
Descent into Cache-Oblivion

Benjamin Sach

March 13, 2008

Benjamin Sach
Descent into Cache-Oblivion Slide 1/18

Outline

What is an External Memory Algorithm?
The External Memory Model
Two (simple) examples

Searching Cache-Obliviously
Why aren’t classic Binary Search Trees good enough?
Static Cache-Oblivious Search Trees
Making things Dynamic - allowing insertions and deletions

Sorting Cache-Obliviously
Why isn’t (binary) MergeSort good enough?
FunnelSort - a Cache-Oblivious MergeSort

Summary and some Empirical Results

Benjamin Sach
Descent into Cache-Oblivion Slide 2/18

External Memory (EM) algorithms

The Problem

I Analysis in the RAM model relies on constant time memory
access.

B

M
B

∞

B

B

The Solution: The External Memory Model

I Two levels of memory, internal (of size M)
and external (unbounded).

I Data transfer occurs in blocks of size B

I We analyse asymptotic I/O complexity.

I A Cache-Aware algorithm knows M and B

I A Cache-Oblivious algorithm doesn’t

Benjamin Sach
Descent into Cache-Oblivion Slide 3/18

Two (simple) examples of Cache-Oblvious algorithms

I Example 1: Scanning requires dN
B e+ 1 ∈ Θ(N

B) I/Os

B

X X X X X X X X X X X

I Example 2: Array Reversal requires dN
B e+ 1 ∈ Θ(N

B) I/Os

B

X X X X X X X X X X X

Benjamin Sach
Descent into Cache-Oblivion Slide 4/18

Why aren’t classic Binary Search Trees good enough?

30

24

12

11 15

27

25 29

36

33

31 35

52

42 61

Data Values

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

Breadth First Search Layout

I a left child has a smaller or equal value
I a right child has a greater value
I We can find an element in O(log N) time
I The two children of node with index i are at positions 2i and 2i + 1
I How many I/Os does this require?

Benjamin Sach
Descent into Cache-Oblivion Slide 5/18

Why aren’t classic Binary Search Trees good enough?

30

24

12

11 15

27

25 29

36

33

31 35

52

42 61

Data Values

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

Breadth First Search Layout

I a left child has a smaller or equal value

I a right child has a greater value
I We can find an element in O(log N) time
I The two children of node with index i are at positions 2i and 2i + 1
I How many I/Os does this require?

Benjamin Sach
Descent into Cache-Oblivion Slide 5/18

Why aren’t classic Binary Search Trees good enough?

30

24

12

11 15

27

25 29

36

33

31 35

52

42 61

Data Values

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

Breadth First Search Layout

I a left child has a smaller or equal value
I a right child has a greater value

I We can find an element in O(log N) time
I The two children of node with index i are at positions 2i and 2i + 1
I How many I/Os does this require?

Benjamin Sach
Descent into Cache-Oblivion Slide 5/18

Why aren’t classic Binary Search Trees good enough?

30

24

12

11 15

27

25 29

36

33

31 35

52

42 61

Data Values

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

Breadth First Search Layout

I a left child has a smaller or equal value
I a right child has a greater value
I We can find an element in O(log N) time

I The two children of node with index i are at positions 2i and 2i + 1
I How many I/Os does this require?

Benjamin Sach
Descent into Cache-Oblivion Slide 5/18

Why aren’t classic Binary Search Trees good enough?

30

24

12

11 15

27

25 29

36

33

31 35

52

42 61

Data Values

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

Breadth First Search Layout

I a left child has a smaller or equal value
I a right child has a greater value
I We can find an element in O(log N) time

I The two children of node with index i are at positions 2i and 2i + 1
I How many I/Os does this require?

Benjamin Sach
Descent into Cache-Oblivion Slide 5/18

Why aren’t classic Binary Search Trees good enough?

30

24

12

11 15

27

25 29

36

33

31 35

52

42 61

Data Values

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

Breadth First Search Layout

I a left child has a smaller or equal value
I a right child has a greater value
I We can find an element in O(log N) time
I The two children of node with index i are at positions 2i and 2i + 1

I How many I/Os does this require?

Benjamin Sach
Descent into Cache-Oblivion Slide 5/18

Why aren’t classic Binary Search Trees good enough?

30

24

12

11 15

27

25 29

36

33

31 35

52

42 61

Data Values

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

Breadth First Search Layout

I a left child has a smaller or equal value
I a right child has a greater value
I We can find an element in O(log N) time
I The two children of node with index i are at positions 2i and 2i + 1
I How many I/Os does this require?

Benjamin Sach
Descent into Cache-Oblivion Slide 5/18

Why aren’t classic Binary Search Trees good enough?

30

24

12

11 15

27

25 29

36

33

31 35

52

42 61

Data Values

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

Breadth First Search Layout

I a left child has a smaller or equal value
I a right child has a greater value
I We can find an element in O(log N) time
I The two children of node with index i are at positions 2i and 2i + 1
I How many I/Os does this require?

O(log N − log B) = O(log(N/B)) I/Os

Benjamin Sach
Descent into Cache-Oblivion Slide 6/18

Why aren’t classic Binary Search Trees good enough?

30

24

12

11 15

27

25 29

36

33

31 35

52

42 61

Data Values

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

Breadth First Search Layout

I a left child has a smaller or equal value
I a right child has a greater value
I We can find an element in O(log N) time
I The two children of node with index i are at positions 2i and 2i + 1
I How many I/Os does this require?

O(log N − log B) = O(log(N/B)) I/Os

Benjamin Sach
Descent into Cache-Oblivion Slide 6/18

An example of the Van Emde Boas layout

XX

XX

XX

XX XX

XX

XX XX

XX

XX

XX XX

XX

XX XX

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Benjamin Sach
Descent into Cache-Oblivion Slide 7/18

An example of the Van Emde Boas layout

XX

XX

XX

XX XX

XX

XX XX

XX

XX

XX XX

XX

XX XX

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Benjamin Sach
Descent into Cache-Oblivion Slide 7/18

An example of the Van Emde Boas layout

XX

XX

XX

XX XX

XX

XX XX

XX

XX

XX XX

XX

XX XX

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Benjamin Sach
Descent into Cache-Oblivion Slide 7/18

An example of the Van Emde Boas layout

XX

XX

XX

XX XX

XX

XX XX

XX

XX

XX XX

XX

XX XX

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Benjamin Sach
Descent into Cache-Oblivion Slide 7/18

An example of the Van Emde Boas layout

1

2

4

5 6

7

8 9

3

10

11 12

13

14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Benjamin Sach
Descent into Cache-Oblivion Slide 7/18

The Van Emde Boas layout

√
N

√
N

√
N

√
N

√
N

log N
2 = log

√
N

log N

.

Benjamin Sach
Descent into Cache-Oblivion Slide 8/18

The Van Emde Boas layout -top expanded

4
√

N

4
√

N

√
N

4
√

N

√
N

4
√

N

√
N

4
√

N

√
N

log N
4

log N
2

log N

.

.

Benjamin Sach
Descent into Cache-Oblivion Slide 9/18

The Van Emde Boas layout - level of detail 4
√

N

4
√

N

4
√

N

4
√

N

4
√

N 4
√

N

4
√

N

4
√

N 4
√

N

4
√

N

4
√

N

4
√

N 4
√

N

4
√

N

4
√

N 4
√

N

log N
4

log N

. . .

.
.

Benjamin Sach
Descent into Cache-Oblivion Slide 10/18

The Van Emde Boas layout - level of detail B

I conceptually recurse until all subtrees are smaller than B

I the subtrees are at least as large as
√

B

I how many such subtrees are on a path from root to leaf?

∼ log N/ log
√

B ∈ O(log N/ log B) = O(logB N)

≤ B

≤ B

≤ B

≤ B ≤ B

≤ B

≤ B ≤ B

≤ B

≤ B

≤ B ≤ B

≤ B

≤ B ≤ B

log N

. . .

.
.

Benjamin Sach
Descent into Cache-Oblivion Slide 11/18

The Van Emde Boas layout - level of detail B

I conceptually recurse until all subtrees are smaller than B

I the subtrees are at least as large as
√

B

I how many such subtrees are on a path from root to leaf?

∼ log N/ log
√

B ∈ O(log N/ log B) = O(logB N)

≤ B

≤ B

≤ B

≤ B ≤ B

≤ B

≤ B ≤ B

≤ B

≤ B

≤ B ≤ B

≤ B

≤ B ≤ B

log N

. . .

.
.

Benjamin Sach
Descent into Cache-Oblivion Slide 11/18

The Van Emde Boas layout - level of detail B

I conceptually recurse until all subtrees are smaller than B

I the subtrees are at least as large as
√

B

I how many such subtrees are on a path from root to leaf?

∼ log N/ log
√

B ∈ O(log N/ log B) = O(logB N)

≤ B

≤ B

≤ B

≤ B ≤ B

≤ B

≤ B ≤ B

≤ B

≤ B

≤ B ≤ B

≤ B

≤ B ≤ B

log N

. . .

.
.

Benjamin Sach
Descent into Cache-Oblivion Slide 11/18

The Van Emde Boas layout - level of detail B

I conceptually recurse until all subtrees are smaller than B

I the subtrees are at least as large as
√

B

I how many such subtrees are on a path from root to leaf?

∼ log N/ log
√

B ∈ O(log N/ log B) = O(logB N)

≤ B

≤ B

≤ B

≤ B ≤ B

≤ B

≤ B ≤ B

≤ B

≤ B

≤ B ≤ B

≤ B

≤ B ≤ B

log N

. . .

.
.

Benjamin Sach
Descent into Cache-Oblivion Slide 11/18

The Van Emde Boas layout - level of detail B

I conceptually recurse until all subtrees are smaller than B

I the subtrees are at least as large as
√

B

I how many such subtrees are on a path from root to leaf?

∼ log N/ log
√

B ∈ O(log N/ log B) = O(logB N)

≤ B

≤ B

≤ B

≤ B ≤ B

≤ B

≤ B ≤ B

≤ B

≤ B

≤ B ≤ B

≤ B

≤ B ≤ B

log N

. . .

.
.

Benjamin Sach
Descent into Cache-Oblivion Slide 11/18

Making things Dynamic - allowing insertions and
deletions

30

24

12

11 XX

27

25 29

36

XX

XX XX

52

42 XX

I Idea : embed the dynamic tree in a larger static tree
I If the dynamic tree becomes too unbalanced,re-distribute nodes
I If the dynamic tree becomes too large, re-construct
I Insertions and Deletions can be performed in O(log2 N/B) I/Os

Benjamin Sach
Descent into Cache-Oblivion Slide 12/18

Why isn’t (binary) MergeSort good enough?

B

1 4 5 6 8 10 14 15 16 18

B

2 3 5 7 10 11 12 13 15 17

1 2 3 4 5

B

T (N) = 2T (N/2) + O(N/B)

I base case : T (O(1)) = O(1) =⇒ T (N) ∈ O(N
B log N) I/Os

I base case : T (O(B)) = O(1) =⇒ T (N) ∈ O(N
B log N

B) I/Os

(M/B)-way MergeSort gives Θ(N
B logM

B

N
B) I/Os (Cache-Aware)

Benjamin Sach
Descent into Cache-Oblivion Slide 13/18

Why isn’t (binary) MergeSort good enough?

B

1 4 5 6 8 10 14 15 16 18

B

2 3 5 7 10 11 12 13 15 17

1 2 3 4 5

B

T (N) = 2T (N/2) + O(N/B)

I base case : T (O(1)) = O(1) =⇒ T (N) ∈ O(N
B log N) I/Os

I base case : T (O(B)) = O(1) =⇒ T (N) ∈ O(N
B log N

B) I/Os

(M/B)-way MergeSort gives Θ(N
B logM

B

N
B) I/Os (Cache-Aware)

Benjamin Sach
Descent into Cache-Oblivion Slide 13/18

Why isn’t (binary) MergeSort good enough?

B

1 4 5 6 8 10 14 15 16 18

B

2 3 5 7 10 11 12 13 15 17

1 2 3 4 5

B

T (N) = 2T (N/2) + O(N/B)

I base case : T (O(1)) = O(1) =⇒ T (N) ∈ O(N
B log N) I/Os

I base case : T (O(B)) = O(1) =⇒ T (N) ∈ O(N
B log N

B) I/Os

(M/B)-way MergeSort gives Θ(N
B logM

B

N
B) I/Os (Cache-Aware)

Benjamin Sach
Descent into Cache-Oblivion Slide 13/18

Why isn’t (binary) MergeSort good enough?

B

1 4 5 6 8 10 14 15 16 18

B

2 3 5 7 10 11 12 13 15 17

1 2 3 4 5

B

T (N) = 2T (N/2) + O(N/B)

I base case : T (O(1)) = O(1) =⇒ T (N) ∈ O(N
B log N) I/Os

I base case : T (O(B)) = O(1) =⇒ T (N) ∈ O(N
B log N

B) I/Os

(M/B)-way MergeSort gives Θ(N
B logM

B

N
B) I/Os (Cache-Aware)

Benjamin Sach
Descent into Cache-Oblivion Slide 13/18

Why isn’t (binary) MergeSort good enough?

B

1 4 5 6 8 10 14 15 16 18

B

2 3 5 7 10 11 12 13 15 17

1 2 3 4 5

B

T (N) = 2T (N/2) + O(N/B)

I base case : T (O(1)) = O(1) =⇒ T (N) ∈ O(N
B log N) I/Os

I base case : T (O(B)) = O(1) =⇒ T (N) ∈ O(N
B log N

B) I/Os

(M/B)-way MergeSort gives Θ(N
B logM

B

N
B) I/Os (Cache-Aware)

Benjamin Sach
Descent into Cache-Oblivion Slide 13/18

A Cache-Oblivious MergeSort?

What if we had a black box which merged K sorted lists of total size
K3 in O(K3

B logM
b

K3

B + K) I/Os?

1. Split the array into K = N1/3 segments of length N/K = N2/3

2. Recursively sort each segment
3. Merge the sorted segments in O(N

B logM
b

N
B + N1/3) I/Os

T (N) = N1/3T (N2/3) + O(N
B logM

b

N
B + N1/3) ∈ (N

B logM
B

N
B)

(assuming the tall cache assumption that M > B2)

Benjamin Sach
Descent into Cache-Oblivion Slide 14/18

A Cache-Oblivious MergeSort?

What if we had a black box which merged K sorted lists of total size
K3 in O(K3

B logM
b

K3

B + K) I/Os?

1. Split the array into K = N1/3 segments of length N/K = N2/3

2. Recursively sort each segment
3. Merge the sorted segments in O(N

B logM
b

N
B + N1/3) I/Os

T (N) = N1/3T (N2/3) + O(N
B logM

b

N
B + N1/3) ∈ (N

B logM
B

N
B)

(assuming the tall cache assumption that M > B2)

Benjamin Sach
Descent into Cache-Oblivion Slide 14/18

A Cache-Oblivious MergeSort?

What if we had a black box which merged K sorted lists of total size
K3 in O(K3

B logM
b

K3

B + K) I/Os?

1. Split the array into K = N1/3 segments of length N/K = N2/3

2. Recursively sort each segment
3. Merge the sorted segments in O(N

B logM
b

N
B + N1/3) I/Os

T (N) = N1/3T (N2/3) + O(N
B logM

b

N
B + N1/3) ∈ (N

B logM
B

N
B)

(assuming the tall cache assumption that M > B2)

Benjamin Sach
Descent into Cache-Oblivion Slide 14/18

A Cache-Oblivious MergeSort?

What if we had a black box which merged K sorted lists of total size
K3 in O(K3

B logM
b

K3

B + K) I/Os?

1. Split the array into K = N1/3 segments of length N/K = N2/3

2. Recursively sort each segment
3. Merge the sorted segments in O(N

B logM
b

N
B + N1/3) I/Os

T (N) = N1/3T (N2/3) + O(N
B logM

b

N
B + N1/3) ∈ (N

B logM
B

N
B)

(assuming the tall cache assumption that M > B2)

Benjamin Sach
Descent into Cache-Oblivion Slide 14/18

A K-funnel - the idea

√
K

K3/2

√
K

K3/2

√
K

K3/2

√
K

K3/2

√
K.

.Buffers: total size = K2

I Look at the largest level of detail J such that a J-funnel occupies less
than M/4 space

I We can hold a J-funnel and one block of each of its input buffers in
memory.

I Empty input buffers are completely refilled. This may push the original
Funnel out of memory, which the ‘new’ J3 elements pay for.

Benjamin Sach
Descent into Cache-Oblivion Slide 15/18

Some empirical results (1)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1 2 3 4 5 6 7 8

T
im

e
(h

ou
rs

)

Largest number of elements (millions)

Priority Queue Tests (16MB)

Binary Heap
Funnel Heap
Bucket Heap

Benjamin Sach
Descent into Cache-Oblivion Slide 16/18

Some empirical results (2)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10 12

T
im

e
(h

ou
rs

)

Number of vertices (hundreds of thousands)

Generated Dijkstra Tests (16MB)

Binary Heap
Funnel Heap
Bucket Heap

Benjamin Sach
Descent into Cache-Oblivion Slide 17/18

Summary and Questions

I Scanning/Array Reversal: Θ(N/B) I/Os
I Searching: Θ(logB N) I/Os
I Sorting: Θ(N

B logM
B

N
B) I/Os

Questions?

Benjamin Sach
Descent into Cache-Oblivion Slide 18/18

	What is an External Memory Algorithm?
	The External Memory Model
	Two (simple) examples

	Searching Cache-Obliviously
	Why aren't classic Binary Search Trees good enough?
	Static Cache-Oblivious Search Trees
	Making things Dynamic - allowing insertions and deletions

	Sorting Cache-Obliviously
	Why isn't (binary) MergeSort good enough?
	FunnelSort - a Cache-Oblivious MergeSort

	Summary and some Empirical Results

