

For ande by Clearinghouse for Federnl Scientific and Technical Iuformation, U.S. Department of Commerce, Sprirgield. Va. 2aisl. Annual subacrlption price $\$ 12.00$ bomestle; $\$ 15.00$ Forelan:
singl" mps \$30: Mrronche *0.6.
Report Number: NTSB-AAR-70-13

ROEING 747. N732PA RENTON AIRPORT RENICN, WASHINGTON DECEIBER 13. 1969

TAbLi: OF CONIENIS

Synopsis 1
Probable Cause 1

1. Investigation 2
1.1 History of Flight 2
1.2 Injuries to Persons 7
1.3 Damage to Aircraft 7
1.4 Other Damage 8
1.5 Crew Information 8
1.6 Aircraft Information 8
1.7 Pleteorological Information 9
1.8 Aids to Navigation 10
1.9 Commatcations 10
1.10 derodrome and Ground Facilities 10
1.11 Flight Recorders 10
1.12 Wreckage 11
1.13 Fire 12
1.14 Survival Aspects 12
1.15 Tests and Research 12
2. Analysis and Conclusions 15
2.1 Analysis 15
2.2 Conclusions 22
a. Findings 22
b. Probable Cause 23
3. Recommondations 23

Adopted: August 26, 1970

> BOEING 747, N732PA RENTON AIRPORT RENTON, WASHINGTON DECEMBER 13, 1969

SYNOPSIS

N732PA was being operated on December 13, by the Boeing Company, Seattle, Washington. for the purpose of ferrying the aircraft from Boeing Field, Seattle, Hashington, to the Renton Airport. During an approach to a landing at Renton, the aircraft struck an embankment approximately 20 feet short of the threshold of kumay 15 . The ground contact point was approximately 30 inches below the top of the bank and the runway level. The aircraft came to a stop on the centerline of Runway 15, approximately 3,500 feet beyond the threshold. The incident occurred at 1111 P.s.t. $\underline{1 /}$ on December 13, 1969. Eleven persons were on hoard, including the crew. None was injured. Small fires broke out in the No. 3 engine wing strut and the No. 4 engine formard of the tail cone. These were immediately extinguished. Structural damage was confined to the right wing landing gear, right flap asscmblies, and the Nos. 3 and 4 engines and their cowlings.

The significant weather reported at 1112 for the Renton Airport was scattered clouds at 4,500 feet and broken clouds at 6,500 feet. The visibility was 13 miles and the wind velocity was 20 knots from 120° true.

The Board determines that the probable cause of this incident was the premature touchdown of the aircraft during a visual approach to a relatively short runway, induced by the pilot's not establishing a Elidepath which would assure runway threshold passage with an adequate safety margin, under somewhat unusual environmental and psychological conditions.

[^0]
1. INVESTIGATION

1.1 History of Flight

The Boeing Company had planned for several months to transfer certain aircraft. which had been usud during flight testing and certification phases of Model 747 developnent, to their manufacturing facility at Renton. Washington. There, all applicable production modifications to airframe and engines were to be incorporated and the aircraft extensively refurbished for customer delivery. In preparation for these flights, especially because of the relatively short runway at Renton, the company Flight Operations Department prepared a "Flight Test Analysis Coordination Performance Report" for the Renton 747 ferry flights. The study was predicated on aircraft gross weights from 390,000 to' $440,0 C 0$ pounds, without reverse thrust, and in zero wind conditions. It had been published about November 7, 1969, Prior to the flight, the pilot reviewed the report to determine the runway distances for the specific loading of the flight to Renton. The distances determined were a5 follows:

Actual Distance to Sroo

Dry Runway	Wet Runway
3,100 Feet	4.080 Feet $(u=.16) 2 /$

Takeoff Distance ro 55 Feet

$$
20^{\circ} \text { Flaps }
$$

$$
4,800 \text { Feet }
$$

The pilot stated that the wet runway value of $\%, 080$ feet obviously provided unacceprable stopping distance margins for a runway of 5,300 feet. "However," he said, "the calculations $u=.16$ corresponds to a very wet pavement."

The test sumary form, prepared by the test engineer prior to takeoff, revealed that the computed takeoff weight at Boeing Field vas $\mathbf{4 0 0 , 6 2 3}$ pounds. The landing weight at Renton was 391,000 pounds. The center of gravity was 25.2 percent of the mean aerodynamic chord. The maximum landing weight of the aircraft is 564,000 pounds and the maximum takeoff weight is 710,000 pounds. The center of gravity limitations are from 15 to 33 percent of the mean aerodynamic chord with the landing gear and flaps down.

The Boeing Company provided a graph of the Boeing 747 depicting the approach speeds and runway lengths versus gross weight for the Renton Airport. From this graph it was determined that at 400,000 pounds gross weight with landing Elaps at 30°, the actual landing distance is $\mathbf{3 , 1 2 5}$ feet. The Federal Aviation Regulations (FAR) distance is 5,208 feet.

The proposed plan for ferrying the aircraft was presented in writing to the Federal Aviation Administration. Methods and procejures were

2/ Wet runway friction coefficient.
developed and the initiation of the project was planned for mid-December. As of December 11, 1969, FAA offered no specific limitations on the proposed operation other than the oporating limitations then in force on the 741 .

The pilot originally assigned to N 732 PA was not available for flying duties at that time. A Senior Experimental Test Pilot was selected to fly the ferry flight. On Decenber 12, 1969, he had flown N732PA for 5 hours and 16 minutes on its last scheduled test flight prior to refurbishment.

The company had assigned a flight engineer. but no copilot. The pilot selected as copilot an instrurtor with whem he had flown numerous times before.

After a briefing, the pilot, copilot, and a lead operations test engineer drove to the Renton Airport. The two pilots, flipht engineer, and the EAA control tower chief of the Rentou Tower drove over the entire runway. The pilot etated that the southern 1,000 feet of runway was rough concretr, with no standing water. There was some standing water east of the runway centerline, but the runkay was well drained west of the centerline to a width of about 75 feet. They inspected the bank at the north end of the ruway and noted the eievation of the runway above the water. The group discussed the effect: of the elcvation of the runway above the lake on the radar altimeter.

The pilot chose a taxi turnoff at one point and a parked TWA Boeing aircraft at another point, as landrarks corresponding to 700 fect and 1,200 fiet, respectively, from the approach end of the runway. These landmarks were selected as limits for the intended touchdown point. The latter point, if exceeded. was also intended to represent a go-around decision point.

Following completion of the examination of the Renton Airport, the group returned to Boeing Field. The pilot directed the operations test engineer to return to Renton with the radio equipped vehicle in order to maintain radio contact with the flight, nrovide current ruway surface conditions, inspect tires, brakes, and landing gear after the landing at Renton, and provide taxi and parking assistance.

Since the rumway and wind conditions at Boeing Field were similar to those at Renton, the pilot decided to make a practice landing at Boeing to confirm the landing distance performance. The copilot wao briefed on the procedures to be used and the crew boarcied the aircraft.

N732PA took off at 1045, remained in the traffic pattern at Boeing Field, and made a practice landing on Runway 13. The reported wind on
final was from 130° at 20 knots. Vref. $3 /$ with 30° flaps was determined to be 120 knots. According to the pilot's gtatenent, the touchdown was approximately 700 feet down the runway from the threshold, and the ground roll to a full stop used an additional 2,500 feet of runway. Heavy braking and reverse thrust were used to bring the aircraft to a stop.

N732PA departed Boeing Field at 1104 and flew to Renton at an altitude of approximtely 2,500 feet. The landing gear was left extended for brake cooling. Nearing Renton, the flight was advised by the radio car that, although tne rain was increasing, the runway drainage was still better than when the runway was inspected earlier. The downwind leg to Runway 15 was fiown along the Lake Washington eastern shoreline, and a descending lest base leg was initiated over the East Channel Bridge. The pilot said that he noticed that they were a "little high" and he made a glide slope adjustment. H instructed the copilot to callout the altitude in 100-foot increnents down to an altitude of 100 feet, and then in 10 . foot increments thereafter. In addition, he instructed the copilot to call out airspeed and rate of descent. The copilot made continuous calls on radar altimeter height and indicated airspeed (LAS).

The gross weight of the aircraft was computed to be about 391,700 pounds, and Vref. was computed to be 219 knots with 30° flaps. During the approach, the control tower, by prearrangement, reported winds averaging 20 knots from directions varying from 110° to 1200 .

Describing the approach and touchdown, the pilot stated:
"A whll stabilized final was achieved by appro:imately 2 miles out holding about $128 / 126 \mathrm{kts}$. with $600 \mathrm{ft} / \mathrm{min} \mathrm{R} / \mathrm{D}$ 4/. I recall seeing (1) gust of about 5 kts . at perhaps 300 ft . which decreased airspeed to 121 kts . but the $128 / \mathrm{l} 26 \mathrm{kts}$. was quickly recovered. The airplane felt relatively smooth and although a slight crab was being held to offeet the crosswind. the right side of the center line was being tracked without difficulty as planned.
'The last radar altitude I recall seeing (or perhaps hearing called by John Harder (che copllot/) was $30 \mathrm{ft} . . . \mathrm{this}$ Just as :he shore line passed under the cockpit. This was the bottom of my predetermined tolerance but it looked like it would fit. I was not aware of any slight sinking at this instant, although such was reported later by John Harder and others on board and outside. I also understand that movies

[^1]
-5 -

taken by Engineering Test Pilot D. C. Knutson, standing near the threshold, showed not only a slight sinking but a corresponding pilot correction to an additional nose up attitude. At this instant, the wheels hit the lip of the lake bank the top of which is essentlally flush with the rumway about $20 / 25$ fc. short of the pavement itself. The jolt itself was about comparable to a rough landing ($10 \mathrm{ft} / \mathrm{sec}$) but in a longitudinal (drag) direction. The flight test recorded LAS [indicated airspeed/ at contact was $122 \mathrm{kts}$. - 3 kts . above $\mathrm{V}_{\text {ref, }}$ "

The copilot described the incident by stating:
"...Descent on final approach was stable and well-controlled throughout. Three confirmations of areruid altimetry, radio altimetry, and airspeed indications were conducted prior to crossing the south end of Mercer Island, by which time the approach was well established. Airspeed, altitude and sink rate call-outs were given, all of which remained within normal tolerances. Both pilots' $V_{\text {ref. }}$ indices were set at 120 knots. By prior arrangement, Renton Tower provided wind direction and velocities throughout the approach, and it was evident that some variatiun in headwind component was present. In response to the earlier briefing, airspeed and altitude from the radio altimeter $5 /$ were read in increments of 10 feet below 100 feet, and I last recall mentioning ' 50 feet, 128 knots.' In my opinion. the aircraft was safely and stably established on short final. Immediately prior to crossing the threshold, I feit an abrupt sink begin, followed by landing gear impact."

The flight engineer stated that the landing checklist was completed well in advance and the Vref. given was 120 knots. H said that this was 1.5 knots on the conservative side, since 120 knots is the reference speed for 400,000 pounds whereas the landing weight determined was 390,000 pounds. He further stated that the Renton Tower provided a running account of the wind conditions every few seconds. The last wind information he remembered was 20 knots with a slight crosswind. The last radio altimetc: callout he heard was 30 feet, at which time the nose of the aircraft was over the runway.

Eight being engineers were on board the aircraft and seven made statements. Six of the seven were in the cockpit area during the approach to Renton. Nearly all commented that the approach appeared "normal" to them. One, however, thought that the gpproach was slow when altitude 50 feet was called out by the copilot. An engineer seated in the first observer seat (directly behind the left pilot's seat) said that the
$5 /$ This is sometimes called "radar altimter." In this instance they arc: synonomous, but in some situations they are not. In the 747, the radio altimeter systems have a self-test feature which is checked during each preflight inspection, verifying proper system operation end calibration.
approach was stable and that when the aircraft was near the end of the approach, just prior to flare. it appeared that the touchdown and aiming points 6/ were close to the end of the runway. H heard the copilot call 30 feet altitude just before flare, and the aircraft was still not up to the runway. Two of the engineers thought the aircraft "dropped" or "settled" just prior to its reaching the end of the runway. Two also said that they did not realize that they were $l \boldsymbol{l}$ and were surprised at the impact.

One of the ground eyewitnesses is a Senior Engineering Test Pilot for the Boeing Company and flies the Boeing 747 as well as other Boeing aircraft. H was standing at the north end of the Renton Airport and took sovies of the approach and landing. He said that the downind courne appeared to be a normal pattern altitude, and the aircraft turned to tie runway heading, making its approach over Hercer Island and the lake. When the aircraft was some distance away on final approach, he began following its progress through the camera view finder. He said that he was concentrating on keeping the aircraft in the view finder and did not make mental notes of the events that occurred during the touchdown and rollout. H did note that the touchdown was short of what he had anticipated, and that soon after touchdown. the right wing went down to the point that engine nacelles Nos. 3 and 4 appeared to contact the runway surface. H said that the main points he recalled were that the approach looked good, but a bit lower than he had anticipated, when the aircraft was just short of the runway. He further stated that the wind was from the southeast and gusty. The visibility was good and the runway surface was damp. H did not recall seeing any standing water on the runway.

The movies taken of :he event revealed that a "crab" correction for the wind was nude, and that the nose of the aircraft pitched upward, just prior to touchdown.

A Principal Operations Lnspector in the Seatele Fid general Aviation District Office was at hone and had been watching for the Boeing 747 to make its approach after he heard on a news broadcast that a landing would be made at Renton. His home io approximately 200 feet above the elevation of the water of Lake h'ashington and about a quarter of a mile from Renton Airport. Њ sadd that the approach appeared to be normal up to a point approximately 500 feet from the end of the runway. At this point, it was obvious to him that the aircraft would not make the runway. H said, "As he descended through 50 to 75 feet of alti $\because d e$, I noted a slight rotation as though the aircraft was starting to .lair (flare). At this point I felt the aircraft should be couing into ground effect and would possibly float up on to the runway, but the rate of descent appeared to increase, and the aircraft struck the bank of the lake short of the runway."

[^2]
- 7 -

Another witness, standing 300 feet west of the approach to Runway 15, said that as the aircraft neared the end of Runway 15, he could see that it was low in the approach. H said that at this time the pilot rotated gently and as he approached the threshold, the right main truck and other gear caught the edge of the dirt bank.

According to the transcript of the radio communications, the first radio contact was made by $N 732 P A$ at approximately 1105 , at which time the flight reported coming up overhead and declared their intent to "go down the east channel." A request was made for wind advisor:es on short final. The Tower acknowledged and said that wind advisories would be provided. Local traffic 2 a:les northeast was reported by the Tower and the local wind was giver! as being from 120° variable from 090° so 150° at 10 knots, with peak gusts as high as 20 knots. The altimeter setti.g was 29.64.

The Tower informed the flight that the right or west side of Runway 15 appeared to be "considerably" dry, but there was some water on the east side. $N 732 \mathrm{Ph}$ replied that the intention was to favor the right-hand side. At 1:07, the Tower gave landing clearance to the flight and said that wind advisories would be given on Efnal, with no need to acknowledge. The winds were provided on final approximately every 10 seconds. The wind direction varied between 100° and 220°, with velocities from 15 to 18 knots, excrpt that the last wind transmission at $1111: 10$ reported the wind at 20 knots from 090°.

1.2 Infuries to Persons

None.

1.3 Damage to Aircraft

The aircraft sustained damage to the right wing landing gear and wheel well, the right trailing edge flap assemblies, the cowling of Nos. 3 and 4 engines, and the No. 4 engine. The right wing landing gear structure pulled out of its trunnion support fittings. The gear truck was deflected rearward, but the top of the land ing gear otructure remained attached to tom aircraft by the man gets actuater and linkages. The side strut asserdly also failed.

The right inhoard trailing edge flap assembly was bucxled and punctured, and the inhoard half of the right foreflap separated.

The right wing setcled and the cowling of the Nos. 3 and 4 enditen seraped along the runway. The No. 3 engine cowling sustained minor damage. However, the cowilng of the No. 4 engine was scraped through on its bottom surface and ripped open. The No. 3 engine sustained little damage. The No. 4 engine forward thrust reverser and first-stage compressor blades were damaged. Dirt and foreign objects were found in Nos. 3 and 4 engines.

The skin of the right wing was punctured on the underside. This puncture was a stall hole through the wing skin and into the No. 3 main fuel tank at a polnt approximately 3 feet forward of the fuel measuring stick, and abuut 4 feet oucboard from the body fairing. A small amount of Euel dripped out on the runway, but the flow wes stopped by the placonent of a shall wax plug in the punctured hole.

1.4 Other Damage

One rurway light standard, located approximately 1,900 feet from the approach end of Kunw.ay 15, was broken.

1.5 Cresmangormicn

Pllot-in-conmand Ralph Clyde Cokeley, sged 44, holds an airline transport pilot certificate and a current first-class FAA medical cortificate with no limitations, Њ was typz rated in the Boeing 747 and had accumulated 121 flying hours in the 747 . His total flight time, all models of aircraft, was $6,518.7$ hours.

Cokeley is an aeronautical engineer and a former military pilot. He had landed Boeing 727 and 737 type aircraft at Renton numerous times, and had once ferried a being 720 B to Renton. His last landing at Renton was made in July 1969 in a being 737.

Copilot John Worthington Harder, aged 46, holds an airline transport pllot etrtificate and a current first-class FAA medical certificate with the limitation that he wear glasses for near and distant vision. Њ had no filot time in a boeing 747 except for the short time involved in this incids nt. He had attended companv ground school and had received 11 hours ind 50 timutes simulator training in the Boeing 747. His total flying : 1tw in ath models of aircraft was 17,92 ; hours.

Flight Engineer Clifford Ray Cumings holds a flight engineer's certiEfctice, an airframe and pcwerplant mechanic certificate, and a current second-class FAA medical certificate with no limitations. Н Hed flowis 143.7 hours in the Boeing 747 and a total of 2.087 hours in all models of aircraft. He is an instructor flight engineer.

1.6 Aircraft Information

N732PA, a Bo:ing 747-21, serial No. 19638, wes owned by the Boeing Company.

Manuacture was completed in July 1969, and the aircraft first flown on July 11, 1969.

A Special Ainvorthiness Certificate was issurd October 10, 1969.

The aircraft had been flown $161: 42$ hours at the time of the incident. It was equipped with four Pratt \& Whitney Hodel JT9D-3 (Block l) engines. Basic postflight and preflight checks had been completed prior to the departure of the flight in question.

The midntenance records for N732PA disclosed that the aircraft had been maintained in accordance with company and Federal Aviation Administration procedures. No discrepancies were noted that would have adversely affected the mechanical or structural aimorthiness of the aircraft. Required inspections had been accomplished and nenroutine items had received corrective action.

The type of fuel used was $J P-1$.

1.7 Meteorological Information

Surface weather observations were, in part, as follows for the stations and times indicated:

Renton

10574,500 feec scattered. measured 6,500 broken, high overcast, visibllity 13 miles. wind $120^{\circ} 15$ knots, altimeter setting 29.65 inches.

1112 Local, 4.500 feet scattered, measured 6.500 feet broken, high overcast, visibility 13 giles, wind 120° (true) 20 knots, altimeter setting 29.64 inches.

Boeing Field

1055 estimated 6,500 feet oroken, 7,509 foet overcast. visibility 10 miles, temperature $55^{\circ} \mathrm{F}$.. dew point $41^{\circ} \mathrm{F}$., wind 130° (true) 13 knots, altimeter setting 29.66 inches.

1155 estimated 5.500 feet overcast, visibility 10 miles, very light rain, temperature $56^{\circ} \mathrm{F} .$. dew point $41^{\circ} \mathrm{F} .$. wind 130° (true) 21 knots, altimeter setting 29.65 inches, breaks south.

Seattle-Tacoma

1055 measured 5,000 feet broken, 8.000 fcet overcast, visibility 40 miles, temperature 54° F., dew point $42^{\circ} \mathrm{F}$., wind 100° (true) 12 knots, altimeter setting 29.66 inches, rain began at 0959 and ended at 1028, intermittent very light rain showers.

1155 measured 5,500 feet overcast. visjbility 40 miles, very light rain, temperature 56° F., dew point 44° F.. wind $150^{\circ} 7$ knots, altimeter setting 29.66 inches. lower Cascades visible. rain began at 1117.

1.8 Aids t Navigation

There are no electronic or visual aids to navigation at the Renton Airport except for a wind sock and a segoented circle.

1.9 Commulearions

The flight vas in contact with the FA control towers at Boeing Field and Renton Airport, and with company personnel in radio-equipped vehicles at the ramp areas of both airports.

No difficulties in commanications were reported.

1.10 Acrodrome and Ground Facilities

Renton Airport has a single, asphalt-surfaced runway (15/33), 5,380 feet long and 200 feet uide. The elevation is 21 feet at the approach end of Runway 15 (nearest Lake Washingcon) and 29 feet at the other end. The last 1,000 feet of Runvay 15 is concrete. A blast shield approximately 20 feet high is located off the south end of Runway 15 ,

A level dirt-filled area extends from the threshold of Runway 15 to the shoreline of Lake Washington. The surface of the fillis approximately 8 feet above the water level of the lake.

Boeing buildings are located along the left side of Runway 15. The closest to the threshold of Runway 15 is 600 feet from the centerlfne. Buildings are also located along the right side of the runway, vlth hangars locaied 500 feet from the threshold.

1.11 Elighc Rocordurs

Both the flight recorder and cockpit voice recorder vere in good condition. However. the information on the voice recorder vas not recoverable because the unit had been operated after the incident for a period longer than its 30 -minute recording capacity.

Data vas recovered from the highly refined :est equipront on board the aircraft, and from the flight recorder.

The foil of the flight recorder was intact, with all trace 8 active and readable. The altitude recording was constantiy high by approxlmatcly 400 feet when compared vith the published airport elevations of 17 fcet at Boeis Field and 29 feet at Renton Airport (21 feet actual elevation at Runvay 15 threshold). This was found to be a calibration problem, which was reedily corrected to the proper elevation for the readout by subtracting 400 feet from the elevation 8 indicated by the data points. The tolerance for altitude recording in the area of sea level is $\stackrel{1}{*} 100$ feet.

* 11 -

The flight recorder readout for the heading trace revealed that approximately 2 minutes prior to touchdown the magnetic heading wis 161\%. The heading reduced to 140.5°, 1 minute 27 seconds prior to tonchdown, The heading varied between 142° and 143° during the 30 seconds prior to touchdown. During the last 30 seconds. the . Ltitude trace readout showed a descent of 350 feet, while the airspeed decsyed from approximately 128 knots to approximately 120 knots. The descent during the last 10 seconds was 100 feet, with the airspeed decaying from 125 knots to 120 knots.

The Boeing Company provided graphical test data from this flight, the practice flight at Boeing, a typical landing: and an autolanding. The rudder excursions revealed of the Renton landing were not 00 great as thoae of esther the landing at Boeing Field or the typical landing. The aileron excursions of the Renton incident, however. were as high as 22°, whereas during the Boeing landing they were 18°, and on the typical landing they were 12°. The elevator excursions of the incident were identical with those of the typical landing, but slightly higher than those of the Boeing landing and the autolanding. Comparisons of the pitch angle traces revealed excursions of 1° either aide of a $+2^{\circ}$ position on the Boeing Field landing, the same for a typical landing, from $+2^{\circ}$ to $+6^{\circ}$ for the autolanding. and from -2° to $+4^{\circ}$ for the incident landing.

Comparison of the flight profiles from the test instrumentation data indicated that during the last 22 seconds prior to ground contact, the rate of descent was initially 700 feet per minute for the incident. decoying to 400 feet per minute for the last 4 seconds. The rates of descent for the samt periods for the soeing field landing, typical landing, and nutolanding were 550 to 300.750 to 375 , and 600 Lo 450 feet per minute, respectively. The altitudes. 22 seconds prior to ground contact, were 235 feet for the incident landing, 140 feet for the Boeing Field landing, 235 feet for the typical lending, and 200 feet for the autolanding.

The engines' thrust during the approach to the Renton Airport was approximately 8,000 to 9,000 pounds until about the last 12 seconds of flight, at which time it increased to approximately 10,000 to 12,000 pounds. During the Boeing Field approach, the thrust was approximately 9,000 to 11,000 pounds until about 20 seconds prior to touchdorm, at which time it increased to approximately 12,000 to 14,000 pounds.

1.12 dreckage

Except for some parts which separated from the structure of the right landing gear. wing flaps, and the engine cowling, the aircraft was intact.

- 12 -

A witness saw a part of a flap "flung" about 40 to 50 feet in the air. Small parts and pieces of cowling separated from the engine and were found on ok near the runway.

The tain landing gear failed as predicted by Boring. and as required by regulations in thae no serious damage to the fuel tanks occurred.

1.13 Fire

Fire trucks arrived at the aircraft immedately after the aircraft stopped approximately 3,500 fset down the runway. Small fires started in the No. 3 erigine wing strut and in the No. 4 engine forward of the toil conc. These firesthere extinguished by the use of one 15 -pound CO_{2} fire extiggisher. Hydraulic fluid was leaking from a broken landing gear line, and fuel. was leaking from a punctured wing tank near the fuselage.

1.14 Survival Aspects

No one was injured, and all persons on board evacuated the aircraft through the cockpit exit door, and descended a ladder pushed up to the door by ground personnel.

1.15 Tests and Research

During the investigation, data pertaining fo four critical facets of this particular approach were examiued. This material is treated in the paragraphs that follow.
a. Approach and Landing Techniques and Procedures.

During an approach, the path described by the main landing gear (on aircraft with tricycle gear) differs from that described by the pilot's rye level, because the pilot is located above and ahead of the main landing gear. The path described by the landing gear ultimately terminates in the touchdown point, whereas the path described by the eye level of the pilot intersects the runway in what is known as the aiming point. The aiming point is always some distance down the runway from the touchdown point. The distance between the two varies direcely as the sizr of the aircraft (distance between the landing gear and the pilot's position), and inversely as the angle of the glide slope. Pilots flying large aircraft are aware of the approach and landing geometry, and use the aiming point, along with other important visual cues, to execute their approaches so as to assure adequate threshold clearance of the main gear. The Boeing 747, being larger than the more familiar aircraft, necessarily involves different approach and landing geometry. (See Attachments Nos. 1 and 2).

A point 1,000 feet beyond the threshold is usually the touchdown point associated with Instrument Landing System (ILS) glide slopes, touchdown zores, and Visual Approach Indicator (VASI) lights. An TLS approach with the 747 does not differ greatly from that of a smaller aircraft because of antenna location. However, on a VASI approach this is not true. The present VASI, a visual aid, is based on an aiming point of smaller aircraft. Thus the main gear of the Boeing 747 and other verv large aircraft would cross the runway tirceshold at a much lower altitude. The VAST. system consists of two rows of chree lights (usually on both sides of the runway, but may be on the left side only). If both the near and far sets of lights are red, the approach slope is too low. If both sets of lights are white, tho approach slope is too high. If the near set of lights is white, and the far set is red, the approach slope is correct. One mithod which has been suggested for modifying the present installations is to add an additional row of two lights farther down the runway from the presently installed far lights. Small aircraft could then use the two near sets and larger aircraft could wee the farther two sets.

Another proposal encountered by the Board involved a pulsed light scurce instead of the steady state light source comtron to existing VASI's. Use of this new concept could further distinguish the small aircraft system from that required by the larger aircraft.

The illustrations and tables in Attachment Nos. 1 and 2 show the variations in pilot eye level and main landing gear threshold clearances for various glide slope and aiming poiuts.

Other visual cues which assist tho pilot are the runway garkings. These are longitudinal, white. painted lines beginning near the threshold and proceeding in groups of four, three, two, and one on each side of the runway centerline. These lines are of a known size and position, and can be used as an aid in determining an aforing point. Under industry consideration is a proposal to expand this type of rarking by doubling the groups of three, two, and one, and thereby provide readily discernible markings as much as 3,000 feet from the threshold.

Also related to the approach is the application of reference speed or $V_{\text {ref. }}$. One $\bar{B}-747$ carrier adds 5 knots to the basic $V_{\text {ref. }}$. of $1.3 V_{\text {so }}$ and adjusts accordingly for other factors such as gustiness.

The radio altimeter is being used extensively to determine vertical position on the glide slope. One air carrier, in training, wses a 100foot indication on the radio altimeter as the threshold passes under the pilot station, as a target to assure safe clearance for the main landing gear.

h. Windscreen Characteristics

The windshield on the Boeing 747 is curved and has optical characteristics different from those of the usual flat design. However. according to a being study, deviation, measured normal to the surface of curved parts, is held to controls similar to those of the present flat assemblies in use. To evaluate curved windshield characteristics, Boofng installed a windshield similar to that of the Boeing 747 in the pilot's position of a being 707. The copilot's windshield was not changed. The test program required three flights during which 40 touch-and-go landings (20 at night) were performed by Boeing senior test pilots. The landings were normal or smother than normal. There is always inherent deviation $7 /$ in any curved windshield, except when one is looking notal to the surface. The deviation angle is constant, however, and therefore, the distance between the real and apparent position of an object becomes smaller, as viewed by the observer, as he proceeds toward the object. The lateral shift due to the deviation angle can be added to the minor displacement caused by refraction, giving a total displacument th the 747 windshield of approximately 9.6 feet in 1,000 feet, when viewed straight ahead and 5° down. This is approximately the displacerent a pilot would experience when he is 100 feet high and 1,000 feet from touchdown. The displacoment becomes smaller as the pilot approaches, and is 4.8 fert at 500 feet, and .96 feet at 100 feet.

Nultiple light reflections are present along the sides of the windshield. This phenomence has the effect of splitting a rw of lights into two rows.

c. The Effect of Rain on windshields

Rain has an effect on the optical characteristfcs of aircraft windshields. A study by the USAF School of Aerospace Nedicine written by Major Dimald G. Pitts and titled "Visual Illusions And Aircraft Accidents" freludes a portion dealing with the rain effect. Major Pitts stated that rain changes the optical characteristics of aircraft windshields. His study states:
"The ripples and blurs caused by the rain-swept windshield essentially act as a prism and deceive the pilot into thinking that he is higher than he actually is.

2/ Deviation: When the surface that the light enters is not parallel to the surface from which it leaves, the direction of the light is changed. This is called "wedge" effect.
Displacement: A movement of an image caused by materials having different indices of refraction, such aa sir/glass/alr, etc. Distortion: Very rapid changes in local deviation due to manufacturing imperfections.
See Attachments Nos. 4 and 5 for illustrations.
". . . study cn light patterns through a rain-swept windshield showed that distortion was a function of the rate water intercepted the windshield per unit srea. Stedman and Bahrenburg Louthorities quoted by Pltts] have shown that the most serious problem with rain on the windshield is that objects appear lower (farther away) than they actually are. In other zords, a pilot looking through a rain-wept windshield :s deceived into thinking that the aircraft is highar than it is in a normal appraach; thus te usually flif:s a lower glide path than normal.
"Since the severity of such an illusion is related to the rain denosited per unit area, the obvious solution would be to eliminate the rain from the windshield."

Rain removal from aircraft windshields is accomplished by three common methods, which are windshield wipers, pneuratie equipment, and chemical rain repellents. The Eoeing 747 is equipped with windshield wipers and a rain repellent syster. The rain repellent system can be used when the precipitation is so great that the wipers do not adequately remove the water. The repellent system can be integrated with the wiper system.

d. Detirmination of Wind Drift Correction

The drift correction angle of this flight was determined by thrio different methods. The first method used data from the test equipant on board the aircraft and resulted in a correction angle of approximately 7° nose left for the last 200 feet of descent. The second method involved measurements from the frames of movie films depicting th: approach, and produced estimated correction angles between 7.5° and 8.1° nose left. The third was a vector calculation using the true airspeed and wind velocity to determine a ground track. The correction angles thus determined varied between 4.6° and 5.8°.

2. ANALYSIS AND CONCLUSIONS

2.1 Analysis

In analyzing the evidence. the Safety Board focused on several areas. One such area was the conduct of the approach. Another was the aircraft and its relation to the approach, since in theory, its newness and great
size could involve problems and techniques not hitherro encountered. A third wes the enviromment in which the aircraft was flown and its effect on tile approach. A discussion of these areas follows:
a. The Approach

The pilot planned his approach carefully since he was to make the first landing of a Boeing, 747 on this short runway. His preflight operations exceeded those usually required. The pilot needed to establish a pattern so as to arrive at a position on final approach which would assure the establishment of a proper glide slope within the limits of airspeed and rate of descent appropriate to the aircraft. The glide slope needed to be planned (considering external as well as internal factors) so as to accomplish runway threshold clearance at a safe altitude and still guarantee that the aircraft would land and stop within the confines of the runway.

Several Boeing personnal were standing on the flight deck in the cockpit area during the approach, there being seats and seatbetts for only three crewmembers and two observers. The Board believes that allowing people to stand in this manner during an approach is not in the best interests of safety, and that the pilot should have insisted that these persons sit in the cabln where seats and belts were available.
(1) Preflight Operations

The Boeing Company, in planting for the ferry flights, researched the feasibility and determined that using the planned weight parameters, a 747 could be landed on the Renton airport within the FAA requitenents. The pilot reviewed this study prior to the flight. Also. he drove to Renton for the purpose of examining the runway, and while he was there, he determined the atount of water on the runway and the wind conditions. He also selected limits for a touchdown zone. After returning to Boeing Field, he briefed his crew as to the manner in which he desired the duties to be performed, including the requirement that frequent callout of approach data would be made. Before departing for Renton in the aircraft, he elected to make a practice approach at Boeing Field and learned that the aircraft performed better than indicated by the data from the Boeing study.

Њ selected as copilot, one with whom he hod flown previously - a man not experienced in the Boeing 747, but who had simulator and observer experience as well as ground school. in the aircraft. Whereas this lack of in-flight copilot experience could conceivably be significant in other emergency situations, the Saiety Board does not believe that the copilot's inexperience contributed to this incident.

- 17 -

In sumary, regarding preparation for his task, the pilot went beyond the usual preflight activities.

(2) Establishment of the Glide Slope

The pilot reported on base leg over Mercer Island, and the flight was well established on approach when the aircraft passed the eouth end of the island. From this position, he could maintain a stable approach. During the approach, the copilot called out the data as he was instructed to do, and the Renton Tower provided wind direction and velocities on final as requested.

In carrying out his task, the pilot had to eatabllsh an aiming point, and had to astablish and maintain a proper glide slope. touchdown point had been previously chosen between 700 and 1,200 feet down the runway from the threshold. The approach and landing geometry for the 747 is such that on a 3° glide slope, the touchdown point is 1,200 feet from the threshold, using an aiming point of 2,000 feet, or a difference of 780 feet between the aiming and touchorwn points. Similarly, if n pilot wishes to touchdown 700 feet from the threshold, he must aim at a point 1,480 feet from the threshold. A graph (Attachment No. 3) of the Boeing Field and Renton approaches shows that the average slope of the glidepath at Renton was 3° during the last 22 seconds. Applying the approach and landing geoaetry, a landing 20 feet short of the threshold implies an aiming point 760 feet down the runway from the threshold.

The pilot could have avoided a short landing by adding power or trading excese airspeed (or both) in order to reduce the rate of descent, and thereby shallowing the glide slope sufficiently to allow the aircraft to touch down on the runway. Such a maneuver took place during the last 22 seconds of the Boeing Field approach. This practice approach was shallower than that'at Renton. and consequently lower throughout tost of the approach. The Renton approach path was higher than that at being Field until it reached a point where the landing gear was 30 feet above the runway elevation. Here, a comparison shows the two approach paths crossing. The perspective of the runway would appear to the pilot to be similar in both cases. This situation could explain why, when the copilot called out 30 feet. the pilot believed, although 30 feet was his lowest tolerable limit. that ". . it looked like it would fit."

Approach and landing geometry is very important in understanding threshold clearance problems. For example, an aircraft which is 10 feet higher than a given glide slope of 3° and descending parallel to it will touchdown approximately 190 feet beyond the intersection of the given glide slope and the runway. However, such calculations do not necessarily depict the true performance. A glide slope as flown is not a straight line. Many factors such as gustiness, airspeed, and rate of
descent vartation, rtc., can adversely affect a slide slope. In order to combat adverse factors, proper procedures aust be employed. One such procedure is to selec: an aiming point sufficiently distant so as to assure adequate threshold clearance. A most important procedure is to return to the gide slope when moved from it by adverse factors, or modify it as necessary to meet changing conditions.

The Safety Board believos that the pllot did not eelect an aiming point sufficiently distant (in keeping vith his glide sloje) to assure a landing on the runway. Also, no modification of the gllde slope was performed which was sufficient and timely, in order to overcone the deficiency in the glide slope. In all other aspects the approach was flown with good procedures and control.
$\cdots b$. The Aircraft and its Relationship to the Approach
The relationship of aircraft landing gear placement to the pilot eye-level position is a factor present in all approach and touchdown techniques. While present in small aircraft, this factor becomes most significant as aircraft increase in size. In the Boeing 747, a pitch change of 4° in a noseup direction will produce a vertical change upward of about 6 feet at the pilot's station, vhile the undercarriage will move downward only about 8 inches. Thus, the pilot must be aware of the relationship of the eye reference point and the extent of the corrections for aircraft displacement from a desired glide slope.

The eye level of the pilot was expected to be the biggest single problem in transitioning to the Boeing 747, according to one carrier. However, this carrier has found that when proper procedures are followed. pilots adapt to the new eye level easily. These procedures involve designated altitude targets over the threshold with the use of radio altimeters as an aid.

The possible need for corrective action, during an approach with any aircraft, must be recognized, and action taken as a function of many variables. In this incident, the pilot atcemped to modify the glide slope at the last instant, as evidenced by the rapid flare attempt just before touchdown. The pilot's not taking adequate corrective action soon enough could have been for several reasons. One is the approach over water, which could have produced an illusion sufficient for the need for corrective action to go undetected until too late. Another is the short runway with the obstacle at the far end. The psychological desire to land with a minimum rollout could have induced the pilot to exercise flight test discipline related to short landing procedures, which entails a minimum flare process. This is particularly possible since he had been involved with such procedures in other test programs for the Boeing Company. Finally, the geometric height of the cockpit
above the landing surface and ahead of the landing gear introduces additional perceptual problems. For stamie, experience in taxiing the Boeing 747 has revealed that excessive taxi speed may be achieved without detection. Thub, it would appear that height cues on approach which are associated with motion may also be undetected until too late.

The Board considered the possibility that the curved windshield may have produced distortion or deviation sufficient to have caused the pilot to think that he was ligher than he was. A Boeing study reveals that the total displacement is 9.6 feet in 1.000 feet, an amount which would be hardly discernible.

C. Environment

(1) Wind

Renton Tower gave wind velocities and .directions frequently during the approach. Therefore, the pilot was well oware of this factor and could have planned accordingly. The Boeing Company, in their report, determined crab angles using three methods, and arrived at a figure of approximately 7° nose left. The variance of the three methods vas from 4.6° to 8.1° nose left. While it is true that the wind was varying in direction as well as velocity, the changes were tot of such a magnitude so a8 to exceed the capability of the aircraft or the ability of the pilot to cope with them. The wind information is obtained from an anemometer located on the Tower and does not necessarily reflect the conditions existing at the threshold. Buildings located on both sides of the runway, and not too distent:, could have had an effect. However, if there was an effect, it is believed that it was probably not significantly adverse, since the ground track was well maintained, and the aircraft at touchdown was properly lined up with the runway. After the aircraft rolled across the grass overrun and on to the runway, the pilot maintained directional control and stopped it on the runway centerline. The Board, therefore, believes that the wind characteristics were only a alight factor, if any, in this instance, particelarly in view of the pilot's experience and his knorledge of the existing coeditions.

(2)
 Rain

It is known that rain on a windshield can deceive a pilot into thinking that he is higher than he really is. This distortion is a function of the rate that water intercepts the windshield per unit area. Thus, had N732PA been flying in rain, it is possible that such an illusion could have been present. However, the evidence is that it was not raining when the aircraft was approaching Renton.

In this regard, the pilot does not remember whether or not he had his windshield wiper on. Also, the copilot said that he was not sure whether the wiper was on, but believes that if. it had been, he would have remembered. Moreover, a ground witness. also a Boeing senior engineering test pilot, said that the runway was damp. but that he did not recall seeing any standing water on it. Furthermore, the weather reports for Renton, at the time of the incident, do not contain any references to rain. Accordingly, the Board concludes that distortion due to rain on the windshielo was not a factor in this incident.

(3) Illusions Created by Fixed Environment

As discussed prrviously. height Judgment is affected by the sperd, distance to touchdown, and glide slope. Throughout an approach, a pilot constantly integrates the changing vissal cues and cockpit infor* wation with past cxpericncc. One of the three factors which involves visual or physical impressions from outside the aircraft is the judgment 0 o distance. Airspeed, rate of descent. and altitude inforawtion can be obtained from the aircraft's instruments. Distance judgment, obtainable only from outside stimuli, is what a pilot uses to adjust the airspeed and rate of descent necessary for a proper vistal approach.

Several runway characteristics can adversely affect distance to touchdown decermination, and lead a pilot to believe that he is higher than he really is. One of these is runway slope. The Renton airport does slope upwards slightly, since the threshold of Runway 15 is at an elcvation of 21 feet while the opposite end is 29 feet. A rise of 8 feet in 5,380 feet is an upslopc of approximately 0.149 percent, or about $0^{\circ} 5^{\prime}$ of angle. The Board believes this 'to be an insignificant amount. Another characteristic of runways is that a pilot may think he is higher and iarther out when approaching a short, narrow runway than when approaching a long, wice runway of 'he same proportions. The runway a Renton is the same width (200 feet) as the runway at Boeing Field, but the Renton runway is considerably shorter (5,330 feet versus 10,000 feet).

Aa discussed earlier, approaching over water can produce an illusion. The effect of such illusions can be minimized, but not nccossarily eliminated, by a pilot's being familiar with the airport and preparing for its characteristics. The pilot of N732PA was familiar with the appearance of the runway on approach, having landed there prrviously. His last landing, however. was in July of 1969. A pilot, faced wath landing a large aircraft on a short runway with an obstacle at the far end, has a streng urge to land close to the threshold in order to provide the maximum available distance to stop the alrcraft after touchdown. Such a landing results in small threshold clearance margins. and only a small vertical error awy result in a touchdown short of the rumway. An illusion could produce such an error. The Board, therefore,
believes that notwithstanding the pilot's familiarity with the airport. a short runway illusion might have been present, and that, coupled with the psychological motive to land close to the threshold. vas contributory to the incident.

The evidence supports a finding that this incident resulted from spatial ofstutgment on the part of the pilot. However, it is recognlzed that factors such as rain, illusions, and wind have been involved in similar occurrences. In this incident, their involverent is best expressed by the pilot's own words as he states, "There are many small contributing influences to this incident - extremely short runway (rrlatively speaking) with hazards at each end, wet braking, crosswinds, guits, downdrafts. The undersigned was well experienced in all of these and well understood the absolute stopping capability with respect to the margins avallable tho pitfalls should have been avoided."

This introspective analysis serves to emphasize the fact that even the highest qualified pilots can err if the right combination of factors is present.

The above point notwithstanding. the Board believes :hat even less skilled pilots should have few problems in adapting to the aircraft's approach characteristics provided that adequate visual cues are available and froper training in their use is conducted. however, the tendency to revert to earlier habit patterns formed in other aircraft can be strong and wist be guarded against.

In order to facilitate proper approaches, runways for large aircraft should be well equipped with aids that a pilot can use to establish and maintain a glide slope consistent with the characteristics of his aircraft. In addition to the electronic aids related to instrument approaches, visual aids, such as improved VASI systems and well-defined runway markings, should be a part of the runway installation. The use of radio/radar altimetry is particularly important. Pilot training includes instruction on the approach and landing geometry of aircraft, and pilots are taught to use all available aids. in and out of the aircraft, to assist them in performing their tasks. The pilot of N732PA stated that if any lesson could be learned from the incident, it is to recognize that we will take another step forward in air safety when we can display to the pilot the projected flightpath touchdown point of the wheels.

Of additional utmost importance $i \$$ the exchange of information in the early part of a new aircraft's introduction. The investigation of this incident stimulated a marked interest on the part of many parties, resulting in significant meetings atong these parties and the Safety Board. It may well be that the Renton incident, while unfortunate, will contribute significantly to the future of the Boeing 747 because of the focus on the total anatomy of the occurrence.

2.2 Conclusions

3. Findings

1. Vinder existing regulations. the crev vere properly certificated and qual.iled for the operation. notwichstanding that the copilot had no previous experience in the aircraft.
2. The aircraft was properly certificated and aitworthy.
3. The welght and balance of the aircraft vere vithin the allowable limits,
4. At the gross weight at which the afreraft vas being operated. it vas capable of being safely landed within the confines of Renton Airport.
5. Planning and precautionary mesures were well performed by the crew prior to the ir departing from Boeing Field.
6. The approach to Renton Airport was stable and well controlled.
7. The airport and meteorological conditions could have adversely affected the pilot's task in that:
(a) A short runway, coupled vith nuking the first landing with this model atrerate on a short runvay. can produce a psychological motive for attempting to touch down as close to the threshold as possible in order to obtain the $x=x$ mum posable stopping distance.
(b) Variable vind conditions. as existed here, while not excessive, can contribute Inasmuch as sufficient allowance for any variation of the winds vas not taken into account.
8. The selected aiming point was not sufficiently distant beyond the threshold to provide an eye-level flightpath which vould assure a touchdown on the tumay.
9. N732PA struck the bank of the shoreline of Lake Washington on the centerline of Runvay 15 extended. 30 inches below the top of the bank and the runway level. The aircraft continued up on the fill, on to the rumay, and vas succesefully brought to a stop in the center of the runway, epp:oximately 3,500 feet from the threshold.

b. Probable Cause

The Board detertines that the probable cause of this incident - $\$$ the premature couchdown of the aircraft durins, a visual approach to a relatively short runvay. induced by the pilot's not establishing a glidepath which wolld assure runvay threshold passage with an adequate safety margin, under somewhat unusual environmental and psychological condicions.

3. RECOMENDATIONS

As a result of its study of the evidence. the Board recomends that the FAA:

1. Require the installatton and use of a VASI system at all airports used by large. vide-bodied jet transport aircraft.
2. Initiate action to insure that modifications are made to the present VASI system so as to rake the system more compatible with the characteristics of large, wide-bodied jet transport aircraft, yet retaining its utility for the smaller aircraft, Consideration of the pulsed light concept is particularly encouraged.
3. Undertake quantitative research into the effect of rain on the vindshield in order to determine more accurately the finite relationships between the amount of rain and the degree of displacement between the real and apparent positions of objects viewed through a water-covered windshield.
4. Undertake research to determine the efrect of curved windshields and the posslbility of false visual cues frow maltiple lights in the Peripheral visual areas.
5. Develop and require "in the cockpit" devices which vould display the approach path to the pilot, in the absence of externally originated information such as ILS. VASI. etc. Such devices. however, wist not appreciably increase the crew cockpit workload, nor distract the pilot from proper use of his flight instruments,

BY THE NATIONAL TRANS PORTATION SAFETY BOARD:
/s/ JOHN H. REED \quad Chairman

August 26, 1970.

APPROACH AND LANDING GEOMETRY

GROSS WEIGHT 500.000 LBS
FLAPS 30

Main Gear
Touchdown
Point
2.5° GLIDE PATH
(MINIMUM GLIDE PATH ANGLE)

Main Gear
Touchdown
Point
1.5° GLIDE PATH (NOT RECOMMENDED)
RUNWAY THRESHOLD HEIGHT DATA

Glide Path Degrees	Body Attitude Degrees	Threshold Clearance-Feet - Eye Level Aim Point					
		1000 Ft .		1500 Ft .		2000 Ft .	
		Eye Level	Gear	Eve Level	Gear	Eye Level	Gear
1.5	4.0	26.2	(-)14.8	39.3	(-11.7	52.4	11.4
2.5	3.0	43.4	2.6	65.5	24.4	87.2	46.2
3.5	2.0	61.2	20.2	91.7	507	122.0	81,0

ATTACHMENT 1.
NATIONAL TRANSPOTTATICN SAFETY BOARO NATIONAL TRANSOMTATICNSAFTY 8 O.
DEPARYMENTOF TRANSPORTATION

VISUAL/VASI
FINAL APPROACH AND LANDING GEOMETRY

- NOILYLHOdSNYAL to IN 3 miay 30 OWVO ALBIVS NOLIVIHOUSXVYI TVNOILYN.

DISPLACEMENT

WHEN A LIGHT BEAM STRIKES AT AN ANGLE THE INTERFACE BETWEEN TWO MATERIALS HAVING DIFFERENT INDICES OF REFRACTION. THE LIGHT BEAM IS BENT.

W e n the light beam leaves a surface parallel to the FIRST, IT IS PARALLEL TO THE ENTERING BEAM. THE BEAM IS DISPLACED A DISTANCE "d" FROM ITS ORIGINAL PATH. DISPLACEMENT IS RELATIVELY SMALL.

ATTACHMENT 4.
NATIONAL. TRANSPORTATION SAFETY BOARD DEPARTMENT OF TRANSPORTATION

BOEING 747

DEVIATION

WHEN THE SURFACE THE LIGHT ENTERS IS NOT PARALLEL TO THE SURFACE FROM WHICH IT LEAVES, THE DIRECTION OF THE LIGHT IS CHANGED. THIS IS CALLED THE "WEgGE EFFECT."

ATACHMENT 5
NATIONAL TRANSPORTATIOA SAFETYBOARD DEPABTMENI_TETRANSPORTATION

[^0]: 1 Except as noted, all times herein are Pacific standard, based on the 24 -hour clock.

[^1]: $\overline{\text { I/ }}$ A speed which provides a 30 percent margin over the stall speed is called $1.3 V_{\text {so }}$ This is also the "reference speed" or $V_{\text {ref. }}$. The basic $V_{r e f . ~ i n c r e a s e s ~ a s ~ t h e ~ g r o s s ~ w e i g h t ~ i n c r e a s e s, ~ b u t ~ a l l o w a n c e s ~}^{\text {a }}$ arc made for adverse factors.
 4/ R/D: Rate of descent.

[^2]: 6/ See section 1.15 of this report for a discussion of the distinction between touchdown and aiming point.

