
NAS Parallel Benchmarks I/O Version 2.4

Parkson Wong, Rob F. Van der Wijngaart
Computer Sciences Corporation

NASA Advanced Supercomputing (NAS) Division
NASA Ames Research Center, Moffett Field, CA 94035-1000�

parkson,wijngaar � @nas.nasa.gov

NAS Technical Report NAS-03-002

January 2003

Abstract

We describe a benchmark problem, based on the Block-Tridiagonal (BT) prob-
lem of the NAS Parallel Benchmarks (NPB), which is used to test the output capa-
bilities of high-performance computing systems, especially parallel systems. We
also present a source code implementation of the benchmark, called NPBIO2.4-
MPI, based on the MPI implementation of NPB, using a variety of ways to write
the computed solutions to file.

1 Introduction

The original NAS Parallel Benchmarks (NPB) [1], whose paper-and-pencil specifica-
tion was released in 1992, and whose first complete parallel implementation [2] us-
ing MPI [6] (NPB, version 2.3) was released in 1997, aimed to provide an objective
measure of the computational capabilities of modern high-performance computing sys-
tems. As improvements were made to parallel systems, and as scalability and absolute
performance increased accordingly, a new bottleneck became evident in practical ap-
plications, namely the speed with which computed results were being written to and
read from file. Limitations to I/O performance were due in part to the fact that ap-
plication developers and users require data files whose structure does not depend on
the number of processors participating in the generation of the files. This is important
when the program that creates the data is not the same as that reading it, i.e. when
post-processing takes place. We focus on such applications, and hence will be primar-
ily concerned with the output capabilities of the system under consideration. In the
case of scientific computations using domain decomposition as a workload distribution
method, the multiple participating processors would typically each write a number of
fragments of an output file. Depending on the number of processors and the specifics
of the domain decomposition, the number of fragments contributed by each processor



could be very large, leading to many disk accesses and competition among processors,
which would often degrade performance severely.

It was soon recognized that improvements could be otained by making use of the
fact that aggregate inter-processor communication speeds were significantly higher
than I/O speeds. Rearranging data in memory prior to writing to file could greatly
reduce the number of disk accesses. This realization was behind much of the think-
ing that went into the definition of the MPI I/O Application Programmer Interface [3],
which formally became a part of the MPI, version 2, specification in 1997 [5]. This API
relied heavily on the powerful abstract data type definition functions already contained
in MPI, version 1, which can be used to specify the relationship between the locations
of data stored in (distributed) memory and data stored on disk. An MPI I/O library
call can then use this relationship to optimize data traffic without further programmer
interference, employing collective buffering [4].

2 BTIO

A good case for testing the speed of parallel I/O was provided by the Block-Tridiagonal
(BT) NPB problem, whose MPI implementation employs a fairly complex domain
decomposition called diagonal multi-partitioning [7]. Each processor is responsible
for multiple Cartesian subsets of the entire data set, whose number increases as the
square root of the number of processors participating in the computation. A naive
implementation in which each processor writes directly into an output file those data
elements for which it is responsible will typically exhibit abysmal performance due
to a very high degree of fragmentation. Hence, this problem and its implementation
could serve as good candidates for I/O performance improvements through collective
buffering. A first such implementation—named BTIO—using MPI I/O was described
by Fineberg et al. in [4].

In this report we formalize the specification of a benchmark derived from that ef-
fort, and describe the latest implementation, which is being released under the name
NPBIO2.4-MPI. For specifics of the numerical algorithm we refer the reader to the
NPB report [1]. I/O requirements and verification tests are as follows. After every
five time steps the entire solution field, consisting of five double-precision words per
mesh point, must be written to one or more files. After all time steps are finished, all
data belonging to a single time step must be stored in the same file, and must be sorted
by vector component, x-coordinate, y-coordinate, and z-coordinate, respectively. Any
rearrangement of data in the file required to produce this layout must be included in the
timing of the benchmark. It is not necessary, but allowed, to store different time steps
in different files.

After the timing is stopped, the computed and stored solution fields are verified as
follows. The computed residual field must pass the same verification test as specified in
[1]. The solution field in memory is zeroed or otherwise voided, after which all stored
solutions are read back from file. The norm of each solution error is computed in the
way prescribed by [1], and is accumulated in a vector of double precision numbers of
size five, upon which it is divided by the number of outputted solutions fields. Let � be
the sequence number of the complete solution field written to file, out of a total of

�

2



fields. Let � ���� ��� ��� 	 signify the 
 ��
component of that field at point ������������� of a mesh

of size �������������� points, and let the corresponding “exact” (i.e. steady-state) solution
at that point be � ��� ��� ��� 	 . Then the following inequality must hold:!!!!!!! "�

#$ �&%�' "���)(*���+(,�� -.0/21$ � %�'
/23$� %�'

/24$� %�' �� ��� �5� �6� 	87 � �� �5� ��� 	 �:9<;= '?> 9 7A@ � 	 !!!!!!!�B @ � 	DCFE �
where @ � 	 is the verification value given in the Appendix, and E is

"�GIHKJ
.

3 Verification rationale

Due to the slowness of I/O devices compared to the CPUs, much effort has been spent,
almost since the inception of digital computing, on asynchronous, buffered I/O. On
many systems the semantics of write operations do not require data actually to have
reached an external storage device upon completion of the operation. System buffers
may hold large amounts of data to be written to disk, depending on the amount of
memory available. Now imagine the following strategy for verifying correctness of
our I/O benchmark. After a solution has been written to a file, void the solution array
and read back the solution that has just been stored. This would simplify the procedure,
since the original numerical verification test could only succeed if all read/write pairs
would have succeeded. Moreover, since a solution is no longer needed once it has been
written and retrieved, total space for the output file can be limited to a single time step.
This is a significant benefit for the larger problem sizes. For example, Class D requires
more than 135 GB of disk space to store all the required solutions, as opposed to 3 GB
for only one solution. However, reading the output data piecemeal immediately after
it has been written greatly increases the chances that much of it still resides in system
buffers, so that not disk I/O but plain memory speed would be measured. While this is
in principle impossible to avoid, we can reduce its likelihood by postponing the read
operations to the end of the program.

4 MPI implementation

Like all other NPB this I/O benchmark is required to report completion time, including
writing the data to file. In the NPB version 2.3 implementation we derive from the
completion time the number of floating point operations executed per second (flops),
since the total number of such operations is known. In this I/O benchmark the situation
is less clear cut, however, since there is time spent on I/O as well as on computa-
tion. Since good systems will always provide buffered, asynchronous I/O, it is not
possible to compute output bandwidth based on completion time and number of bytes
written, not even if all I/O library calls were timed individually. This is because part
of outputting the data may take place under control of a spawned process that cannot
be timed directly and whose execution overlaps with the computation. Depending on
what is considered the main result of the program, it is possible, though, to compute

3



effective flops or effective output bandwidth. They are defined as the total number of
floating point operations and the total number of bytes written, respectively, each di-
vided by the wall clock time spent between the beginning of the first time step and the
verification of the solution. In the NPB 2.4 implementation we return effective flops.
In the Appendix we provide the number of bytes written by each class of the bench-
mark, so that the effective output bandwidth can be determined as well. Finally, we
point to the possibility of computing output overhead of the benchmark program by
running it with and without I/O and subtracting the completion times. This is governed
by the parameter SUBTYPE, which can assume the values full, simple, fortran,
or epio, or be empty. If empty, no I/O of significance takes place, and the original BT
benchmark obtains. The nonempty parameter values have the following effect:

1. full: MPI I/O with collective buffering [5]. This means that data scattered
in memory among the processors is collected on a subset of the participating
processors and rearranged before written to file in order to increase granularity.

2. simple: MPI I/O without collective buffering [5]. This means that no data
rearrangement takes place, so that many seek operations are required to write the
data to file.

3. fortran: Same as 2, but now plain Fortran 77 file operations are used instead
of MPI I/O library calls.

4. epio: This option does not conform to the benchmark requirements, because
each participating process writes the data belonging to its part of the domain to
a separate file as a contiguous stream of data. It could be made to conform by
merging the individual files into a single file afterwards and including the time
spent in this operation in the benchmark completion time. However, we leave it
as it is, since it gives a realistic measure of the maximum achievable I/O speed.

4



References

[1] D. Bailey, E. Barscz, J. Barton, D. Browning. R. Carter, L. Dagum, R. Fatoohi,
S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakr-
ishnan, S. Weeratunga. The NAS Parallel Benchmarks. NAS Technical Report
RNR-94-007, NASA Ames Research Center, Moffett Field, CA, 1994.

[2] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, M. Yarrow. The
NAS Parallel Benchmarks 2.0. NAS Technical Report NAS-95-020, NASA Ames
Research Center, Moffett Field, CA, 1995.

[3] P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J. Prost, M. Snir,
B. Traversat, P. Wong Overview of the MPI-IO Parallel I/O Interface. in In-
put/Output in Parallel and Distributed Computer Systems. R. Jain, J. Werth, J.
Browne (eds.), pp. 127-143, Kluwer Academic Publishers, 1996.

[4] S. Fineberg, P. Wong, B. Nitzberg, C. Kuszmaul. PMPIO—A Portable Implemen-
tation of MPI-IO. Proc. Sixth Symposium on the Frontiers of Massively Parallel
Computation, pp. 188–195, IEEE Computer Society Press, October 1996.

[5] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Nitzberg, W. Saphir,
M. Snir. MPI: The Complete Reference (Vol. 2). MIT Press, 1998.

[6] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra. MPI: The Complete
Reference. MIT Press, 1996.

[7] R. Van der Wijngaart. Charon message-passing toolkit for Scientific computa-
tions. �

��
Int’l Conf. High Performance Computing, Bangalore, India, December

17-20, 2000.

5



Appendix: Verification values

Here we list the values @ � 	 of the difference between steady-state and average in-
termediate values of the solution of the I/O benchmark. See the equation on page 3.

Class m @ � 	 Mbytes written
S 1

G�� "�"���� G�������	�
������� "<G 9 0.83
2

G�� ��"���� � 
�
���G�� � 	 � � "<G��
3

G���	�
�� � 
�������	�
���"���� "<G '
4

G���	�����
�	 � ������� � ����� "<G '
5

G���	�����	 � ������� � ��� � � "<G 9
W 1

G�� � � 	�������������
���"�	�� "�G 9 22.12
2

G�����	������	�� G�
 "���� G�� "<G '
3

G�� "�� � � "<G � "��	���� � � "<G 9
4

G�� "���G�
 � 	 "�������������� "<G 9
5

G�� "�� � � G�"�
�������������� "<G��
A 1

G�� ����
�	�	�"�
 � 	������ "�� "�G 9 419.43
2

G����2G���������" � "�����	 � � "<G '
3

G�� "�� "�������"���� "�������� "<G 9
4

G�� "����	�G�"<G�	2G "���
 "�� "<G 9
5

G�� "��	2G G������ � � ��
 "�� "<G��
B 1

G�� "�� � � ������"<G���������� "�G�� 1697.93
2

G�� "�"�G�
�
����������2G������ "<G 9
3

G�� ������
 G�������� G���� "�� "<G 9
4

G�� ��� "<G��2G�����
 "���� G�� "<G 9
5

G�� ��"�� � ��	�
�	�
�	�������� "<G��
C 1

G���	���� � "�������
���� � ��� "�G�� 6802.44
2

G�� "���
�����
��	�
���������� "<G 9
3

G�� ����" � ���2G���
�� � 
�
�� "<G 9
4

G���� � � � 	��������I"���	�G�� "<G 9
5

G�����	�"�������
 "�
�
 � 	���� "<G��
D 1

G�� ��
 "�� � 
�"������ � "���� "�G�� 135834.62
2

G�� ��"���G�
 � 	�������"���
�� "<G 9
3

G�� ��������� � ����� � 	�� G�� "<G 9
4

G�� 
�����������"���
���
�"���� "<G 9
5

G�� � G���������� G�
 � ��	���� "<G��

6


