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The last 15 years have seen much research on decadal to multidecadal (D2M) 

climate modes and their global and regional impacts. At least some of these D2M 

modes suggest compelling climatic and ecological impacts.  Both the Pacific 

Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) are 

associated with alternating trans-decadal regimes in precipitation and drought 

frequency, which appear to be sensitive to small but persistent changes in the 

prevalent atmospheric circulation patterns over the continental regions adjacent 

to the oceans that mediate the oscillations. They have also been shown to 

modulate (render nonstationary) the rainfall signatures of El Niño-Southern 

Oscillation (ENSO) in the United States and they are reflected in the 

multidecadal changes in North Pacific fisheries. Of concern for climate 

applications is the fact that — unlike El Niño-Southern Oscillation (ENSO) — 

numerical models have proven incapable of predicting future phase shifts of 

D2M climate modes in a deterministic manner.  

The alternatives to such predictions are probability-based projections, but these are 

hampered because the instrumentally based time series are limited to the last 130-150 

years, which yield too few realizations of D2M cycles for conventional statistical 

approaches to deal with. There are two ways to approach the lack of suitable 

observational data sets; (1) applying Monte Carlo-style resampling techniques to the 

climate index data and (2) analyzing longer, multi-century proxy reconstructions, based 

mostly on tree rings. To illustrate this, we apply both approaches to the problem of 

projecting the risk of a future shift in the AMO. By then adjusting a probability model to 

the distribution of resampled AMO phase intervals, we extract a practical method for 

determining the risk of a future departure from the current AMO regime. In lieu of non-
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existent deterministic predictions, this method provides an essential element for the 

development of decision support tools for managers and stakeholders in sectors affected 

by D2M climate modes, such as agriculture, water, energy, health and disaster risk.  

To illustrate the methods, we use the unsmoothed 424-year annualized index of the 

AMO reconstructed from tree rings in North America and Europe (Gray et al. 2004), 

calibrated against the AMO index suggested by Enfield et al. (2001). To eliminate 

unwanted short-interval variability, the time series are then smoothed with a Butterworth 

filter of order 8 and a half-amplitude response cutoff at 15 years. To increase the sample 

size we randomly resample the index multiple times, each time transforming the original 

time series into the frequency domain, randomizing the Fourier phases, and reverse 

transforming back to the time domain. Unlike most randomizations in the time domain, 

this method preserves the original power spectrum, but still produces resampled series 

whose temporal correlations with each other and the original series are expected to be 

zero on average.  Fig. 1 (top panel) shows the smoothed AMO reconstruction, annotated 

with the regime intervals between zero crossings, plus similar plots for three randomly 

resampled versions of the data. The assumption implicit in this resampling is that the 

original series is extracted from a larger population (longer duration) with time-invariant 

statistics (stationary).  

The histogram of Fig. 2 (top) illustrates a typical empirical distribution of AMO regime 

intervals produced by extracting five new time series from the original Gray et al. (2004) 

spectrum. The distribution is fit by the smooth curve, which corresponds to a gamma pdf 

whose shape (A) and scale (B) parameters are adjusted to the data by maximum 

likelihood estimation (MLE). As in the example shown, a Kolmogorov-Smirnov (KS) 
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goodness-of-fit test is applied to the cumulative distribution (cdf, lower panel) and 

usually shows the fit to be acceptable at the 95% level of significance. Each new fivefold 

resampling results in varied but similar parameter estimates. To obtain a stable estimate 

of the gamma distribution for the 424-year period, we average the parameter estimates 

from 50 resamplings, obtaining A = 1.93 and B = 10.3. These values are later used to 

project the risk of future regime shifts.  

If we divide the longer index series into three segments of 141 years each and repeat 

the above procedure, we find that the distribution parameters differ significantly from one 

segment to another, which means that the AMO process is not stationary. This does not 

invalidate the estimation procedure, but it means that the distribution parameters are more 

uncertain than implied by the 50-member spread for the longer 424-year estimation. By 

pooling the 150 parameter pairs for the three segments, we can estimate the uncertainty 

of the underlying distribution more realistically. We will return to this in a later section.  

Making the projections 

If we let P(ρ) represent the probability of a realization ρ within the population space of 

the stochastic regime intervals (T), we can then construct useful probability projections 

for future realizations, based on the estimated gamma parameters. For example, the 

conditional probability that a future regime shift will occur within t2 years, given that t1 

years have elapsed since the last, opposite regime shift, may be expressed as 
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where t = t1 + t2 is the current climate regime interval and Γ[t] is the estimated gamma 

cdf. A reasonable, further refinement of this statement is to ignore the probability space 

for very short intervals (five years or less) that would normally be ignored in practice in 

retrospective analysis. This is accomplished by using a truncated gamma in Eq. 1, Γ� [t] 

= Γ [t]/� � �  Γ [5]), where t > 5.  

Fig. 3 shows the probability P(ρ) as a function of t1 (abscissa) and t2 (ordinate). An 

example of using this calculation is as follows. It is generally thought that the AMO 

switched from cool to warm during the 1994-95 time frame. If we use Fig. 3 with t1 = 10 

years, i.e., the number of years that have elapsed since that time, we find a rather low 

probability (< 30%) that the AMO will switch back to its cool phase in less than t2 = 5 

years from now. For t2 = 10 and 15 years, the risk increases to ~51% and ~70%, 

respectively, while a regime shift within 20 years is highly likely (~86%). Based on 

current research, such a shift would be associated with a return to more frequent droughts 

in Florida, fewer droughts in the Colorado River basin, and less frequent severe 

hurricanes in the tropical Atlantic. As expected, Fig. 3 shows that the risk for any of these 

t2 values increases as time advances and the last regime shift recedes further into the past 

(t1 increases).  
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The uncertainty of such estimates can be derived from the parameter estimates of the 

three Gray et al. (2004) time segments, which collectively have a considerably larger 

spread than those of the 424-year estimation used for Fig. 3. This is primarily due to the 

nonstationarity of the intervals over the last half millennium. Pooling the 3x50 segment 

estimates of A and B, we randomly select a large number of parameter values within their 

overall 1-α confidence intervals and generate the corresponding rms uncertainty in P(ρ) 

over the domain of Fig. 3. The uncertainty is fairly uniform over the [t1,t2] domain 

shown. For confidence intervals between 95% and 99%, the uncertainty ranges between 

±2% (α = 0.05) and ±5% (α = 0.01), respectively.   

We have not fully explored the uncertainties that attend such projections. Besides the 

uncertainty associated with natural nonstationarity, it is also desirable to consider how the 

quality of the reconstruction will affect the distribution parameters. Where multiple 

reconstructions of the same climate index are available (at least four exist for the PDO) 

the uncertainty due to the inability of the reconstructions to perfectly emulate the climate 

process can be estimated by applying the above methods to the multiple reconstructions, 

rather than to segments of a single reconstruction. Only one reconstruction yet exists for 

the AMO, so we have not done this.  

Fig. 3 is only one example of a potentially useful climate risk projection tool. Thus for 

any given year in which decisions are made, one can also construct a graph showing the 

distribution for 

! 

P(t
a

< T " t
b
) , where ta (abscissa) and tb (ordinate) define a time range, 

e.g. 10-15 years into the future. The risk of an AMO shift between ta = 2015 AD and 

tb = 2020 AD is about 19%.  
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Other, more esoteric projections can be developed. McCabe et al. (2004) have shown 

how the uncorrelated +/- phases of the PDO and AMO have juxtaposed since the mid-19th 

century in ways that plausibly explain mega droughts in the southwestern and 

Midwestern U.S. If both oscillations can be statistically modeled as we have done here 

only for the AMO, it is possible to develop joint probability projections for the four 

possible phase-phase scenarios (+/+. +/-. -/-. -/+), under the assumption that the climate 

oscillations are mutually independent. It is also possible to query the conditional 

probability for regime interval magnitude or intensity — based on the index area 

subtended between zero crossings — given an interval of a certain length.  

Summary and discussion 

We have shown how a multi-century proxy reconstruction of a climate index may be 

used to estimate the pdf of climate regime intervals, thus providing a basis for the 

projection of climate risk and the eventual development of useful decision support tools. 

The spectrum preserving resampling of the time series provides sufficient sample sizes 

for pdf estimation using the gamma distribution. We have given a detailed example of a 

derived climate risk projection and have suggested others that can be developed.  

Consider the situation in 1990, more than 20 years into a period of cool North Atlantic 

sea surface temperatures (AMO) associated with dry conditions in Florida, wet conditions 

in the southwestern region and less frequent hurricanes. It is not difficult to imagine 

management decisions that could have been made then as an AMO reversal became 

imminent within operational time horizons. Where water was expected to become more 

plentiful, flood control measures could have been implemented and development on flood 

plains discouraged. Where more persistent and/or frequent droughts were expected, more 
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water could have been shunted to aquifer storage, water access leases shortened, reservoir 

withdrawals reduced, conservation measures implemented and agricultural practices 

modified. Underwriting associations could have increased the funding of windstorm 

contingency pools in anticipation of more frequent, destructive hurricanes.  

D2M climate risk assessment is not useful only when a climate shift becomes 

imminent. In general, for any policy or measure that can be adopted in anticipation of a 

change, there exists an alternative to be followed if the probability of change is low. 

Policies may be reviewed periodically in light of changing probabilities and the spectrum 

and effectiveness of available mitigation measures can be revised on a regular basis. 

Cognizance of the changing nature of climate and its impacts is a relatively recent 

development and it has taught us that effective management should not be based on static 

policies. Perhaps the best example of this lesson is the recent increase in destructive 

hurricane potential related to the change in the AMO climate regime and its impact on the 

insurance industry.  

It is important to point out that the usefulness of these methods for actual applications 

will depend on the nature of the application, the strength of the connection between the 

climate mode and the target variable, and managers’ ability to utilize the projections in 

making operational decisions. In general, the closer the relationships of the modeled 

index to the decision-triggering target variables, the better. Thus, if a proxy 

reconstruction of stream flow exists, this may be more useful to model than the climate 

mode whose association with the stream flow is less than perfect. However, projections 

based on a climate mode have the advantage of being appropriate over a wider range of 

applications and geographic regions.  
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Finally, the ultimate uncertainty for which there is no sure remedy at present, is the 

effect that global climate change will have on future climate regime characteristics.  

However, it is worth noting that if the true future distribution parameters are different 

from those in the past, the effect on risk projection (as shown in Fig. 3) is to shift all 

probabilities in the same direction and by similar amounts. Hence, the relative change in 

probability from one part of the domain to another is little affected by a parameter 

discrepancy. Arguably, the evolving change in risk is more likely to influence 

management and policy adjustments, than is the absolute risk at a given position, as long 

as the errors are within reasonable bounds. In fact this principle applies to all sources of 

uncertainty. 
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Figure captions 
 

Fig. 1. Upper panel: Smoothed annual tree ring reconstruction of the Atlantic 

multidecadal oscillation (AMO) index by Gray et al. (2004). Lower panels: Smoothed 

resampled versions of the Gray et al. index using randomization in the frequency domain 

(Ebisuzaki 1997). Numeric annotations are the intervals (years) between zero crossings.  

Fig. 2. Upper panel: histogram (vertical bars) of zero crossing intervals from a set of five 

resampled and smoothed versions of the Gray et al. (2004) index and the maximum 

likelihood (MLE) gamma probability distribution (solid curve) fit to the histogram. 

Lower panel: cumulative empirical distribution (vertical bars) and gamma cumulative 

distribution function (solid curve), indicating that the Kolmogorov-Smirnov goodness-of-

fit criterion is satisfied at the 95% significance level.  

Fig. 3. Distribution of the probability of an AMO regime shift occurring wthin t2 future 

years (ordinate) given that t1 years (abscissa) have elapsed since the last regime shift. 

Based on the gamma distribution with scale and shape parameters of 10.3 years and 1.93, 

truncated for t1 + t2 > 5 years (see text).   
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