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External Memory (EM) algorithms

The Problem

I Analysis in the RAM model relies on constant time memory
access.

B

M
B

∞

B

B

The Solution: The External Memory Model

I Two levels of memory, internal (of size M )
and external (unbounded).

I Data transfer occurs in blocks of size B

I We analyse asymptotic I/O complexity.

I A Cache-Aware algorithm knows M and B

I A Cache-Oblivious algorithm doesn’t
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Two (simple) examples of Cache-Oblvious algorithms

I Example 1: Scanning requires dN
B e+ 1 ∈ Θ(N

B ) I/Os

B

X X X X X X X X X X X

I Example 2: Array Reversal requires dN
B e+ 1 ∈ Θ(N

B ) I/Os

B

X X X X X X X X X X X
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Why aren’t classic Binary Search Trees good enough?
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Breadth First Search Layout

I a left child has a smaller or equal value
I a right child has a greater value
I We can find an element in O(log N) time
I The two children of node with index i are at positions 2i and 2i + 1
I How many I/Os does this require?
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An example of the Van Emde Boas layout
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The Van Emde Boas layout
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The Van Emde Boas layout -top expanded
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The Van Emde Boas layout - level of detail 4
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The Van Emde Boas layout - level of detail B

I conceptually recurse until all subtrees are smaller than B

I the subtrees are at least as large as
√

B

I how many such subtrees are on a path from root to leaf?

∼ log N/ log
√

B ∈ O(log N/ log B) = O(logB N)

≤ B

≤ B

≤ B

≤ B ≤ B

≤ B

≤ B ≤ B

≤ B

≤ B

≤ B ≤ B

≤ B

≤ B ≤ B

log N

. . .

. . . . . .
. . . . . . . . . . . .
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Making things Dynamic - allowing insertions and
deletions

30

24

12

11 XX
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I Idea : embed the dynamic tree in a larger static tree
I If the dynamic tree becomes too unbalanced,re-distribute nodes
I If the dynamic tree becomes too large, re-construct
I Insertions and Deletions can be performed in O(log2 N/B) I/Os
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Why isn’t (binary) MergeSort good enough?

B

1 4 5 6 8 10 14 15 16 18

B

2 3 5 7 10 11 12 13 15 17

1 2 3 4 5

B

T (N) = 2T (N/2) + O(N/B)

I base case : T (O(1)) = O(1) =⇒ T (N) ∈ O(N
B log N) I/Os

I base case : T (O(B)) = O(1) =⇒ T (N) ∈ O(N
B log N

B ) I/Os

(M/B)-way MergeSort gives Θ(N
B logM

B

N
B ) I/Os (Cache-Aware)
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A Cache-Oblivious MergeSort?

What if we had a black box which merged K sorted lists of total size
K3 in O(K3

B logM
b

K3

B + K) I/Os?

1. Split the array into K = N1/3 segments of length N/K = N2/3

2. Recursively sort each segment
3. Merge the sorted segments in O(N

B logM
b

N
B + N1/3) I/Os

T (N) = N1/3T (N2/3) + O(N
B logM

b

N
B + N1/3) ∈ (N

B logM
B

N
B )

(assuming the tall cache assumption that M > B2)
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A K-funnel - the idea

√
K

K3/2

√
K

K3/2

√
K

K3/2

√
K

K3/2

√
K. . . . . . . . .

. . . . . . . . .Buffers: total size = K2

I Look at the largest level of detail J such that a J-funnel occupies less
than M/4 space

I We can hold a J-funnel and one block of each of its input buffers in
memory.

I Empty input buffers are completely refilled. This may push the original
Funnel out of memory, which the ‘new’ J3 elements pay for.
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Some empirical results (1)
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Some empirical results (2)
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Summary and Questions

I Scanning/Array Reversal: Θ(N/B) I/Os
I Searching: Θ(logB N) I/Os
I Sorting: Θ(N

B logM
B

N
B ) I/Os

Questions?

Benjamin Sach
Descent into Cache-Oblivion Slide 18/18


	What is an External Memory Algorithm?
	The External Memory Model
	Two (simple) examples

	Searching Cache-Obliviously
	Why aren't classic Binary Search Trees good enough?
	Static Cache-Oblivious Search Trees
	Making things Dynamic - allowing insertions and deletions

	Sorting Cache-Obliviously
	Why isn't (binary) MergeSort good enough?
	FunnelSort - a Cache-Oblivious MergeSort

	Summary and some Empirical Results

