
(February 19, 2005)

Operators on Hilbert spaces
Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/̃ garrett/

• Kernels, boundedness, continuity
• Adjoints of maps on Hilbert spaces
• Stable subspaces and complements
• Spectrum, eigenvalues

1. Kernels, boundedness, continuity

Definition: A linear (not necessarily continuous) map T : X → Y from one Hilbert space to another is
bounded if, for all ε > 0, there is δ > 0 such that for all x ∈ X with |x|X < δ we have |Tx|Y < ε. The
following simple result is used constantly.

Proposition: Let T : X → Y be a linear (not necessarily continuous) map. Then the following three
conditions are equivalent:
(i) T is continuous
(ii) T is continuous at 0
(iii) T is bounded

Proof: Suppose T is continuous as 0. Given ε > 0 and x ∈ X, let δ > 0 be small enough such that for
|x′ − 0|X < δ we have |Tx′ − 0|Y < ε. Then for |x”− x|X < δ, using the linearity, we have

|Tx”− Tx|X = |T (x”− x)− 0|X < δ

That is, continuity at 0 implies continuity.

Since |x| = |x− 0|, continuity at 0 is immediately equivalent to boundedness. ///

Definition: The kernel ker T of a linear (not necessarily continuous) linear map T : X → Y from one
Hilbert space to another is

ker T = {x ∈ X : Tx = 0 ∈ Y }

Proposition: The kernel of a continuous linear map T : X → Y is closed.

Proof: For T continuous

ker T = T−1{0} = X − T−1(Y − {0}) = X − T−1(open) = X − open = closed

since the inverse images of open sets by a continuous map are continuous. ///

2. Adjoints of maps on Hilbert spaces

Definition: An adjoint T ∗ of a continuous linear map T : X → Y from a pre-Hilbert space X to a
pre-Hilbert space Y (if T ∗ exists) is a continuous linear map T ∗ : Y ∗ → X∗ such that

〈Tx, y〉Y = 〈x, T ∗y〉X

Remark: Without an assumption that a pre-Hilbert space X is complete, hence a Hilbert space, we do
not know that an operator T : X → Y has an adjoint.
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Theorem: A continuous linear map T : X → Y of a Hilbert space X to a pre-Hilbert space Y has a unique
adjoint T ∗.

Remark: Note that the target space of T need not be a Hilbert space, that is, need not be complete.

Proof: For each fixed y ∈ Y , the map
λy : X → C

given by
λy(x) = 〈Tx, y〉

is a continuous linear functional on X. Thus, by the Riesz-Fischer theorem, there is a unique xy ∈ X so that

〈Tx, y〉 = λy(x) = 〈x, xy〉

Take
T ∗y = xy

This is a perfectly well-defined map from Y to X, and has the crucial property 〈Tx, y〉Y = 〈x, T ∗y〉X .

To prove that T ∗ is continuous, prove that it is bounded. From Cauchy-Schwarz-Bunyakowsky

|T ∗y|2 = |〈T ∗y, T ∗y〉X | = |〈y, TT ∗y〉Y | ≤ |y| · |TT ∗y| ≤ |y| · |T | · |T ∗y|

where |T | is the uniform operator norm of T . If T ∗y 6= 0, then we divide by it to find

|T ∗y| ≤ |y| · |T |

Thus, |T ∗| ≤ |T |. In particular, T ∗ is bounded. Since (T ∗)∗ = T , we obtain |T | = |T ∗|.
The linearity is easy. ///

Corollary: For a continuous linear map T : X → Y of Hilbert spaces, T ∗∗ = T . ///

An operator T ∈ End(X) is normal if it commutes with its adjoint, that is, if

TT ∗ = T ∗T

This definition only makes sense in application to operators from a Hilbert space to itself. An operator T is
self-adjoint or hermitian if T = T ∗. That is, T is hermitian if

〈Tx, y〉 = 〈x, Ty〉

for all x, y ∈ X. An operator T is unitary if

TT ∗ = T ∗T = identity map 1X on X

There are simple examples in infinite-dimensional spaces where TT ∗ = 1 does not imply T ∗T = 1, and
vice-versa. Thus, it does not suffice to check something like 〈Tx, Tx〉 = 〈x, x〉 in order to prove unitariness.
Obviously hermitian operators are normal. With this more careful definition of unitary operators, it is also
immediate that unitary operators are normal.

3. Stable subspaces and complements

Let T : X → X be a continuous linear operator on a Hilbert space X. A vector subspace is T -stable or
T -invariant if Ty ∈ Y for all y ∈ Y . Often one is most interested in the case that the subspace be closed
in addition to being invariant.
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Proposition: Let T : X → X be a continuous linear operator on a Hilbert space X, and let Y be a
T -stable subspace. Then Y ⊥ is T ∗-stable.

Proof: Take z ∈ Y ⊥ and y ∈ Y . Then

〈T ∗z, y〉 = 〈z, T ∗∗y〉 = 〈z, Ty〉

since T ∗∗ = T , from above. Since Y is T -stable, Ty ∈ Y , and this inner product is 0. Thus, T ∗z ∈ Y ⊥.
///

Corollary: Let T be a continuous linear operator on a Hilbert space X, and let Y be a closed T -stable
subspace. For T self-adjoint both Y and Y ⊥ are T -stable. ///

Remark: The hypothesis of normality is insufficient to assure the conclusion of the corollary, in general.
For example, with the two-sided `2 space

X = {{cn : n ∈ Z} :
∑
n∈Z

|cn|2 < ∞}

let T be the right shift operator
(Tc)n = cn−1

Then T ∗ is the left shift operator
(T ∗c)n = cn+1

and
T ∗T = TT ∗ = 1X

So this T is not merely normal, but unitary. However, the T -stable subspace

Y = {{cn} ∈ X : ck = 0 for k < 0}

is certainly not T ∗-stable, and the orthogonal complement is not T -stable. On the other hand, if we look at
adjoint-stable collections of operators, we recover a good stability result, as in the following proposition.

Proposition: Let A be a set of bounded linear operators on a Hilbert space V , and suppose that for T ∈ A
also the adjoint T ∗ is in A. Then for an A-stable closed subspace W of V , the orthogonal complement W⊥

is also A-stable.

Proof: Let y be in W⊥, and T ∈ A. Then for x ∈ W

〈x, Ty〉 = 〈T ∗x, y〉 ∈ 〈W, y〉 = {0}

since T ∗ ∈ A. ///

4. Spectrum, eigenvalues

For a continuous linear operator T ∈ End(X), the λ-eigenspace of T is

Xλ = {x ∈ X : Tx = λx}

If this space is not simply {0}, then λ is an eigenvalue.

Proposition: An eigenspace Xλ for a continuous linear operator T on X is a closed and T -stable subspace
of X. Further, for normal T the adjoint T ∗ acts by the scalar λ on Xλ.
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Proof: The λ-eigenspace is the kernel of the continuous linear map T −λ, so is closed. The stability is clear,
since the operator restricted to the eigenspace is a scalar operator. For v ∈ Xλ, using normality,

(T − λ)T ∗v = T ∗(T − λ)v = T ∗ · 0 = 0

Thus, Xλ is T ∗-stable. For x, y ∈ Xλ,

〈(T ∗ − λ)x, y〉 = 〈x, (T − λ)y〉 = 〈x, 0〉

Thus, (T ∗ − λ)x = 0. ///

Proposition: For T normal, for λ 6= µ, and for x ∈ Xλ, y ∈ Xµ, always 〈x, y〉 = 0. For T self-adjoint, if
Xλ 6= 0 then λ ∈ R. For T unitary, if Xλ 6= 0 then |λ| = 1.

Proof: Let x ∈ Xλ, y ∈ Xµ, with µ 6= λ. Then

λ〈x, y〉 = 〈Tx, y〉 = 〈x, T ∗y〉 = 〈x, µy〉 = µ〈x, y〉

invoking the previous result. Thus,
(λ− µ)〈x, y〉 = 0

which gives the result. For T self-adjoint and x a non-zero λ-eigenvector,

λ〈x, x〉 = 〈x, T ∗x〉 = 〈x, Tx〉 = 〈x, λx〉 = λ〈x, x〉

Thus, (λ−λ)〈x, x〉 = 0. Since x is non-zero, the result follows. For T unitary and x a non-zero λ-eigenvector,

〈x, x〉 = 〈T ∗Tx, x〉 = 〈Tx, Tx〉 = |λ|2 · 〈x, x〉

///

In what follows, for a complex scalar λ instead of the more cumbersome notation λ · 1X for the scalar
multiplication by λ on X we may write simply λ.

Definition: The spectrum σ(T ) of a continuous linear operator T : X → X on a Hilbert space X is the
collection of complex numbers λ such that T − λ has no (continuous linear) inverse.

Definition: The discrete spectrum σdisc(T ) is the collection of complex numbers λ such that T −λ fails
to be injective. (In other words, the discrete spectrum is the collection of eigenvalues.)

Definition: The continuous spectrum σcont(T ) is the collection of complex numbers λ such that T−λ·1X

is injective, does have dense image, but fails to be surjective.

Definition: The residual spectrum σres(T ) is everything else: neither discrete nor continuous spectrum.
That is, the residual spectrum of T is the collection of complex numbers λ such that T − λ · 1X is injective,
and fails to have dense image (so is certainly not surjective).

Proposition: A normal operator T : X → X has empty residual spectrum.

Proof: The adjoint of T − λ is T ∗ − λ, so we may as well consider λ = 0, to lighten the notation. Suppose
that T does not have dense image. Then there is a non-zero vector z in the orthogonal complement to the
image TX. Thus, for every x ∈ X,

0 = 〈z, Tx〉 = 〈T ∗z, x〉
Therefore T ∗z = 0. Thus, the 0-eigenspace for T ∗ is non-zero. From just above, T = T ∗∗ stabilizes the
0-eigenspace Z of T ∗. Thus, Z is both T and T ∗-stable. Therefore, from above, the orthogonal complement
Z⊥ of Z is both T and T ∗-stable. Then for z, z′ ∈ Z

〈Tz, z′〉 = 〈z, T ∗z′〉 = 〈z, 0〉 = 0

This holds for all z′ ∈ Z, so by the T -stability of Z we see that Tz = 0 for z ∈ Z. That is, T fails to be
injective, having 0-eigenvectors Z. In other words, there is no residual spectrum. ///
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