Operators on Hilbert spaces

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/garrett/

- Kernels, boundedness, continuity
- Adjoints of maps on Hilbert spaces
- Stable subspaces and complements
- Spectrum, eigenvalues

1. Kernels, boundedness, continuity

Definition: A linear (not necessarily continuous) map $T: X \rightarrow Y$ from one Hilbert space to another is bounded if, for all $\varepsilon>0$, there is $\delta>0$ such that for all $x \in X$ with $|x|_{X}<\delta$ we have $|T x|_{Y}<\varepsilon$. The following simple result is used constantly.

Proposition: Let $T: X \rightarrow Y$ be a linear (not necessarily continuous) map. Then the following three conditions are equivalent:
(i) T is continuous
(ii) T is continuous at 0
(iii) T is bounded

Proof: Suppose T is continuous as 0 . Given $\varepsilon>0$ and $x \in X$, let $\delta>0$ be small enough such that for $\left|x^{\prime}-0\right|_{X}<\delta$ we have $\left|T x^{\prime}-0\right|_{Y}<\varepsilon$. Then for $|x "-x|_{X}<\delta$, using the linearity, we have

$$
|T x "-T x|_{X}=|T(x "-x)-0|_{X}<\delta
$$

That is, continuity at 0 implies continuity.
Since $|x|=|x-0|$, continuity at 0 is immediately equivalent to boundedness.
Definition: The kernel ker T of a linear (not necessarily continuous) linear map $T: X \rightarrow Y$ from one Hilbert space to another is

$$
\operatorname{ker} T=\{x \in X: T x=0 \in Y\}
$$

Proposition: The kernel of a continuous linear map $T: X \rightarrow Y$ is closed.
Proof: For T continuous

$$
\operatorname{ker} T=T^{-1}\{0\}=X-T^{-1}(Y-\{0\})=X-T^{-1}(\text { open })=X-\text { open }=\text { closed }
$$

since the inverse images of open sets by a continuous map are continuous.

2. Adjoints of maps on Hilbert spaces

Definition: An adjoint T^{*} of a continuous linear map $T: X \rightarrow Y$ from a pre-Hilbert space X to a pre-Hilbert space Y (if T^{*} exists) is a continuous linear map $T^{*}: Y^{*} \rightarrow X^{*}$ such that

$$
\langle T x, y\rangle_{Y}=\left\langle x, T^{*} y\right\rangle_{X}
$$

Remark: Without an assumption that a pre-Hilbert space X is complete, hence a Hilbert space, we do not know that an operator $T: X \rightarrow Y$ has an adjoint.

Theorem: A continuous linear map $T: X \rightarrow Y$ of a Hilbert space X to a pre-Hilbert space Y has a unique adjoint T^{*}.

Remark: Note that the target space of T need not be a Hilbert space, that is, need not be complete.
Proof: For each fixed $y \in Y$, the map

$$
\lambda_{y}: X \rightarrow \mathbf{C}
$$

given by

$$
\lambda_{y}(x)=\langle T x, y\rangle
$$

is a continuous linear functional on X. Thus, by the Riesz-Fischer theorem, there is a unique $x_{y} \in X$ so that

$$
\langle T x, y\rangle=\lambda_{y}(x)=\left\langle x, x_{y}\right\rangle
$$

Take

$$
T^{*} y=x_{y}
$$

This is a perfectly well-defined map from Y to X, and has the crucial property $\langle T x, y\rangle_{Y}=\left\langle x, T^{*} y\right\rangle_{X}$.
To prove that T^{*} is continuous, prove that it is bounded. From Cauchy-Schwarz-Bunyakowsky

$$
\left|T^{*} y\right|^{2}=\left|\left\langle T^{*} y, T^{*} y\right\rangle_{X}\right|=\left|\left\langle y, T T^{*} y\right\rangle_{Y}\right| \leq|y| \cdot\left|T T^{*} y\right| \leq|y| \cdot|T| \cdot\left|T^{*} y\right|
$$

where $|T|$ is the uniform operator norm of T. If $T^{*} y \neq 0$, then we divide by it to find

$$
\left|T^{*} y\right| \leq|y| \cdot|T|
$$

Thus, $\left|T^{*}\right| \leq|T|$. In particular, T^{*} is bounded. Since $\left(T^{*}\right)^{*}=T$, we obtain $|T|=\left|T^{*}\right|$.
The linearity is easy.
Corollary: For a continuous linear map $T: X \rightarrow Y$ of Hilbert spaces, $T^{* *}=T$.
An operator $T \in \operatorname{End}(X)$ is normal if it commutes with its adjoint, that is, if

$$
T T^{*}=T^{*} T
$$

This definition only makes sense in application to operators from a Hilbert space to itself. An operator T is self-adjoint or hermitian if $T=T^{*}$. That is, T is hermitian if

$$
\langle T x, y\rangle=\langle x, T y\rangle
$$

for all $x, y \in X$. An operator T is unitary if

$$
T T^{*}=T^{*} T=\text { identity map } 1_{X} \text { on } X
$$

There are simple examples in infinite-dimensional spaces where $T T^{*}=1$ does not imply $T^{*} T=1$, and vice-versa. Thus, it does not suffice to check something like $\langle T x, T x\rangle=\langle x, x\rangle$ in order to prove unitariness. Obviously hermitian operators are normal. With this more careful definition of unitary operators, it is also immediate that unitary operators are normal.

3. Stable subspaces and complements

Let $T: X \rightarrow X$ be a continuous linear operator on a Hilbert space X. A vector subspace is T-stable or T-invariant if $T y \in Y$ for all $y \in Y$. Often one is most interested in the case that the subspace be closed in addition to being invariant.

Proposition: Let $T: X \rightarrow X$ be a continuous linear operator on a Hilbert space X, and let Y be a T-stable subspace. Then Y^{\perp} is T^{*}-stable.

Proof: Take $z \in Y^{\perp}$ and $y \in Y$. Then

$$
\left\langle T^{*} z, y\right\rangle=\left\langle z, T^{* *} y\right\rangle=\langle z, T y\rangle
$$

since $T^{* *}=T$, from above. Since Y is T-stable, $T y \in Y$, and this inner product is 0 . Thus, $T^{*} z \in Y^{\perp}$. ///

Corollary: Let T be a continuous linear operator on a Hilbert space X, and let Y be a closed T-stable subspace. For T self-adjoint both Y and Y^{\perp} are T-stable.

Remark: The hypothesis of normality is insufficient to assure the conclusion of the corollary, in general. For example, with the two-sided ℓ^{2} space

$$
X=\left\{\left\{c_{n}: n \in \mathbf{Z}\right\}: \sum_{n \in \mathbf{Z}}\left|c_{n}\right|^{2}<\infty\right\}
$$

let T be the right shift operator

$$
(T c)_{n}=c_{n-1}
$$

Then T^{*} is the left shift operator

$$
\left(T^{*} c\right)_{n}=c_{n+1}
$$

and

$$
T^{*} T=T T^{*}=1_{X}
$$

So this T is not merely normal, but unitary. However, the T-stable subspace

$$
Y=\left\{\left\{c_{n}\right\} \in X: c_{k}=0 \text { for } k<0\right\}
$$

is certainly not T^{*}-stable, and the orthogonal complement is not T-stable. On the other hand, if we look at adjoint-stable collections of operators, we recover a good stability result, as in the following proposition.

Proposition: Let A be a set of bounded linear operators on a Hilbert space V, and suppose that for $T \in A$ also the adjoint T^{*} is in A. Then for an A-stable closed subspace W of V, the orthogonal complement W^{\perp} is also A-stable.

Proof: Let y be in W^{\perp}, and $T \in A$. Then for $x \in W$

$$
\langle x, T y\rangle=\left\langle T^{*} x, y\right\rangle \in\langle W, y\rangle=\{0\}
$$

since $T^{*} \in A$.

4. Spectrum, eigenvalues

For a continuous linear operator $T \in \operatorname{End}(X)$, the λ-eigenspace of T is

$$
X_{\lambda}=\{x \in X: T x=\lambda x\}
$$

If this space is not simply $\{0\}$, then λ is an eigenvalue.
Proposition: An eigenspace X_{λ} for a continuous linear operator T on X is a closed and T-stable subspace of X. Further, for normal T the adjoint T^{*} acts by the scalar $\bar{\lambda}$ on X_{λ}.

Proof: The λ-eigenspace is the kernel of the continuous linear map $T-\lambda$, so is closed. The stability is clear, since the operator restricted to the eigenspace is a scalar operator. For $v \in X_{\lambda}$, using normality,

$$
(T-\lambda) T^{*} v=T^{*}(T-\lambda) v=T^{*} \cdot 0=0
$$

Thus, X_{λ} is T^{*}-stable. For $x, y \in X_{\lambda}$,

$$
\left\langle\left(T^{*}-\bar{\lambda}\right) x, y\right\rangle=\langle x,(T-\lambda) y\rangle=\langle x, 0\rangle
$$

Thus, $\left(T^{*}-\bar{\lambda}\right) x=0$.
Proposition: For T normal, for $\lambda \neq \mu$, and for $x \in X_{\lambda}, y \in X_{\mu}$, always $\langle x, y\rangle=0$. For T self-adjoint, if $X_{\lambda} \neq 0$ then $\lambda \in \mathbf{R}$. For T unitary, if $X_{\lambda} \neq 0$ then $|\lambda|=1$.

Proof: Let $x \in X_{\lambda}, y \in X_{\mu}$, with $\mu \neq \lambda$. Then

$$
\lambda\langle x, y\rangle=\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle=\langle x, \bar{\mu} y\rangle=\mu\langle x, y\rangle
$$

invoking the previous result. Thus,

$$
(\lambda-\mu)\langle x, y\rangle=0
$$

which gives the result. For T self-adjoint and x a non-zero λ-eigenvector,

$$
\lambda\langle x, x\rangle=\left\langle x, T^{*} x\right\rangle=\langle x, T x\rangle=\langle x, \lambda x\rangle=\bar{\lambda}\langle x, x\rangle
$$

Thus, $(\lambda-\bar{\lambda})\langle x, x\rangle=0$. Since x is non-zero, the result follows. For T unitary and x a non-zero λ-eigenvector,

$$
\langle x, x\rangle=\left\langle T^{*} T x, x\right\rangle=\langle T x, T x\rangle=|\lambda|^{2} \cdot\langle x, x\rangle
$$

In what follows, for a complex scalar λ instead of the more cumbersome notation $\lambda \cdot 1_{X}$ for the scalar multiplication by λ on X we may write simply λ.

Definition: The spectrum $\sigma(T)$ of a continuous linear operator $T: X \rightarrow X$ on a Hilbert space X is the collection of complex numbers λ such that $T-\lambda$ has no (continuous linear) inverse.
Definition: The discrete spectrum $\sigma_{\text {disc }}(T)$ is the collection of complex numbers λ such that $T-\lambda$ fails to be injective. (In other words, the discrete spectrum is the collection of eigenvalues.)

Definition: The continuous spectrum $\sigma_{\text {cont }}(T)$ is the collection of complex numbers λ such that $T-\lambda \cdot 1_{X}$ is injective, does have dense image, but fails to be surjective.

Definition: The residual spectrum $\sigma_{\mathrm{res}}(T)$ is everything else: neither discrete nor continuous spectrum. That is, the residual spectrum of T is the collection of complex numbers λ such that $T-\lambda \cdot 1_{X}$ is injective, and fails to have dense image (so is certainly not surjective).

Proposition: A normal operator $T: X \rightarrow X$ has empty residual spectrum.
Proof: The adjoint of $T-\lambda$ is $T^{*}-\bar{\lambda}$, so we may as well consider $\lambda=0$, to lighten the notation. Suppose that T does not have dense image. Then there is a non-zero vector z in the orthogonal complement to the image $T X$. Thus, for every $x \in X$,

$$
0=\langle z, T x\rangle=\left\langle T^{*} z, x\right\rangle
$$

Therefore $T^{*} z=0$. Thus, the 0 -eigenspace for T^{*} is non-zero. From just above, $T=T^{* *}$ stabilizes the 0 -eigenspace Z of T^{*}. Thus, Z is both T and T^{*}-stable. Therefore, from above, the orthogonal complement Z^{\perp} of Z is both T and T^{*}-stable. Then for $z, z^{\prime} \in Z$

$$
\left\langle T z, z^{\prime}\right\rangle=\left\langle z, T^{*} z^{\prime}\right\rangle=\langle z, 0\rangle=0
$$

This holds for all $z^{\prime} \in Z$, so by the T-stability of Z we see that $T z=0$ for $z \in Z$. That is, T fails to be injective, having 0 -eigenvectors Z. In other words, there is no residual spectrum.

