

where ¢ and ¢ refer to the initial and final thicknesses, re-
spectively. Assuming once again that the volume of the shell
does not change, then r2¢ is constant, and Eq. (3) be-

comes
1 /ro\#
P=cs <—°) : )

where 7 is the balloon’s radius. We may therefore write for
the tangential force

S = (fr3) U = (rofr)el. (5)

Integrating the internal air pressure over one hemisphere

givesd
Pi Pout—P—ftz——[l—<r—0>6], (6)

xr?  rir r

where rg is the balloon’s uninflated radius.
This equation is graphed in Fig. 1.6

Equation 6 predicts that the internal pressure P will reach
a maximum for

r=r,="7Yro=~1.38rg @)

and will drop to zero as r approaches infinity.

III. EXPERIMENTAL PRESSURE CURVE

In order to test the theory, several more-or-less spherical
rubber balloons of the dime-store variety were attached to
a device consisting of a U-tube manometer, an air hose, and
a two-way valve. The internal pressure was then measured
at various degrees of inflation. Each balloon was worked
thoroughly before testing to insure a moderate degree of
reproducibility during the test runs; as is well known, a
balloon which has never been stretched is much harder to
inflate than one which has been blown up a few times. The
external dimensions were measured at each step along three
mutually perpendicular diameters, and the average radius
was taken to be

r= (D\D3D3)/3/2. (8)

It was quickly discovered that the pressure is not a sin-
gle-valued function of the radius; there are considerable
losses from hysteresis’ which is such that the internal
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Fig. 1. Pressure curves for a rubber balloon. Circles are experimental
points, obtained for two different turnaround radii. Solid curve is Eq. (6),
adjusted to pass through the observed pressure maximum.

pressure during inflation is always larger than during de-
flation for a given radius. As long as the balloon was inflated
and deflated smoothly, however, a continuous hysteresis
loop was always obtained. Figure 1 shows some typical re-
sults. The size and shape of the loop depend on the radius
at which turnaround occurs. Figure 2 shows the effect of
the opposite sort of turnaround, i.e., from decreasing to
increasing load.

In all cases, the curves measured under inflation can be
fitted quite well by an equation of the form of Eq. (6), for
radii up to about 2.5r¢. For the curves of Fig. 2, an equation

of the form
(C)Z[1 <?>6] - ®

with Pg and rg the pressure and radius at the second turn-
around, gives a good fit. In this case, C must be adjusted so
that each secondary curve passes through the primary
turnaround point, since this was observed to occur in all
cases.

P=Po+

IV. DISCUSSION

The derived curve in Fig. 1 was fitted to the measured
ones by matching the points of maximum pressure. The lack
of fit at the low-radius end is no doubt due to the non-
spher1c1ty of the test samples in this region. At large radii,
an upswing in the measured pressure always occurred,
which cannpt be explained in this way. There are, however,
several molecular effects which become important at large
extensions and which James and Guth ignored: crystalli-
zation, imperfect flexibility of the molecular chains, steric
hindrances, and the like.® The net result of these effects is
to increase the stress at large extensions.

An interesting application of these results may be found
in the problem, posed, for example, by J. S. Miller,? of what
occurs when two balloons of unequal radii are connected
via an open tube. Gas transference will naturally occur from
the balloon at higher pressure to the one at lower pressure,
with the immediate result that the lower-pressure balloon
will become larger; but to an observer this can appear to
occur in one of two ways, depending on whether it is the
smaller or the larger balloon which is initially at the higher
pressure. In other words, a casual inspection of the relative
sizes of the two ballons is not enough to determiné which
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+Fig. 2. Hysteresis in a rubber balloon. Solid curve is Eq. (6); broken curve
reproduces one of the measured pressure curves in Fig. 1. Circles are the
measured pressure points for reinflation from three different turnaround
points.

will shrink and which will expand. Furthermore, the con-
figuration at equal pressures can take one of two forms,
depending on the initial conditions. Consider two balloons
which are described by the ideal curve in Fig. 1. If the
lower-pressure balloon is initially of greater radius, then
it is clear from the pressure curve that at equilibrium the
radii will be even more unequal; the only attainable con-
figuration is that in which the two balloons are on oppos1te
sides of the pressure peak. If the lower-pressure balloon is
initially of /esser radius, then at equilibrium the radii may
either be equal or unequal, depending on whether the total
quantity of air in the balloons constrains them to come to
rest on the left side or on opposite sides of the peak.

In the case of nonideal balloons the approach to equi-
librium is more complicated, as may be seen from an in-
spection of Figs. 1 and 2. Once inflated, the two baloons will
move along their separate hysteresis curves, the exact forms
of which are dependent upon the manner in which inflation
took place and the initial direction of change. It is clear that
equilibrium will generally be obtained with a much lesser
change in radius than would have occurred in the ideal case.
Indeed, so greatly does hysteresis act to dampen changes
in size of a real balloon that there is usually only a very small
variation in the radii, unless one balloon is initially very close
to ro.
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