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Chapter 0

A brief introduction

These notes are mostly based on the following books, papers, and preprints: [CG90, Bel96, Gro99,

AFP00, BBI01, Mon02, Bul02, AKLD08]. They have been written for the course ‘Sub-Riemannian

Geometry’ at ETH in Zurich during Fall 2009.

Sub-Riemannian geometry is a generalization of Riemannian geometry. Roughly speaking, a sub-

Riemannian manifold is a Riemannian manifold together with a constrain on admissible direction of

movements. In Riemannian geometry any (smoothly embedded) curve has locally finite length. In

sub-Riemannian geometry, if the curve fails to satisfy the obligation of the constrain, then it would

have infinite length.

One classical example one should carry in mind is coming from mechanics. Indeed, the stati of

a moving object are enclosed by its position in space and the speeds of its parts: the momenta.

Thus in the manifold ‘positions times speeds’ the possible evolutions of the object should satisfy

the fact that the derivatives of the first coordinates are equal the second ones. In particular, some

trajectories are not allowed. As trivial examples, you cannot vary your speed without changing your

position or, similarly, you cannot move into another place at speed zero!

The 3D Heisenberg group is the most important sub-Riemannian geometry that is not in fact

a Riemannian one. It is also not difficult to visualize some of its features. Topologically it is R3.

The constrain on curves is given by what is called a ‘distribution of planes’. Similarly as a smooth

vector field smoothly assigns a tangent vector at each point of the manifold, a distribution of planes

smoothly assigns to each point a plane (inside the 3D tangent space). The curves that will be called

‘admissible’ will be those curves that are tangent to such distribution.

The great feature of the Heisenberg group is that its distribution is curly enough in a way that

each pair of point can be connected by at least one admissible curve. From this fact one can define a
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0- A brief introduction
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Figure 1: A standard distribution on R3

(finite) distance similarly to the Riemannian case: the distance between two points p and q is given

by the infimum of the length of all those admissible curves from p to q,

d(p, q) = inf{Length(γ) : γ admissible, from p to q}. (0.0.1)

In the first part of this lecture notes we will discuss the following facts:

1) Such a distance d turns the space R3 into a metric space with the same standard topology.

2) For any two points there is in fact a geodesic curve, i.e., the distance of the points equals the

length of a curve; the reader could really think that the length of such curve is its Euclidean length.

3) This metric space is really new: it is not Riemannian. It is not even biLipschitz equivalent to

a Riemannian distance. In fact, the Heisenberg geometry resemble fractal geometry. Indeed, such a

metric on this topologically 3-dimensional object will have metric (i.e., Hausdorff) dimension equal

to 4.

The general definition of sub-Riemannian manifold follows as soon as we formalize the notion

for a distribution to be ‘curly enough’ so that each pair of points can be connected by an admissible

curve.

By a distribution on M we mean a sub-bundle of the tangent bundle TM of M . A distribution

∆ ⊆ TM is called completely non-integrable if, for any p ∈ M , the Lie bracket algebra generated

by the vector space ∆p is the whole of TpM . In other words, if we have that any tangent vector

2



v ∈ TpM can be presented as a linear combination of vectors of the following types

X1, [X2, X3], [[X4, [X5, X6]], . . . ,

where all vector fields Xj are in ∆p.

A sub-Riemannian manifold is a triple (M,∆, g), where M is a differentiable manifold, ∆ is a

completely non-integrable distribution and g is a smooth section of positive-definite quadratic forms

on ∆. In fact, g can be considered as the restriction of a Riemannian tensor on the manifold. A

curve γ on M is called admissible, or horizontal, if γ̇(t) ∈ ∆γ(t) for any t. Then the sub-Riemannian

distance (also known as Carnot-Carathéodory metric) is defined by (0.0.1). Most of the previously

mentioned results on the Heisenberg group will be valid for any general sub-Riemannian distance.

The understanding of many of Riemannian geometric properties come from the fact that the

‘metric’ tangents of a Riemannian manifold are Euclidean spaces, and the Euclidean geometry is

quite well studied. Such notion of tangent is precisely defined in terms of limits of metric spaces,

i.e., the tangent cones. What are the metric tangents in sub-Riemannian geometry? The answer

is not immediate. For 3-dimensional sub-Riemannian manifolds we only have the Heisenberg group

(another reason for it to be important). In general, alas, fixed the topological dimension, the tangent

is not unique. It not the same one even for a given fixed sub-Riemannian manifold. The good news

is that, analogously as the Heisenberg has a group structure, the metric tangent at ‘regular’ points

of a sub-Riemannian manifold has a Lie group structure. It has more: it has a dilation property.

Such Lie groups are those called Carnot groups.

The idea is that we should first understand the geometry of Carnot groups which are still examples

of sub-Riemannian manifolds. After this, we will consider the general case of sub-Riemannian

manifolds. There is hope to understand Carnot groups exactly because using the translations by

elements and the dilation property it is possible to extend the theory of calculus in such a setting.

The reader should notice how in the classical definition of derivative of a real function, we make use

of addition, multiplications, and limits:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

All this operations are present on Carnot groups. Thus we have a metric definition of derivative,

which is called today Pansu derivative, in honor to the work that Pierre Pansu did on the subject,

[Pan89].
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0- A brief introduction

Let us enunciate one of the most celebrated theorem of Pansu, which afterwards has been ex-

pressed in its generality in [MM95].

Theorem 0.0.2 (Pansu’s Rademacher Theorem [Pan89, MM95]). The blow up differential of a

Lipschitz map between sub-Riemannian manifolds exists at almost all points and is a group homo-

morphism of the tangent cones equivariant with respect to their dilations.

In fact the theorem holds more generally for quasi-conformal mappings. The theory of quasi-

conformal mappings has been used to prove rigidity theorems on hyperbolic n space over the division

algebras of real, complex, or hyperbolic numbers, by studying quasi-conformal mappings on their

boundary spheres at infinity.

The second part of the course will be focused on some topics of Geometric Measure Theory in the

setting of Carnot groups. Most of the presented results are valid in the case of nilpotent Lie groups

endowed with their Carnot-Carathéodory metric. In particular we focus on the following problems:

• Are sets that have finite perimeter rectifiable?

• How the theory of minimal surfaces differs from the Euclidean case?

• What is the regularity of geodesics?

The above questions have not complete answers yet. In fact they are leading most of the recent

research in sub-Riemannian geometry.

The last part of the notes is devoted to the study of the coarse geometry of discrete nilpotent

groups. We will see how a geometric notion as the polynomial growth of balls in the Cayley graph

of a discrete group relates with the geometry of the tangent cone at infinity of this graph, which in

this case turns out to be a Carnot group endowed with a Finsler-Carnot-Carathéodory metric, and

eventually gives an algebraic consequence: the group is (virtually) nilpotent.
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Chapter 1

Sub-Riemannian geometries as
models

Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Rieman-

nian geometry in Russia) has been a full research domain from the 80’s, with motivations and

ramifications in several parts of pure and applied mathematics, namely:

* control theory

* classical mechanics

* symplectic and contact geometry

* Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization,

and where sub-Riemannian metrics may appear as limit cases)

* diffusion on manifolds

* analysis of hypoelliptic operators

* Cauchy-Riemann (or CR) geometry.

However, historically it was not clear that such theories were heading into the same notion. Thus

each source provided its own jargon to the field. The non-expert reader will soon realize that some

concepts coincide: a distribution of hyper-plane in an odd-dimensional manifold is in fact a contact

structure and the concept of Carnot-Carathéodory metric is the same of sub-Riemannian distance.

1.1 Many examples from physics

Sub-Riemannian geometry models various structures, from finance to mechanics, from bio-medicine

to quantum phases, from robots to falling cats! We don’t want to enter in the details first because

of lack of time, second because of lack of competence. We will address the interested reader to other
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(a) A photo. (b) A sketch.

Figure 1.1: The cat spins itself around and right itself.

papers.

The geometry of principal bundles with connections

Theoretical physics defines most mechanical systems by a kinetic energy and a potential energy.

Gauge theory also know as the geometry of principal bundles with connections studies systems with

physical symmetries, i.e., when there is a group acting on the configuration space by isometries.

Most of the times it will be easier to understand the dynamics up to isometries, successively one has

to study the ‘lift’ of the dynamics into the initial configuration space. Such lifts will be subject to

a sub-Riemannian restriction.

Falling cats

The formalism of principal bundles with connections is well presented by the example of the fall of

a cat. A cat, dropped from upside down, will land on its self. The reason of this ability is the good

flexibility of the cat in changing its shape.

Let us fix some formalism. Let M be the set of all the possible configurations in the 3D space of

a given cat. Let S be the set of all the shapes that a cat can assume. Both M and S are manifolds

of dimension quite huge. A position of a cat is just its shape plus its orientation in space. Otherwise

said, the group of isometries G := Isom(R3) of the Euclidean 3D space acts on M and the shape

6



1.1 Many examples from physics

Figure 1.2: A ball rolling on the plane without sliding.

space is just the quotient of the action:

π :M →M/G = S.

In fancy words, M is a principal G-bundle.

The key fact is that the cat has complete freedom in deciding its shape σ(t) ∈ S at each time

t. However, during the fall, each strategy σ(t) of changing shapes will give as a result a change in

configurations σ̃(t) ∈M . The curve σ̃(t) satisfies

π(σ̃) = σ.

Moreover the lifted curve is unique: it has to satisfy the constrain given by the ‘natural mechanical

connection’. What the cat is proving is that such connection has non-trivial holonomy. In other

words, the cat can choose to vary its shape from the standard normal shape into the same shape

giving as a result a change in configuration: the legs were initially toward the sky, then they are

toward the floor.

From mechanics: parking cars, rolling balls, moving robots, and satellites

Parking a car or riding a bike. The configuration space is 3-dimensional: the position in the 2-

dimensional street plus the angle with respect to a fixed line. However, the driver has only two

degree of freedom: turning and pushing. Using again non-trivial holonomy we can move the car to

any position we like.

Rolling a ball on the plane. A position of a ball lying on a plane requires five coordinates: two

reals to characterize the point in the plane where the ball is touching it, another two coordinates
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1- Sub-Riemannian geometries as models

to characterize the point of the ball which touches the plane, and the last one for spinning the ball

around its vertical axis. When one rolls the ball without sliding, there are only three admissible

control directions: two to choose a direction and then roll the ball and the third one for spinning it.

Still, one can get to any position regardless of the initial position.

In robotics the mechanisms, as for example the arm of a robot, are subjected to constrain of

movements but do not decrease the manifold of positions. Similar is the situation of satellites.

One should really think about a satellite as a falling cat: it should choose properly its strategy of

modifying the shape to have the necessary change in configuration. Another similar example is the

case of an astronaut in outer space.

Vision

I became aware of the following application from conversations with S. Pauls and G. Citti. A

suggested-to-curious-readers paper is [SCP08].

Neuro-biologic research over the past few decades has greatly clarified the functional mechanisms

of the first layer (V1) of the visual cortex. Such layer contains a variety of types of cells, including

the so-called simple cells. Researchers found that simple cells are sensitive to orientation specific

brightness gradients.

Recently, this structure of the cortex has been modeled using a sub-Riemannian manifold. The

space is R2×S1 where each point (x, y, θ) represents a column of cells associated to a point of retinal

data (x, y) ∈ R2, all of which are attuned to the orientation given by the angle θ ∈ S1. In other

words, the vector (cos θ, sin θ) is the direction of maximal rate of change of brightness at point (x, y)

of the picture seen by the eye, such vector can be seen as the normal to the boundary of the picture.

The moral is that when the cortex cells are stimulated by an image, the border of the image gives

a curve inside this 3D space. Such curves are restricted to be tangent to the distribution spanned

by the vector fields

X1 = cos(θ)∂x + sin(θ)∂y and X2 = ∂θ.

Researchers think that, if a piece of the contour of a picture is missing to the eye vision (or maybe

it is covered by an object), then the brain tends to ‘complete’ the curve by minimizing some kind

of energy, in other words, there is some sub-Riemannian structure on the space of visual cells and

the brain consider a sub-Riemannian geodesic between the endpoints of the missing data.
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Quantum mechanical systems

I became aware of the following application from a discussion with Ugo Boscain and reading his

‘Habilitation à diriger des recherches’.

Let H be a complex separable Hilbert space. Let us denote by S the unit sphere in H.

The time evolution of quantum mechanical system (e.g., an atom, a molecule, or a system of

particles with spin) is described by a map ψ : R → S, called wave function. The vector ψ(t) is called

the state of the system at time t.

The equation of evolution of the state is the so-called Schrödinger equation. If the system is

isolated, the equation has the form:

i
dψ

dt
(t) = H0ψ(t),

where H0 is a self-adjoint operator acting on H called free Hamiltonian.

Let us assume for simplicity of notation that the spectrum of H0 is discrete and non-degenerate,

with eigenvalues E1, E2, . . . (called energy-levels) and eigenvectors ψ1, ψ2, . . . ∈ S.

Assume now to act on the system with some external fields (e.g an electromagnetic field) whose

amplitude is represented by some functions u1, . . . , um ∈ L∞(R,R). In this case the Schrödinger

equation becomes

i
dψ

dt
(t) = H(t)ψ(t), where H(t) = H0 +

m∑
j=1

uj(t)Hj ,

and Hj are self-adjoint operators representing the coupling between the system and the external

fields. The time dependent operatorsH(t) and
∑m
j=1 uj(t)Hj are called respectively the Hamiltonian

and the control-Hamiltonian. The typical problem of quantum control is the so called population

transfer problem:

Assume that at time zero the system is in an eigenstate ϕj of the free Hamiltonian H0. Design

controls u1, . . . , um such that at a fixed time T the system is in another prescribed eigenstate ϕl of

H0.

Nowadays quantum control has many applications in chemical physics, in nuclear magnetic reso-

nance (also in medicine) and it is central in the implementation of the so-called quantum gates (the

basic blocks of a quantum computer).

For a finite dimensional quantum mechanical system, if n is the number of energy levels we have

H = Cn and the state space S is the unit sphere S2n−1 ⊂ Cn. In this setting, problems of quantum

9
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mechanics (being multilinear) can be formulated with matrices. The solution is of the form

ψ(t) = g(t)ψ(0), with g(t) ∈ SU(n).

The Schrödinger equation becomes
d

dt
g(t) = −iH(t)g(t), and now −iH(t) is a skew trace-zero

Hermitian matrix, i.e., belongs to the Lie algebra su(n).

The controllability problem (i.e. proving that for every couple of points in SU(n) one can find

controls steering the system from one point to the other) is nowadays well understood. Indeed, the

system is controllable if and only if the Hörmander’s condition holds:

Lie{iH0, iH1, . . . , iHm} = su(n).

Once that controllability is proved one would like to steer the system, between two fixed points

in the state space, in the most efficient way. Typical costs that are interesting to minimize in the

applications are:

• Energy transferred by the controls to the system (minimizing time with unbounded controls

is today well understood);

• Time of transfer (minimizing time with bounded controls or energy is very difficult in general).

Even more examples

In finance... I don’t know how! Talk with ETH professor Josef Teichmann.

Quantum Berry’s phases... I don’t know how! See references in the introduction in [Mon02].

1.2 An application to univalent function theory

There is a very remarkable application of sub-Riemmanian geometry to univalent function theory.

The application is very recent and so not still well known, it is why we prefered to expose this instead

of other beautiful application of sub-Riemmanian geometry to another branch of pure mathematics.

Our quick summary is based on the work by Markina, Prokhorov and Vasilev in a 2007 paper in

J Funct Anal (”Sub-Riemannian geometry of the coefficients of univalent functions”) and on kind

conversations with Jeremy Tyson.

Classical univalent function theory considers the class S of analytic univalent functions f defined

in the unit disc normalized by f(0) = 0 and f ′(0) = 1.

10



1.3 An isoperimetric problem on the plane

Basic (unsolved) problems are to describe the coefficient body

M = {(ak) : (ak) are the power series coefficients at z = 0 for a function in S}

or its finite-dimensional slices

Mn = {(a2, a3, . . . , an+1) : (ak) are the first n (undetermined) power series coefficients at z = 0 for a function inS}.

The Bieberbach Conjecture (proved by de Branges in 1984) says |an| ≤ n for all n. This gives

information on the size of Mn and M . There is no explicit description of Mn except for the cases

n = 2 (trivial) and n = 3 (Schaeffer-Spencer, 1950).

One of the basic tools in the subject is the Loewner (or Loewner-Kufarev) parametric rep-

resentation, which embeds any function f ∈ S into an ODE flow within the class S. Loewner

parametrizations were used by de Branges in his proof. Nowadays there is a stochastic version of the

Loewner flow (SLE) which is a very hot topic at the intersection of probability, complex analysis,

stochastic PDE, math physics, etc.

Anyways, what Markina-Prokhorov-Vasilev show is that one can use the Loewner flow on S

to define a natural (partially integrable) Hamiltonian system on the coefficient bodies Mn. They

find certain first integrals of the flow and calculate all the relevant commutators. From there they

construct a *complex* sub-Riemannian structure onMn which is naturally adapted to the underlying

univalent function theory. In fact, the Loewner parametrices become horizontal curves with restect

to this sub-Riemannian structure.

Problem 1.2.1. extending Markina-Prokhorov-Vasilev’s setup to cover SLE as well as the classical

(deterministic) Loewner equation.

1.3 An isoperimetric problem on the plane

The isoperimetric problem is the problem in which, giving a length, one has to look for the maximal

area among those domains with that fixed length as perimeter. We will be interested in a variant of

the standard isoperimetric problem: the Dido’s problem.

Dido was, according to ancient Greek and Roman sources, the founder and first Queen of

Carthage (in modern-day Tunisia). She is best known from the account given by the Roman poet

Virgil in his Aeneid. Indeed, in this epic poem it is narrated that King Jarbas was persuaded by

Dido to give a piece of land on the African coast to settle. This land would have been as much as

11



1- Sub-Riemannian geometries as models

Queen Dido would have encaptured with a leather string, using also the coastline. The solution is

easy to find: a half-circle.

Let us give a mathematical model of such problem. On R2 the area form is vol = dx∧ dy, which

is the differential of the one-form

α =
1

2
(xdy − ydx) =

1

2
r2dθ.

Applying Stoke’s Theorem we get that, if a closed smooth counterclockwise-oriented curve γ in R2

encloses a domain Dγ , then the area of Dγ is just the integral of α along γ:

Area(Dγ) =

∫∫
Dγ

vol =

∫
γ

α.

Observe that at each point (x, y) ∈ R2, the vector (x, y) is in the kernel of α, thus, if L is a

line through the origin, we have that
∫
L
α = 0. This observation let us conclude that, if γ is a

smooth curve that is not necessarily closed, then
∫
γ
α expresses the signed area enclosed by γ and

the segment connecting the endpoints of γ.

Therefore, Dido’s problem rephrases as the problem of maximize the integral
∫
γ
α having fixed

the integral
∫
γ
ds, which express the length of the curve as integration of it with respect to the

element of arch length ds.

1.4 The Heisenberg geometric problem

One of the models of the Heisenberg geometry is constructed as follows and it has the property that

the projection π : R3 → R2 on the first two coordinates sends geodesics into those solutions of the

Dido’s isoperimetric problem.

If we start from a curve σ(t) = (x(t), y(t)) in R2, with x(0) = y(0) = 0, we can lift it into a 3D

curve where the third coordinate z(t) is the signed area encaptured by the arc σ[0,t] and the segment

from 0 to (x(t), y(t)), see Figure 1.4. Therefore

z(t) :=

∫
σ[0,t]

α =

∫
σ[0,t]

1

2
(xdy − ydx). (1.4.1)

Differentiating in t we get

ż =
1

2
(xẏ − yẋ). (1.4.2)

Set ξ = dz − 1

2
(xdy − ydx). Consider a curve γ = (γ1, γ2, γ3) : [0, 1] → R3 starting at 0. Then we

have that such lifted curves are exactly those satisfying γ̇ ∈ ker(ξ), i.e., ξ((γ̇1, γ̇2, γ̇3)) ≡ 0.

12



1.4 The Heisenberg geometric problem

Figure 1.3: The lift of the curve is performed defining the third coordinate z(t) as the oriented area
of the region between the arc of the curve up to the point (x(t), y(t)) and the straight segment from
0 to (x(t), y(t)).

x

y
z

(a) Picture by Stephan Schönenberger. (b) Picture by Wikipedia community.

Figure 1.4: Standard contact distribution on R3.

1.4.1 The standard contact structure

The previous form

ξ = dz − 1

2
(xdy − ydx) = dz − 1

2
r2dθ (1.4.3)

is called the ‘standard contact’ form1. It is a differential one-form on R3. Such form then gives at

any point (x, y, z) ∈ R3 a 2D kernel inside the tangent space T(x,y,z)R3 ∼= R3 at (x, y, z):

∆(x,y,z) := ker(ξ(x,y,z)) =

{
(v1, v2, v3) ∈ R3 : v3 =

1

2
(xv2 − yv1)

}
.

1A contact form on a (2n+ 1)-dimensional differentiable manifold M is a 1-form α, with the property that

α ∧ (dα)n ̸= 0,

with
(dα)n = dα ∧ · · · ∧ dα︸ ︷︷ ︸

n

.

Sometime the contact forms dz − xdy + ydx = dz − r2dθ and dz + xdy are also called standard.

13



1- Sub-Riemannian geometries as models

Geometrically, ∆ is a field of 2D planes in the 3D space, also know as distribution. Now, given

vectors v = (v1, v2, v3) and w = (w1, w2, w3), consider the linear product given by

⟨v, w⟩ := v1w1 + v2w2. (1.4.4)

Notice that, since the planes ∆(x,y,z) never in the z-axis, then the restriction of ⟨·, ·⟩ on ∆(x,y,z)

is a positive-defined inner product. If one prefers, such restriction could be thought as a restriction

of a Riemannian tensor on R3, i.e., a positive-defined inner product on the whole of the tangent

bundle of R3. Indeed, we can fix the following frame2 of R3:
X = ∂

∂x − 1
2y

∂
∂z ,

Y = ∂
∂y + 1

2x
∂
∂z ,

Z = ∂
∂z ,

(1.4.5)

and declare it orthonormal. Let us check that such Riemannian metric gives the linear product

(1.4.4) when restricted to the plane ∆(x,y,z). Since
∂
∂x = X + 1

2yZ and ∂
∂y = Y − 1

2xZ, then

v = v1X + v2Y + (
v1
2
y − v2

2
x+ v3)Z.

So, if v ∈ ∆(x,y,z), we have v = v1X + v2Y and thus (1.4.4).

In contact geometry a curve γ is called Legendrian with respect to ξ if ξ(γ̇) ≡ 0. In other words,

if the tangent vector γ̇(t) lies in the plane ∆γ(t). Given a Legendrian curve γ, we define its length

L(γ) as the integral of the norm of γ̇ with respect to the scalar product (1.4.4). In other words,

L(γ) is exactly the Euclidean length of the projection of γ onto the first two components of R3.

At this point we introduce a new distance on R3 which we refer to it as the contact distance.

For any p and q in R3, define

dc(p, q) := inf{L(γ) : γ Legendrian between p and q}. (1.4.6)

The fact that ξ was obtained from the Dido’s problem tells us that for any pair of points there are

several Legendrian curves joining it:

A crucial fact: Any pair of points is connected by a curve that is Legendrian with respect to ξ.

Indeed, to connect say (0, 0, 0) to (x, y, z), it is enough to take a curve σ on R2 from (0, 0) to (x, y)

with the property that the signed area enclosed by σ and the segment from (0, 0) to (x, y) is exactly

z. Then the lifted curve σ̃ will connected (0, 0, 0) to (x, y, z).

Moreover we also know that the Riemannian length of σ̃ equals the planar Euclidean length of σ.

Therefore, there is a correspondence between geodesics with respect to the metric dc and solutions

2A frame is a set of vector fields on a differentiable manifold M that at each point p ∈ M gives a basis of TpM .
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1.5 The Heisenberg group

of the ’dual’ Dido’s isoperimetric problem: fixed a value for the area, minimize the perimeter. Since

it is easy to find solutions of Dido’s problem we will be able to write explicitly the geodesics of the

metric space (R3, dc). We will do this later in Section 2.5.

1.5 The Heisenberg group

A crucial property of the Heisenberg geometry is that the space is isometrically homogeneous. In

fact, R3 can be endowed with a group structure (different from the Euclidean one) in such a way

that all of the above constructions are preserved by the action of the group onto itself.

Indeed, consider the group law3

(x, y, z) · (x′, y′, z′) :=
(
x+ x′, y + y′, z + z′ +

1

2
(xy′ − yx′)

)
. (1.5.1)

We claim that the left translations preserve the distribution ∆ and moreover preserve the orthogonal

frame X,Y, Z defined by (1.4.5). Let’s verify this claim for X. Call f a fixed left translation

f(x, y, z) := L(s,t,u)(x, y, z) = (s, t, u) · (x, y, z) =
(
x+ s, y + t, z + u+

1

2
(sy − tx)

)
. (1.5.2)

The differential is

df =

 1 0 0
0 1 0

−t/2 s/2 1

 . (1.5.3)

So dfX = ∂
∂x +

(
− t

2 − y
2

)
∂
∂z . On the other hand, X ◦ f = ∂

∂x −
1
2 (t+ y) ∂

∂z . Therefore f∗X = X ◦ f ,

i.e., X is left-invariant. Analogously, f∗Y = ∂
∂y + 1

2 (s+ x) ∂
∂z = Y ◦ f and f∗Z = ∂

∂z = Z ◦ f .

The next proposition summarizes the above discussion.

Proposition 1.5.4. The Heisenberg geometry is isometrically homogeneous: the space has a Lie

group structure so that each left translation is an isometry with respect to the contact distance dc.

The above model of the Heisenberg group has the advantage that it is easy to compute and

visualize its 1-dimensional subgroups. Indeed, one-parameter subgroups for this group structure are

the standard Euclidean lines:

γv(t) = exp (t(v1, v2, v3)) = (tv1, tv2, tv3) .

In particular, all lines through 0 in the xy-plane are geodesics.

3The reader can check that the above one is a group structure and it turns R3 into a Lie group, i.e., multiplication
and inversion are smooth maps.
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1- Sub-Riemannian geometries as models

1.5.1 The 3D nilpotent (non-Abelian) matrix group

The Heisenberg group has also a matrix model. It can be seen as a subgroup of the group of invertible

matrices. The Heisenberg group is the group of 3× 3 upper triangular matrices equipped with the

usual matrix product:

G =


1 a c
0 1 b
0 0 1

 : a, b, c ∈ R

 < GL(3,R).

Such a model is useful because (first, it is easy to remember the group structure! then) the Lie

algebra can be also seen as a matrix group and the exponential of the Lie group is the classical

exponential of matrices. Indeed, the Lie algebra is

g =


0 a c
0 0 b
0 0 0

 : a, b, c ∈ R

 .

A basis of the Lie algebra is

X =

0 1 0
0 0 0
0 0 0

 , Y =

0 0 0
0 0 1
0 0 0

 , Z =

0 0 1
0 0 0
0 0 0

 . (1.5.5)

One parameter subgroups are of the form:

γ(a,b,c)(t) = exp

t
0 a c
0 0 b
0 0 0


= I + t

0 a c
0 0 b
0 0 0

+ t2

0 a c
0 0 b
0 0 0

2

+ . . .

= I + t

0 a c
0 0 b
0 0 0

+ t2

0 0 ab
0 0 0
0 0 0

+ 0

=

1 at ct+ abt2

0 1 bt
0 0 1


1.5.2 The uniqueness of the Heisenberg group

We claim that the map

φ : (x, y, z) 7→

1 x z +
1

2
xy

0 1 y
0 0 1


is a Lie group isomorphism from the Lie group R3 with the product (1.5.1) to the Lie group of

3 × 3 upper triangular matrices with the usual matrix product. Indeed, the map φ is a group

homomorphism (straightforward calculation) and its differential at the identity is the identity matrix.
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In fact, more is true. The Heisenberg group is a nilpotent group and there are only two 3D

simply-connected nilpotent Lie groups: the Euclidean 3-space and the Heisenberg group.

Indeed,consider the Lie algebra g of the group. Since g is nilpotent, one can take Z in the center

of g which is non-trivial.Complete Z to a basis X,Y, Z of g. Now, either X and Y commute, and

so the algebra is commutative, or W := [X,Y ] ̸= 0. write W = aX + bY + cZ. Then [W,Y ] = aW

and so, since g is nilpotent, we have a = 0. Analogously b = 0. Thus c ̸= 0, and, replacing Z with

cZ, we have that the algebra of g is defined by the relations:

[X,Y ] = Z and [X,Z] = [Y, Z] = 0.

We can conclude the proof recalling that there exists a unique simply-connected Lie group with a

fixed Lie algebra (see Section 3.1.7)

1.6 Exercises

1. Prove dido’s solution: the maximal area enclosed by a curve of length l on the plane together

with a fixed line is 2l2/π and it is only obtained as an half disk.

2. Let vol = dx ∧ dy and α =
1

2
(xdy − ydx). Prove

(a) d(vol) = α;

(b) in polar coordinate, we have α =
1

2
rdθ;

(c) if L is a line through the origin, then
∫
L
α = 0.

3. Let σ be a Lipschitz curve on the plane. Let σ[0,t] = (x(t), y(t)) be the arc up to time t. Let

f : R2 → R be a smooth function. Show that

d

dt

(∫
σ[0,t]

f(x, y)dx

)
= f(x(t), y(t))

dx

dt
(t), almost everywhere.

4. Show the relations

[X,Y ] = Z and [X,Z] = [Y,Z] = 0.

in the following cases:

(a) for the vector fields in (1.4.5),

(b) for the matrices (1.5.5).
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1- Sub-Riemannian geometries as models

5. Calculate the inverse of an element (x, y, z) with respect to the group structure given by (1.5.1).

6. Consider the group structure on R3 given by (1.5.1). Prove that the lines

γv(t) = (tv1, tv2, tv3) .

are one-parameter subgroups.

7. Let L be a line through 0 in the xy-plane of R3. Prove that L is a geodesic with respect to

the contact distance distance dc defined in (1.4.6).

8. Consider the map

φ : (x, y, z) 7→

1 x z +
1

2
xy

0 1 y
0 0 1


from R3 with the product (1.5.1) to the space of 3×3 upper triangular matrices with the usual

matrix product. Prove that

(a) the map is a Lie group isomorphism,

(b) the map send the standard basis X, Y , and Z (defined in (1.4.5)) of the first Lie algebra

to the standard basis X, Y , and Z (defined in (1.5.5)) of the second Lie algebra.

9. On the vertical z-axis the distance dc defined in (1.4.6) is a multiple of the square root of the

Euclidean one.
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Chapter 2

The general theory

2.1 A review of metric geometry: lengths, geodesics spaces,
and Hausdorff measures

An overview of the main notions is necessary to clarify the setting and the terminology. There are

several excellent books [Fed69, Gro99, AFP00, Hei01, BBI01] giving a clear and detailed exposition

of the material. The purpose here is to comment some facts for non-experts.

A metric space will be denoted as (X, d), where X is the set and d the distance. If it is clear

what metric we are considering, we could write just X for the metric space. We will use the term

metric as a synonym of distance function, and never as a shortening of ‘Riemannian metric’.

A curve or path γ is a continuous mapping γ : I → X, where I ⊂ R is an interval and X is a

topological space. The map γ will often be conflated with its image γ(I).

In a metric space (X, d), the length of a curve γ : [a, b] → X is

L(γ) = Lengthd(γ) := sup

{
n∑
i=1

d(γ(ti), γ(ti−1)) : n ∈ N and a = t0 < t1 < · · · < tn = b

}
.

A rectifiable curve is a curve with finite length. One might easily check that the length does not

depend on the parametrization. A parametrization of γ is called of unit speed or parametrized by

arc length if for any t1, t2 in [a, b], we have

Length(γ|[t1,t2]) = |t2 − t1|.

Whenever the distance d(x, y) is equal to the infimum of the lengths of all paths from x to y we

say that (X, d) is a length space or a path metric space or that the metric is intrinsic. If moreover

the infimum is attained then the space is called geodesic. In other words a geodesic space is a metric

space where any two points are the endpoints of a curve whose length is exactly the distance between
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2- The general theory

the two points. Such a curve is called a geodesic. Not all length spaces are geodesic spaces, one

reason can be lackness of completeness. For locally compact spaces this can be the only obstruction:

Theorem 2.1.1 (Hopf-Rinow-Cohn-Vossen [BBI01, Theorem 2.5.23]). If a length space (X, d) is

complete and locally compact then any two points in X can be connected by a geodesic.

Given two metric spaces (X, dX) and (Y, dY ), a function

f : X → Y

is called Lipschitz if there exists a real constant K ≥ 0 such that, for all x1 and x2 in X,

dY (f(x1), f(x2)) ≤ KdX(x1, x2).

The value K (or many times the smallest value of such K’s) is called the Lipschitz constant of the

function f . A function is called locally Lipschitz if for every x ∈ X there exists a neighborhood U of

x such that f restricted to U is Lipschitz.

If there exists a K ≥ 1 with

1

K
dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ KdX(x1, x2),

then f is called biLipschitz (also written bi-Lipschitz or bilipschitz). The biLipschitz homeomor-

phisms are the isomorphisms in the category of Lipschitz maps. To be more explicit on the value

of the constant K we would say that f is a K-biLipschitz map. A biLipschitz mapping is injective,

and is in fact a homeomorphism onto its image. A 1-biLipschitz map is called an isometry.

Let S be any subset of X, and δ > 0 a real number. Define

Hd
δ (S) := inf

{ ∞∑
i=1

diam(Ui)
d :

∞∪
i=1

Ui ⊃ S, diam(Ui) < δ
}
.

Then

Hd(S) := sup
δ>0

Hd
δ (S) = lim

δ→0
Hd
δ (S)

is called the d-dimensional Hausdorff measure of S. The Hausdorff dimension is

dimHaus(S) := inf{d ≥ 0 : Hd(S) = 0} = sup
(
{d ≥ 0 : Hd(S) = ∞} ∪ {0}

)
.

20



2.2 A review of differential geometry

2.2 A review of differential geometry

2.2.1 Vector fields and Lie brackets

We will denote by M a smooth differentiable manifold with topological dimension n.

For x ∈ M , the fiber TxM of the tangent bundle TM is a derivation of germs of C∞ functions

at x (i.e., an R-linear application from C∞(x) → R that satisfies the Leibnitz rule). If F : M → N

is smooth and x ∈ M , we shall denote by dFx : TxM → TF (x)N its differential, defined as follows:

the pull back operator u 7→ F ∗
x (u) := u◦F maps C∞ (F (x)) into C∞(x); thus, for v ∈ TxM we have

that

dFx(v)(u) := v(u ◦ F )(x), u ∈ C∞(F (x))

defines an element of TF (x)N .

We denote by Γ(TM) the linear space of smooth vector fields, i.e. smooth sections of the tangent

bundle TM ; we will typically use the notation X, Y, Z to denote them. We use the notation

[X,Y ]f := X(Y f)− Y (Xf) for the Lie bracket, that induces on Γ(TM) an infinite-dimensional Lie

algebra structure.

If F : M → N is smooth and invertible and X ∈ Γ(TM), the push forward vector field F∗X ∈

Γ(TN) is defined by the identity (F∗X)F (x) = dFx(Xx). Equivalently,

(F∗X)u := [X(u ◦ F )] ◦ F−1 ∀u ∈ C∞(M). (2.2.1)

The push-forward commutes with the Lie bracket, namely

[F∗X,F∗Y ] = F∗[X,Y ] ∀X, Y ∈ Γ(TM). (2.2.2)

If F :M → N is smooth and σ is a smooth curve on M , then

dFσ(t)(σ
′(t)) = (F ◦ σ)′(t), (2.2.3)

where σ′(t) ∈ Tσ(t)M and (F ◦ σ)′(t) ∈ TF (σ(t))N are the tangent vector fields along the two curves,

in M and N . If u ∈ C∞(M), identifying Tu(p)R with R itself, given X ∈ Γ(TM), we have

dup(X) = Xp(u).

2.2.2 Riemannian and Finsler geometry

Let M be a differentiable manifold of dimension n. A Riemannian metric on M is a family of

(positive definite) inner products

gp : TpM × TpM −→ R, p ∈M,
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2- The general theory

such that, for all differentiable vector fields X,Y on M ,

p 7→ gp(Xp, Yp)

defines a differentiable function M → R. The assignment of an inner product gp to each point p of

the manifold is called a metric tensor.

In a system of local coordinates on the manifold M given by n real-valued functions x1, . . . , xn,

the vector fields {
∂

∂x1
, . . . ,

∂

∂xn

}
give a basis of tangent vectors at each point ofM . Relative to this coordinate system, the components

of the metric tensor are, at each point p,

gij(p) := gp

((
∂

∂xi

)
p

,

(
∂

∂xj

)
p

)
.

Equivalently, the metric tensor can be written in terms of the dual basis {dx1, . . . , dxn} of the

cotangent bundle as

g =
∑
i,j

gijdxi ⊗ dxj .

Endowed with this metric, the differentiable manifold (M, g) is called a Riemannian manifold.

Finsler manifolds generalize Riemannian manifolds by no longer assuming that they are infinites-

imally Euclidean in the sense that the norm on each tangent space is necessarily induced by an inner

product. Two good references on Finsler geometry are [BCS00] and [AP94].

A Finsler structure on a differentiable manifold M is given by a function ∥·∥ : TM → R that

is smooth on the complement of the zero section of TM and such that the restriction of ∥·∥ to

any tangent space TpM is a (symmetric) norm1. A Riemannian manifold has an induced Finsler

structure ∥v∥ =
√
g(v, v).

Connected Riemannian and Finsler manifolds carry the structure of length metric spaces.

Specifically, let (M, ∥·∥) be a connected Finsler manifold. Let γ : [a, b] → M be a parametrized

curve in M , which is differentiable with velocity vector γ̇. The length of γ is defined as

L(γ) :=

∫ b

a

∥γ̇(t)∥ dt.

1The definition of Finsler structure could be even more generalized allowing, for example, asymmetric norms or
not assuming linearity. Some authors also assume that a Finsler structure has strongly convex unit spheres, we do
not.
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2.3 The definition of Finsler-Carnot-Carathéodory distances

By change of variables, the arc-length is independent of the chosen parametrization. In particular,

a curve γ : [a, b] →M can be parametrized by its arc length. A curve is parametrized by arc-length

if and only if ∥γ̇(t)∥ = 1, for all t ∈ [a, b].

The distance function d :M ×M → [0,+∞) is defined by

d(p, q) = inf L(γ),

where the infimum extends over all differentiable curves γ beginning at p ∈M and ending at q ∈M .

This function d satisfies the properties of a distance function for a metric space. The only

property which is not completely straightforward is that d(p, q) = 0 implies p = q. For this property,

if the manifold is Riemannian, one can use a normal coordinate system, which also allows one to

show that the topology induced by d is the same as the original topology onM . For Finsler manifolds

one realizes that any Finsler structure is locally biLipschitz equivalent to a Riemannian structure.

2.3 The definition of Finsler-Carnot-Carathéodory distances

Let (M, ∥·∥) be a smooth Finsler manifold. Let ∆ ⊆ TM be a sub-bundle2 of the tangent bundle of

M . The names distribution or polarization are also used to refer to such a ∆. The triple (M,∆, ∥·∥)

is called sub-Finsler manifold; if the Finsler norm ∥·∥ is given by a Riemannian scalar product g,

then (M,∆, g) is called sub-Riemannian manifold. An absolutely continuous3 curve γ in M is said to

be horizontal with respect to the distribution ∆ if γ̇(t) ∈ ∆, for almost all t. The names admissible

or controlled paths are also used to refer to such a γ. The length of γ with respect to ∥·∥ is

L(γ) := Length∥·∥(γ) :=

∫ 1

0

∥γ̇(t)∥ dt.

Then one can consider the metric on M induced by ∆ and ∥·∥.

For any x, y ∈M , we define the distance function

dCC(x, y) := inf{Length∥·∥(γ) | γ horizontal, from x to y}. (2.3.1)

Roughly speaking, in presence of minimizing curves, the distance of two points is given by the length

of the shortest horizontal curve. Such a distance is called the Finsler-Carnot-Carathéodory distance.

2A subbundle E of a vector bundle F on a topological space M is a collection of linear subspaces Ep of the fibers
Fp of F at p in M , that make up a vector bundle in their own right.

3A curve f : [a, b] → Rn is absolutely continuous if and only if there is a Lebesgue integrable map ḟ : [a, b] → Rn

such that

f(x) = f(a) +

∫ x

a
ḟ(x)dx.

23



2- The general theory

When the norm is given by a scalar product, the distance dCC defined in (2.3.1) is called Carnot-

Carathéodory or sub-Riemannian. Such metric appeared in the literature under a variety of names:

‘singular Riemannian metric’, ‘non-holonomic Riemannian metric’. It was also used in the theory of

hypo-elliptic PDE, but without a name.

Remark 2.3.2. Notice that we have assumed yet nothing that would imply that such a distance is

finite. The metric dCC is finite provided that the distribution ∆ satisfies the following condition due

to Hörmander, and the manifold M is assumed connected.

2.3.1 Hörmander’s condition

To describe Hörmander’s condition, let X1, X2, . . . , Xk be a local framing for ∆ near a point p ∈M .

If these vector fields, along with all their commutators, span TpM , then the vector fields are said to

satisfy Hörmander’s condition at p.

Denote by ∆[j](p) the subspace of TpM spanned by all commutators of the Xi’s of order ≤ j

(including, of course, the Xi’s). Namely, Xi(p) has order 1; [Xi, Xj ](p) has order 2; [Xi, [Xj , Xk]](p)

has order 3; but those of order 4 are those in one of the two forms:

[Xi, [Xj , [Xk, Xl]]](p) or [[Xi, Xj ], [Xk, Xl]](p).

Once can show, see Exercise 2.7.5, that ∆[j](p) does not depend upon the choice of local basis Xj ,

so it makes sense to say that the distribution satisfies Hörmander’s condition at p if dim∆[j](p) =

dim(M) for some j, i.e.,

(Hörmander’s condition) TpM = ∆[j](p), for some j ∈ N.

The sub-bundles ∆ ⊆ TM that satisfy the Hörmander’s condition at every point of M are also

called bracket generating distributions.

The number

Q =
∑
j

j
(
dim∆[j](p)− dim∆[j−1](p)

)
(2.3.3)

is called the metric dimension or also homogeneous dimension (at p) and will have an important

metric role, see Corollary 2.6.6.

2.3.2 The generalization of Control Theory

In Control Theory one is interested in systems of differential equations of the form

u̇ =
m∑
i=1

cj(t)X(u), (2.3.4)
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2.3 The definition of Finsler-Carnot-Carathéodory distances

where X1, . . . , Xm are given vector fields on M , and the c1, . . . , cm are variable L1 functions on

some bounded interval. These functions are called control functions or controls. Any path obtained

integrating (2.3.4) is called a controlled path.

When the rank of the system of vector fields X1, . . . , Xm is constant, controlled paths coincide

with the absolutely continuous paths tangent to the distribution

∆ = R- span⟨X1, . . . , Xm⟩

generated by X1, . . . , Xm. Conversely, any rank m distribution ∆ can, locally, be written as ∆ =

⟨X1, . . . , Xm⟩. Observe that in the previous sentence, the adverb ‘locally’ is needed, for global

topological reasons, as for example for ∆ = T (S2).

However, for many systems of interest in Control Theory, the rank of X1, . . . , Xm is not constant,

but one can still define a related distance: for p ∈M and v ∈ TpM , set

gp(v) := inf{u21 + · · ·+ u2m | u1X1 + · · ·+ umXm = v}.

We are using the notation that inf ∅ = +∞. We then have that gp is a positive definite quadratic

form on the subspace

∆p := R- span⟨X1(p), . . . , Xm(p)⟩.

The control distance associated to the system X1, . . . , Xm is defined as, for any p and q in M ,

d(p, q) = inf

{∫ 1

0

gp(γ̇(t))
1/2dt

∣∣∣ γ absolutely continuous path γ(0) = p, γ(1) = q

}
. (2.3.5)

2.3.3 The general definition

Definition 2.3.6. A (smooth) sub-Finsler structure on a manifold M is a function g : TM → [0,∞]

obtained by the following construction: Let E be a vector bundle over M endowed with a norm | · |

and let

σ : E → TM

be a morphism of vector bundles. For each p ∈M and v ∈ TpM , set

gp(v) := inf{|u| : u ∈ Ep, σ(u) = v}.

Analogously as before, one define the sub-Riemannian distance associated to the bundle E, for

any p and q in M , as

d(p, q) = inf

{∫ 1

0

gp(γ̇(t))
1/2dt

∣∣∣ γ absolutely continuous path γ(0) = p, γ(1) = q

}
.
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2- The general theory

One can check that, for the inclusion σ : ∆ ↪→ TM of a sub-bundle of the tangent bundle,

one recovers the Finsler-Carnot-Carathéodor distance (2.3.1). For E = M × Rm and σ(p, v) :=

u1X1 + · · ·+ umXm, one recovers the control distance (2.3.5).

2.3.4 Energy VS Length

The energy of a parametrized curve γ : [0, 1] →M with respect to ∥·∥ is

E(γ) := Energy∥·∥(γ) :=

√∫ 1

0

∥γ̇(t)∥2 dt.

One has the equality:

dCC(x, y) := inf{Energy∥·∥(γ) | γ horizontal, from x to y}. (2.3.7)

On the contrary of length, energy depends on the parametrization of the curve. However, by

CauchySchwarz inequality, we alway have

L(γ) ≤ E(γ),

and equality in the case that the curve is parametrized by a multiple of the arc length.

2.4 Chow’s Theorem and geodesic existence

We want to motivate now the fact that if a sub-Riemannian manifold has the property that its

distribution satisfies the Hörmander’s condition, then the Carnot-Carathéodory distance is finite.

Hörmander’s condition can be considered as an infinitesimal transitivity. Chow’s Theorem implies

local transitivity:

Theorem 2.4.1 (Chow). If a smooth distribution satisfies Hörmander’s condition at some point p,

then any point q which is sufficiently close to p can be joined to p by a horizontal curve.

A consequence of the proof of the theorem is that close points can be connected by short curves.

Theorem 2.4.2 (Chow). If M is connected and Hörmander’s condition holds at any point, then the

Carnot-Carathéodory distance dCC is finite. Moreover, the topology defined by dCC is the original

topology of M .

A sketchy proof of Theorem 2.4.1. We present here a proof taking for grant a theorem by Sussmann.

We are omitting the proof of Sussmann’s Theorem which is in fact the core of Chow’s Theorem, but
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2.5 The geodesics and the spheres in the Heisenberg group

it is well presented in [Bel96]. Later in the notes we will give a detailed proof in the easier case of

Carnot groups.

Theorem 2.4.3 (Sussmann [Sus73, Ste74, Bel96]). The sets of points accessible from a given point

p in M is an immersed sub-manifold.

Call Σ ⊂ M the immersed sub-manifold of points accessible from p. Let ∆ be the distribution.

Now, given vector field X ∈ ∆, consider the integral curve γ solution of the equation:

γ(0) = p, and γ̇(t) = Xγ(t),

then obviously γ is horizontal. Therefore the vector Xp is tangent to Σ. Thus the whole of ∆p is

tangent to Σ. Since by Sussmann’s Theorem Σ is an immersed sub-manifold, then its tangent TpΣ

is closed under bracket. Therefore the Lie span of ∆p is tangent to Σ. Then since Hörmander’s

condition holds at p, then TpM is tangent to Σ. From this we have dimM = dimΣ, and thus Σ is

a neighborhood of p.

Theorem 2.4.4 (Hopf-Rinow Theorem for sub-Riemannian manifolds). If a distribution ∆ ⊂ TM

satisfies the Hörmander’s condition at any point in M . Then sufficiently near points can be joined

by a geodesic with respect to dCC . Moreover, if M is connected and the metric space (M,dCC) is

complete, then any two points in M can be connected by a geodesic.

Proof. Theorem 2.4.2 assets that the topology of the metric space (M,dCC) is the same of the

manifold topology. In particular the space is locally compact. Applying Ascoli-Arzelà Theorem

to a compact ball we have existence of geodesics at small scale. Applying the general Hopf-Rinow

Theorem for complete and locally compact length spaces (see Theorem 2.1.1), we have the existence

of global geodesics.

2.5 The geodesics and the spheres in the Heisenberg group

We want now to use the fact that the we know the solution of the isoperimetric problem together

with the previous discussion at the end of Section 1.4.1, to have explicit formulae for the geodesics

in the Heisenberg group. Briefly, we saw that for how the geometry in the Heisenberg group has

been constructed, then the geodesics in this metric space starting at 0 are the lift of the shortest

curves on the plane that enclose a fixed area, which are part of circles. Thus the geodesic from the

identity in the Heisenberg group are the lift of circles.
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2- The general theory

The curve (
cos(kt)− 1

k
,
sin(kt)

k

)
, for t ∈ [0, 2π/|k|],

is the parametrization by arc length (starting at (0, 0)) of the circle of perimeter 2π/|k|, with center

on the negative x-axis and passing through 0. For k = 0, we can still consider the formula in the

limit sense: the circles degenerate to the line (0, t), defined for all t ∈ R.

We may rotate the curves by an angle θ ∈ R/2πZ:

Rθ

(
cos(kt)− 1

k
,
sin(kt)

k

)
=

(
cos θ − sin θ
sin θ cos θ

)(
cos(kt)− 1

k
,
sin(kt)

k

)
=

(
cos θ

cos(kt)− 1

k
− sin θ

sin(kt)

k
, sin θ

cos(kt)− 1

k
+ cos θ

sin(kt)

k

)
.

We can calculate the third coordinate as in (1.4.1).

z(T ) =

∫ T

0

1

2
(xdy − ydx)

=
1

2

∫ T

0

(
cos θ

cos(kt)− 1

k
− sin θ

sin(kt)

k

)
(− sin θ sin(kt) + cos θ cos(kt)) +

−
(
sin θ

cos(kt)− 1

k
+ cos θ

sin(kt)

k

)
(− cos θ sin(kt)− sin θ cos(kt)) dt

=
1

2k

∫ T

0

− cos θ(cos(kt)− 1) sin θ sin(kt) + (cos θ)2(cos(kt)− 1) cos(kt) +

+(sin θ)2 (sin(kt))
2 − sin θ sin(kt) cos θ cos(kt) +

+ sin θ(cos(kt)− 1) cos θ sin(kt) + (sin θ)2(cos(kt)− 1) cos(kt) +

+(cos θ)2 (sin(kt))
2
+ cos θ sin(kt) sin θ cos(kt)dt

=
1

2k

∫ T

0

(cos(kt)− 1) cos(kt) + (sin(kt))
2
dt

=
1

2k

∫ T

0

1− cos(kt)dt =
1

2k2
(Tk + sin(kT )).

We conclude that geodesics starting from the origin 0 ∈ R3 are smooth curves γ = (γ1, γ2, γ3) of

the form 
γ1(t) =

cos θ(cos(kt)− 1)− sin θ sin(kt)

k

γ2(t) =
sin θ(cos(kt)− 1) + cos θ sin(kt)

k

γ3(t) =
kt− sin(kt)

2k2
.

(2.5.1)

Such geodesics are defined for t ∈ [0, 2π/|k|] and have length 2π/|k|. When k = 0, these curves

degenerates to lines:  γ1(t) = −t sin θ
γ2(t) = t cos θ
γ3(t) = 0 .
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2.5 The geodesics and the spheres in the Heisenberg group

(a) A geodesic with non-zero curva-
ture in the Heisenberg geometry

(b) The isoperimetric sphere Sλ is C∞ outside of the poles, and C2

around them.

Figure 2.1: A ball and a geodesic in the Heisenberg geometry
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2- The general theory

We just found again the fact that lines through the origin in the xy-plane are geodesics.

Some consequences of the above characterization of the geodesics are the following facts. Denote

by C ⊂ R3 the z-axis, which is the center of the Heisenberg group structure.

Fact 2.5.2. For any p ∈ R3 \ C there exists a unique geodesic arc connecting 0 and p.

Fact 2.5.3. For any p ∈ C \ {0} there exists a one-parameter family of geodesic arcs connecting 0

and p.

Fact 2.5.4. The mapping Φ : {(θ, k, t)|θ ∈ R/2πZ, k ∈ R, t ∈ (0, 2π|k| )} → R2 \ C given by

Φ(θ, k, t) =

(
cos θ(cos(kt)− 1)− sin θ sin(kt)

k
,
sin θ(cos(kt)− 1) + cos θ sin(kt)

k
,
kt− sin(kt)

2k2

)
(2.5.5)

is a homeomorphism.

Fact 2.5.6. All the metric balls and metric spheres in the Heisenberg group are topological balls and

spheres, respectively.

We shall notice now that if B(0, r) is the ball of center 0 and radius r, then

(x, y, z) ∈ B(0, 1) ⇐⇒ (rx, ry, r2z) ∈ B(0, r). (2.5.7)

Indeed, if (γ1, γ2, γ3) is a geodesic arc of length 1 starting from the origin, then it is of the form

(2.5.1) for some k ∈ R with 2π/|k| ≥ 1, and the time of the parametrization of (2.5.1) is t ∈ [0, 1].

Now the curve (rγ1, rγ2, r
2γ3) is(

cos θ(cos(kt)− 1)− sin θ sin(kt)

k/r
,
sin θ(cos(kt)− 1) + cos θ sin(kt)

k/r
,
kt− sin(kt)

2(k/r)2

)
, for t ∈ [0, 1],

which is a geodesic that is not parametrized by arc length, but by a multiple of it, namely r. Thus

its length is r.

Notice that we did not use the homogeneous dilation v 7→ rv; the third coordinate has been

multiplied by r2. Thus, such map (x, y, z) 7→ (rx, ry, r2z) multiplies the volume by a factor of r4,

and not r3 as the usual Euclidean dilations do!

We can now deduce how is the growth of the balls in the Heisenberg geometry.

Proposition 2.5.8. Let Vol be the 3D Lebesgue volume in R3, then

Vol(B(p, r)) = r4 Vol(B(p, 1)) = r4 Vol(B(0, 1)),

for all r > 0 and all p ∈ R3.
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2.5 The geodesics and the spheres in the Heisenberg group

Figure 2.2: A picture by Belläıche of balls of different sizes in the Heisenberg geometry.

(a) Radius 2 (b) Radius 1 (c) Radius 1/2

Figure 2.3: Balls of different sizes in the Heisenberg geometry

Proof. From (2.5.7) we know that Vol(B(0, r)) = r4 Vol(B(0, 1)). Now we can conclude the proof

using both the fact that left translations (1.5.2) in the Heisenberg group are isometries together with

the fact that they preserve the volume. This last fact can be checked noticing that the determinant

of the differential of a left translations is 1, see (1.5.3).

Corollary 2.5.9. The Heisenberg group endowed with the standard Carnot-Carathéodory distance

has Hausdorff dimension equal to 4.

Proof. It is enough to prove that there are positive constants k1 and k2 such that the minimal

number Nϵ of balls of radius ϵ needed to cover the unit ball satisfies

k1ϵ
−4 < Nϵ < k2ϵ

−4.

For the lower bound, let B1, . . . , BNϵ be such balls. Then

Vol(B(0, 1)) ≤
Nϵ∑
j=1

Vol(Bj) = Nϵϵ
4 Vol(B(0, 1)).

For the upper bound, let B1, . . . , BN be a maximal family of disjoint balls of radius ϵ/2 in the unit

ball. Then

Vol(B(0, 1)) ≥
N∑
j=1

Vol(Bj) = N
( ϵ
2

)4
Vol(B(0, 1)).

Now, since the family {Bj}j is maximal, the ball with same centers as the Bj ’s and radius ϵ make

up a cover of the unit ball. Thus

Nϵ ≤ N ≤ 16ϵ−4.
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2- The general theory

Figure 2.4: The unit ball in the Heisenberg geometry

Figure 2.5: Sections of the unit ball in the Heisenberg geometry

More pictures

Here are some more pictures drawn with Mathematica 7.

One more picture should be added, showing that at the two “poles” the sphere is not smooth.

Figure 2.6: Balls and geodesics in the Heisenberg geometry
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2.6 Ball-box Theorem and Hausdorff dimension

2.6 Ball-box Theorem and Hausdorff dimension

For the benefit of a clear exposition let us assume that a given distribution ∆ ⊂ TM has the property

that there exist vector fields X1, . . . , Xn ∈ Γ(TM) such that, for all p in M , the first k

X1(p), . . . , Xk(p)

form a basis of ∆(p), they are a framing of M , i.e.,

X1(p), . . . , Xn(p)

form a basis of TpM , and moreover, for each j ∈ {1, . . . , n}, there exists dj ∈ N, called the degree of

Xj , such that

Xj(p) ∈ ∆[dj ](p) \∆[dj−1](p), ∀p ∈M.

This last condition is a regularity assumption on ∆. We will call such ∆ equiregular distributions.

Not all distributions are equiregular, however, the following discussion can be generalized, see [Bel96].

The plan is to parametrize the manifold M using the flow of linear sums of such vector fields.

Recall that, for p ∈ M and X ∈ Γ(TM), one denotes by expp(X) the value γ(1) at time 1 of the

integral curve γ of the vector field X starting at p, i.e., the solution of

γ̇ = Xγ and γ(0) = p.

Fixed p ∈M , we define the exponential coordinates as

Φ : Rn −→M

Φ(t1, . . . , tn) := expp(t1X1 + . . .+ tnXn).

Such map might be defined only on a neighborhood of 0 ∈ Rn.

The box with respect to X1, . . . , Xn is defined as

Box(r) := {(t1, . . . , tn) ∈ Rn : |tj | ≤ rdj}.

The following comparison theorem is due to many people (Mitchell, Gershkovich, Nagel-Stein-

Wainger, cf. [Gro99]) and is called ball-box theorem since compare the boxes Box(r) in Rn with the

balls B(p, r) with respect to the dCC distance.
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Theorem 2.6.1 (Ball-Box Theorem). Let (M,∆, ∥·∥) be a sub-Finsler manifold with an equiregular

distribution ∆. Let Φ be some exponential coordinate map from a point p ∈ M constructed with

respect to some equiregular basis X1, . . . , Xn. Then there are C > 1 and ρ > 0 such that

Φ
(
Box(C−1r)

)
⊆ B(p, r) ⊆ Φ(Box(Cr)) ,

for all r ∈ (0, ρ).

The Ball-Box Theorem will be proved later in the easier case of Carnot groups, cf Theorem

4.1.10.

Remark 2.6.2. The Ball-Box Theorem 2.6.1 gives a quantitative version of Chow’s Theorems 2.4.1

and 2.4.2.

As far as we know, nothing is known regarding the following natural question, except for contact

3-manifolds.

Question 2.6.3 (Open!). Are all sufficiently small sub-Finsler balls and spheres homeomorphic to

the usual Euclidean balls and spheres?

Here is a first consequence of the Ball-Box Theorem 2.6.1.

Corollary 2.6.4 (Hölder equivalence of CC and Euclidean metrics). Locally, each sub-Finsler man-

ifold is Hölder equivalent to a Rimannian manifold.

Proof. Let (M,∆, ∥·∥) be the sub-Finsler manifold. Let g be a Riemannian tensor whose norm is

smaller than ∥·∥ and denote by dRiem the induced Riemannian distance.

Consider the identity map id :M →M . Obviously the map

id : (M,dCC) → (M,dRiem)

is 1-Lipschitz, and so Hölder.

Now, let α := maxj dj the maximum of the degree {dj} of the vector fields of some equiregular

basis {Xj}. Using the facts that, for ρ ∈ (0, 1), one has that

n∏
j=1

[−rα, rα] ⊂ Box(r),

that the exponential maps has surjective differential at the origin, and the second inclusion of the

Ball-Box Theorem 2.6.1, one shows that the map

id : (M,dRiem) → (M,dCC)
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2.6 Ball-box Theorem and Hausdorff dimension

is α-Hölder.

2.6.1 The problem of dimensions of hyper-surfaces in CC spaces

Define homogeneous dimension as

Q =
n∑
j=1

dj , (2.6.5)

which is in fact equal to (2.3.3).

Corollary 2.6.6. If a sub-Finsler manifold (M,∆, ∥·∥) has an equiregular distribution then the

Hausdorff dimension of (M,dCC) is the homogeneous dimension Q. Moreover, the Q-Hausdorff

measure of (M,dCC) is locally equivalent (up to multiplication by a function) of the Finsler volume

form.

Computing the Hausdorff dimension and Hausdorff measure of submanifolds in sub-Finsler man-

ifolds with respect to the Carnot-Carathéodory distance is a rather natural question.

In 0.6 B of [Gro99], Gromov has given a general formula for the Hausdorff dimension of smooth

submanifolds in equiregular Carnot-Carathéodory spaces and in [Mag08a] it is shown that this

formula coincides with the degree of the submanifold, recently introduced in [MV08].

Theorem 2.6.7 ([Gro99, page104]). Let (M,∆, ∥·∥) be a sub-Finsler manifold with an equiregular

distribution ∆ and Carnot-Carathéodory distance dCC . Let Σ ⊂ M a smooth sub-manifold. Then

the Hausdorff dimension of (Σ, dCC) is

dimHau(Σ, dCC) = max


n∑
j=1

j · rank(TpM ∩∆[j](p))/(TpM ∩∆[j−1](p))) : p ∈ Σ

 .

Nevertheless, the question regarding Hausdorff measures of smooth submanifolds has not yet

an answer. In [MV08] Magnani and Vittone found an integral formula for the spherical Hausdorff

measure of submanifolds in Carnot groups under a suitable ‘negligibility condition’. This negligibility

condition has been recently obtained in all two step groups, [Mag08a] using standard covering

arguments, and in the Engel group, using blow-up arguments [LDM08]. However it is still open in

higher step groups and in general sub-Riemannian manifolds. We address the reader to the work of

Magnani [MV08, Mag08b, Mag08a] for more information on this problem and its connections with

the literature.

Problem 2.6.8. Study Hölder equivalence and Hölder embeddings between sub-Riemannian mani-

folds.
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2.7 Exercises

Exercise 2.7.1. Prove that any absolutely continuous curve in Rn can be re-parametrized to be a

Lipschitz curve with respect to the Euclidean distance.

Exercise 2.7.2. Prove that Finsler-Carnot-Carathéodory distances, and in particular Riemannian

and Finsler distances, are length distances.

Exercise 2.7.3. Let (M,∆, ∥·∥) be a sub-Finsler manifold. We denote by LengthdCC
and Length∥·∥

respectively the length with respect to the metric dCC and the length with respect to the Finsler norm

∥·∥. Let γ be a horizontal curve. Show that

Length∥·∥(γ) = LengthdCC
(γ).

Exercise 2.7.4. Let γ be any absolutely continuous curve in a sub-Finsler manifold. Prove that

γ is horizontal ⇐⇒ LengthdCC
(γ) < +∞.

Exercise 2.7.5. Let ∆[j](p) the vector space defined in Section 2.3.1. Prove that

∆[j](p) = ∆[j−1](p) + R- span {[X1, [X2[. . . [Xj−1, Xj ]] . . .]](p) : X1, . . . Xj ∈ Γ(∆)} .

Exercise 2.7.6. Let ∆[j](p) the vector space defined in Section 2.3.1.

1. Show that ∆[j] might not be a sub-bundle of TM .

2. Prove that, if ∆[j] is a sub-bundle and so make sense to consider smooth sections Γ(∆[j]) of

the bundle ∆[j], then

∆[j+1](p) = ∆[j](p) + R- span
{
[X,Y ](p) : X ∈ Γ(∆), Y ∈ Γ(∆[j])

}
.

Exercise 2.7.7. Recall that Γ(∆) denote the smooth sections of the bundle ∆. Define span(∆) :=

Lie- span{Γ(∆)}. Show that the Hörmander’s condition is equivalent to span(∆) = TM . (What is

not immediately obvious is that elements of the form [[X1, X2], [X3, X4]], with X1, X2, X3, X4 ∈

Γ(∆), are contained in some ∆[j](p).)

Exercise 2.7.8. Let Φ be the map defined in 2.5.5. Prova that the unit ball in the Heisenberg

geometry is given by

B(0, 1) = {Φ(θ, k, t)|θ ∈ R/2πZ, k ∈ R, t ∈ (0, 1)}

= {Φ(θ, k, t)|θ ∈ R/2πZ, k ∈ [−2π, 2π], t ∈ (0, 1)},
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and the unit sphere is

S(0, 1) = {Φ(θ, k, 1)|θ ∈ R/2πZ, k ∈ [−2π, 2π]}.

Exercise 2.7.9. Prove Corollary 2.6.6 from Theorem 2.6.1.

Exercise 2.7.10. Show, without using Theorem 2.6.7, that each smooth surface in the Heisenberg

group has Haudorff dimension equal to 3.

Exercise 2.7.11. Give a proof of Corollary 2.6.6.

Exercise 2.7.12. Give a proof of Theorem 2.6.7.
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Chapter 3

Tangent cones and Carnot groups

Tangent spaces of a sub-Riemannian manifold are themselves sub-Riemannian manifolds. They can

be defined as metric spaces, using Gromov’s definition of tangent spaces to a metric space, and

they turn out to be sub-Riemannian manifolds. Moreover, they come with an algebraic structure:

nilpotent Lie groups with dilations. In the classical, Riemannian case, they are indeed vector spaces,

that is, Abelian groups with dilations. Actually, the above is true only for regular points. At singular

points, instead of nilpotent Lie groups one gets quotient spaces G/H of such groups G. Most of the

exposition on tangent spaces is taken from [Bel96]. The prerequisites regarding Lie groups and Lie

algebras are based on [War83] and [CG90].

3.1 Lie groups and their Lie algebras

Let G be a Lie group, i.e. a differentiable n-dimensional manifold with a smooth group operation.

Definition 3.1.1 (Lie group). A Lie group is a differentiable manifold1 which is also endowed with

a group structure such that the following map is C∞

G×G → G

(x, y) 7→ x−1y.

We shall denote by e the identity of the group, by Rg(h) := hg the right translation, and by

Lg(h) := gh the left translation.

As in any manifold, the set of vector fields Γ(TG) forms a Lie algebra. The general notion of Lie

algebra is the following:

1Here we allow the case of non-connected manifolds, however we always consider second countability. Thus Lie
groups can have at most countably many components.
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3- Tangent cones and Carnot groups

Definition 3.1.2 (Lie algebra). A Lie algebra g over R is a real vector space together with a bilinear

operation

[·, ·] : g× g → g

(called the Lie bracket) such that, for all x, y, z ∈ g,

anti-commutativity [x, y] = −[y, x]

Jacobi identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

The importance of the concept of Lie algebras is that there is a special finite dimensional Lie

algebra intimately associated with each Lie group, and that properties of the Lie group are reflected

in properties of its Lie algebra. We shall see, for example, that the connected, simply connected Lie

groups are completely determined (up to isomorphism) by their Lie algebras.

The Lie algebra associated to a group is, as a vector space, the tangent TeG at the identity. To

see TeG as a subset of Γ(TG), we have to extend each vector to a vector field. Forced to make

a choice, we follow the majority of the literature focusing on the left invariant vector fields. i.e.

the vector fields X ∈ Γ(TG) such that (Lg)∗X = X, so that (dLg)xX = XLg(x) for all x ∈ G. In

differential terms, we have

X(f ◦ Lg)(x) = Xf(Lg(x)) ∀x, g ∈ G.

Thanks to (2.2.2) with F = Lg, the class of left-invariant vector fields is easily seen to be closed

under the Lie bracket, and we shall denote by g ⊆ Γ(TG) the Lie algebra of left-invariant vector

fields.

Note that, after fixing a vector v ∈ TeG, we can construct a left-invariant vector field X defining

Xg := (Lg)∗v for any g ∈ G. This construction is an isomorphism between the set g of all left-

invariant vector fields and TeG, and proves that g is an n-dimensional subspace of Γ(TG).

A map F : G→ H between Lie groups is said a Lie group homomorphism is it is both C∞ and a

group homomorphism. A map ϕ : g → h between Lie algebras is said a Lie algebra homomorphism

is it is both linear and preserves brackets

ϕ([X,Y ]) = [ϕ(X), ϕ(Y )], ∀X,Y ∈ g.

The first connection between Lie groups and their Lie algebras is that each Lie group homomorphism

indices a Lie algebra homomorphism: if F : G → H is a Lie group homomorphism, note that
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3.1 Lie groups and their Lie algebras

F (e) = e, and one can easily show that the differential at the identity

dFe : TeG→ TeH

preserves the bracket operation.

Vice versa, in the case when G is a Lie group that as a topological space is simply connected,

then each Lie algebra homomorphism come from a Lie group homomorphism.

Theorem 3.1.3 ([War83, Theorem 3.27]). Let G and H two Lie groups with Lie algebras g and

h, respectively. Assume G simply connected. Let ϕ : g → h be a Lie algebra homomorphism. Then

there exists a unique Lie group homomorphism F : G→ H such that dF = ϕ.

Corollary 3.1.4. If simply connected Lie groups G and H have isomorphic Lie algebras, then G

and H are isomorphic.

There is a theorem [Jac79, page 199] due to Ado that states that every Lie algebra has a faithful

representation in gl(n,R) for some n. As a consequence, if g is a Lie algebra, then there exists a

simply connected Lie group G with Lie algebra g. We then have the following correspondence.

Theorem 3.1.5. There is a one-to-one correspondence between isomorphism classes of Lie algebras

and isomorphism classes of simply connected Lie groups.

3.1.1 Exponential map

Let M be any differentiable manifold. Let X ∈ Γ(M) be a vector field. Fix a point p ∈ M of

the manifold. Then there is a unique curve γ(t) satisfying γ(0) = p with tangent γ̇(t) = Xγ(t).

The corresponding exponential map is defined by expp(X) = γ(1). In general, the exponential map

is only locally defined, that is, it only takes a small neighborhood of the zero section of TM , to

a neighborhood of p in the manifold. This is because it relies on the theorem on existence and

uniqueness of ordinary differential equation which is local in nature.

In the theory of Lie groups the exponential map is a map from the Lie algebra g to the group G,

exp: g → G.

Elements of the Lie algebra g are seen as left-invariant vector fields. Thus g ⊂ Γ(TG) and so the

previous definition make sense with p = e. Moreover, one can show that, for all X ∈ g, the ODE

γ̇(t) = Xγ(t) has global solutions. Indeed, the curves γ(t) are in this case homomorphisms from R
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3- Tangent cones and Carnot groups

to the group. Such homomorphisms from R to G are called one-parameter subgroups. Let X ∈ g

define the Lie algebra homomorphism

φ : T0R → TeG

t∂t → tX.

Since R is simply connected, Theorem 3.1.3 asserts that there exists a one-parameter subgroup

γ : R → G with dγ = φ. This last condition just mean that γ̇(t) = Xγ(t). Indeed,

γ̇(t) =
d

dh
γ(t+ h)

∣∣∣∣
h=0

=
d

dh
γ(t)γ(h)

∣∣∣∣
h=0

=
d

dh
Lγ(t)(γ(h))

∣∣∣∣
h=0

= (Lγ(t))∗γ̇(0)

= (Lγ(t))∗(dγ)0(∂t)

= (Lγ(t))∗φ(∂t)

= (Lγ(t))∗X

= Xγ(t).

We just proved the first part of point (iv) in the following theorem. In fact, the only non-trivial part

of the theorem is point (iii) and the proof of it can be found in [War83, Theorem 3.31].

Theorem 3.1.6 ([War83, Theorem 3.31]). Let X ∈ g an element of the Lie algebra g of a Lie group

G.

(i) exp ((s+ t)X) = exp(sX) · exp(tX), for s, t ∈ R;

(ii) exp(−X) = (exp(X))−1;

(iii) exp : g → G is smooth and (d exp)0 is the identity map,

(d exp)0 = idg : g → g,

so exp gives a diffeomorphism of a neighborhood of 0 in g onto a neighborhood of e in G;

(iv) The curve γ(t) := exp(tX) is the flow of X at time t starting from e, more generally, the curve

g exp(tX) = Lg(γ(t)) is the flow starting at g. As a particular consequence left-invariant vector

fields are always complete.
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3.1 Lie groups and their Lie algebras

(v) The flow of X at time t is the right translation Rexp(tX).

Theorem 3.1.7 ([War83, Theorem 3.32]). If F : G→ H is a Lie group homomorphism, then

F ◦ exp = exp ◦dF.

The exponential map is in general different from the exponential map of Riemannian geometry.

However, if G is compact, it has a Riemannian metric invariant under left and right translations, and

the (Lie group) exponential map is the (Riemannian) exponential map of this Riemannian metric.

3.1.2 Nilpotent Lie groups and nilpotent Lie algebras

This material is taken from the book [CG90]. The exposition does not pretend to be a better one.

We just extract for the book all those parts of importance for the following.

Let g be a Lie algebra over R. The lower (or descending) central series of g is defined inductively

by

g(1) = g;

g(i+1) := [g; g(i)] = R-span{[X,Y ] : X ∈ g, Y ∈ g(i)}.

Definition 3.1.8. (Nilpotent Lie algebra / Lie group). We say that g is a nilpotent Lie algebra if

there is an integer s such that g(s+1) = {0}. Let s be the minimal integer such that g(s+1) = {0}, then

g is said to be s-step nilpotent. A nilpotent Lie group is a Lie group whose Lie algebra is nilpotent.

For connected Lie groups this is equivalent to saying that G itself is a nilpotent group.

A Lie algebra g is s-step nilpotent if and only if all brackets of at least s+ 1 elements of g are 0

but not all brackets of order s are.

Remark 3.1.9. A Lie algebra g has always non-trivial center; in fact, if g is s-step nilpotent, g(s) is

central.

Recall that the center of a Lie algebra g is

Center(g) := {X ∈ g : [X,Y ] = 0 for all Y ∈ g},

and the center of a (Lie) group G is

Center(G) := {g ∈ G : gh = hg for all h ∈ G}.

The two centers are related since the center of a connected Lie group is a closed sub-group with Lie

algebra the center of g, see [War83, page 116].
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3- Tangent cones and Carnot groups

3.1.3 Examples

One common convention in describing nilpotent Lie algebras - and one that we shall often use - is

the following. Suppose that g = R-span{X1, . . . , Xn}. To describe the Lie algebra structure of g, it

suffices to give [Xi, Xj ] for all i < j. We can shorten this description considerably by giving only

the non-zero brackets; all others are assumed to be zero.

Heisenberg algebras

The (2n+1)-dimensional Heisenberg algebra is the Lie algebra with basis {X1, , . . . , Xn, Y1, , . . . , Yn, Z},

whose pairwise brackets are equal to zero expect for

[Xj , Yj ] = Z, for j = 1, . . . , n.

It is a two-step nilpotent Lie algebra. One way to realize it as a matrix algebra is to consider

(n+ 2)× (n+ 2) upper triangular matrices of the form
0 x1 . . . xn z
· 0 · 0 y1

· · ·
...

· 0 yn
0 · · · 0

 .

The Lie group associated is called the n’th Heisenberg group and as matrix group it is

G =




1 x1 . . . xn z
· 1 · 0 y1

·
. . . ·

...
· 1 yn
0 · · · 1

 : x1, , . . . , xn, y1, , . . . , yn, z ∈ R


⊂ GL(n+ 2,R).

Filiform algebras

The (n+1)-dimensional filiform algebra is the algebra spanned by X,Y1, Y2, . . . , Yn, with only non-

trivial relations

[X,Yj ] = Yj+1, for j = 1, . . . , n− 1.

It is an n-step nilpotent Lie algebra and can be realized as a matrix algebra considering the matrices

of the form: 

0 x 0 · 0 yn

·
. . .

...

·
. . .

...
· x y2

· y1
0 0


.
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3.1 Lie groups and their Lie algebras

Strictly upper triangular matrix algebras

The algebra of strictly upper triangular n × n matrices is an (n − 1)-step nilpotent Lie algebra of

dimension n(n− 1)/2, and its center is one-dimensional.

Free nilpotent algebras

The free nilpotent Lie algebra of step k and rank n (or on n generators) is defined to be the quotient

algebra fn/f
(k+1), where fn is the free Lie algebra on n generators. It is not hard to see that it is

finite-dimensional.

For example the Lie algebra of rank 2 and step 3 is given by the diagram

X

��

  @
@@

@@
@@

Y

~~~~
~~

~~
~

��

Z

����
��

��
��

��?
??

??
??

U V,

which has to be read as [X,Y ] = Z, [X,Z] = U , and [Z, Y ] = V .

3.1.4 The BCH formula

The Baker-Campbell-Hausdorff formula allows us to reconstruct any Lie group G locally, with its

multiplication law, knowing only the structure of its Lie algebra g. The Baker-Campbell-Hausdorff

formula links Lie groups to Lie algebras, by expressing the logarithm log(eXeY ) of the product of

two Lie group elements as a Lie algebra element. The logarithm is by definition the inverse of the

exponential, in general it is only locally defined in a neighborhood of the identity, thanks to Theorem

3.1.6(iii). However, for simply connected nilpotent Lie groups logarithm will be global by Theorem

3.1.13.

The general Baker-Campbell-Hausdorff formula (BCH formula, for short) is given by:

log(expX expY ) =
∑
n>0

(−1)n−1

n

∑
ri+si>0
1≤i≤n

(
adr1X ◦ ads1Y ◦ adr2X ◦ ads2Y . . . ◦ adrnX ◦ adsn−1

Y

)
(Y )

r1!s1! · · · rn!sn!
∑n
i=1(ri + si)

,

where adX Y = [X,Y ], see (3.1.11). Thus

(
adr1X ◦ ads1Y ◦ adr2X ◦ ads2Y . . . ◦ adrnX ◦ adsn−1

Y

)
(Y )

= [X, [X, . . . [X︸ ︷︷ ︸
r1

, [Y, [Y, . . . [Y︸ ︷︷ ︸
s1

, . . . [X, [X, . . . [X︸ ︷︷ ︸
rn

, [Y, [Y, . . . Y︸ ︷︷ ︸
sn

]] . . .]].
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3- Tangent cones and Carnot groups

The first terms of the series should2 be

log(expX expY ) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]]

− 1

24
[Y, [X, [X,Y ]]]

− 1

720
([[[[X,Y ], Y ], Y ], Y ] + [[[[Y,X], X], X], X])

+
1

360
([[[[X,Y ], Y ], Y ], X] + [[[[Y,X], X], X], Y ])

+
1

120
([[[[Y,X], Y ], X], Y ] + [[[[X,Y ], X], Y ], X]) + · · ·

3.1.5 Matrix groups

For matrix Lie groups G ⊆ GL(n,R), the Lie algebra g ⊆ gl(n,R) is simply the tangent space at

the identity I with Lie bracket given by

[A,B] = AB −BA, ∀A,B ∈ gl(n,R).

Moreover, the exponential map coincides with the exponential of matrices and is given by the

ordinary series expansion:

exp(A) =
∞∑
j=0

1

j!
Aj = I +A+

1

2
A2 +

1

3!
A3 + · · · , ∀A ∈ gl(n,R). (3.1.10)

(here I is the identity matrix). In this situation the Baker-Campbell-Hausdorff formula is obtained

by formally solving for Z in ez = exey,

Z = log(I + (eXeY − I)

=
∞∑
n=1

(−1)n+1

n
(eXeY − I)n

=
∞∑
n=1

(−1)n+1

n

( ∑
pi+qi>0,pi,qi>0

XpiY qi

pi!qi!

)n

=
∞∑
n=1

(−1)n+1

n

∑
pi+qi>0,pi,qi>0

Xp1Y q1 · · ·XpnY qn

p1!q2! · · · pn!qn!
.

One will get the BCH formula using that adAB = AB−BA. Please, let me know if you find a clear

and simple calculation of this ending.

3.1.6 Adjoint operators

Each Lie group acts on itself by conjugation: for g ∈ G, the map

Cg : h 7→ ghg−1

2I am not really sure of my calculations!
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3.1 Lie groups and their Lie algebras

is an inner automorphism of G. Its differential at the unit element is called the adjoin operator:

Adg = d(Cg)e : g → g.

The map Adg is a Lie algebra automorphism. For matrix groups we have the explicit formula:

AdA(X) = AXA−1, for A ∈ GL(n,R) and X ∈ gl(n,R).

The action

G× g → g

(g,X) 7→ (Adg)X

is called the adjoint action of G. The map

Ad(·) : G→ Aut(g)

is called the adjoint representation of G. Its differential ad := d(Ad)is the adjoint map on g. One

has that the following commutative diagram

g

exp

��

ad // End(g)

exp

��
G

Ad // Aut(g)

and the validity of the formula

adX Y = [X,Y ]. (3.1.11)

Such maps satisfies the following formulae:

exp((Adg)Y ) = Cg(exp(Y )), ∀g ∈ G,Y ∈ g,

Cexp(X)(exp(Y )) = exp(AdexpX(Y )), ∀X,Y ∈ g,

AdexpX(Y ) = eadX (Y ), ∀X,Y ∈ g,

where

eadX :=
∞∑
j=0

1

j!
(adX)j . (3.1.12)

When G is a simply connected nilpotent Lie group the series 3.1.10 and 3.1.12 are finite, giving

polynomial laws for the group multiplication and conjugation.
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3- Tangent cones and Carnot groups

3.1.7 Simply connected nilpotent Lie groups

Recall from Corollary 3.1.4 that if two simply connected Lie groups have isomorphic Lie algebras,

then they are isomorphic. We will see now how one can completely work on the Lie algebra using

canonical coordinates.

Theorem 3.1.13 ([CG90, Theorem 1.2.1]). Let G be a connected, simply connected nilpotent Lie

group, with Lie algebra g. Then

a the exponential map exp : g → G is an analytic diffeomorphism; and

b the Baker-Campbell-Hausdorff formula holds for all X and Y ∈ g.

The following facts are consequences of the above theorem and its proof.

Fact 3.1.14. Every Lie sub-group H of a connected, simply connected nilpotent Lie group G is

closed and simply connected.

Let Nn be the group whose Lie algebra are the strictly upper triangular matrices. Namely, Nn

is the group of matrices that are upper triangular and have 1’s in the diagonal.

Fact 3.1.15. Every connected, simply connected nilpotent Lie group has a faithful embedding as a

closed subgroup of Nn for some n.

One important application of Theorem 3.1.13 involves coordinates on G. Since exp is a diffeo-

morphism of g onto G, we can use it to transfer coordinates from g to G. Some authors use exp to

identify g with G. Then the group multiplication can be calculated by the Baker-Campbell-Hausdorff

formula.

Definition 3.1.16. Let {X1, . . . , Xn} be any basis for a nilpotent Lie algebra g. The coordinates

given by the map

Φ : Rn −→M

Φ(t1, . . . , tn) := exp(t1X1 + . . .+ tnXn)

are called exponential coordinates. Exponential coordinates are also known as canonical coordinates

of the first kind.
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3.1 Lie groups and their Lie algebras

Definition 3.1.17. Let g be a nilpotent Lie algebra. An ordered basis {X1, . . . , Xn} for g is called

(strong) Malcev basis if, for each k ∈ {1, . . . , n}, the space

R- span{X1, . . . , Xk}

is an ideal3 of g

Fact 3.1.18. In the special class of Carnot groups, see next chapter, the existence of Malcev basis

will be a triviality. However, any nilpotent algebra has Malcev basis, cf. Theorem 1.1.13 in [CG90]

and the following notes.

Lemma 3.1.19. If {X1, . . . , Xn} is a Malcev basis for a nilpotent Lie algebra g, then its ideals

gk := R- span{X1, . . . , Xk} are such that

[g, gk] ⊆ gk−1. (3.1.20)

Proof. By definition of Malcev basis, we have [g, gk] ⊆ gk and also [g, gk−1] ⊆ gk−1. If the conclusion

of the lemma were not true, then there would be some j ∈ {1, . . . , n} and a1, . . . , ak with ak ̸= 0

such that

[Xj , Xk] = akXk +

k−1∑
i=1

aiXi.

Now we iterate bracketing by Xj and we get, for some a
(l)
1 , . . . , a

(l)
k−1,

(adlXj
)(Xk) = alXk +

k−1∑
i=1

a
(l)
i Xi,

which is never zero and so contradicts the nilpotency of g.

Definition 3.1.21. Let {X1, . . . , Xn} be a (strong) Malcev basis for a nilpotent Lie algebra. Define

the map

Ψ : Rn → G

Ψ(s) := exp(s1X1) · · · exp(snXn).

The coordinate system defined is called strong Malcev coordinates or also canonical coordinates of

the second kind.

3A subspace I ⊆ g is called an ideal of g if [g, I] ⊆ I. By anticommutativity, there is no need of distinction between
left and right ideals.
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3- Tangent cones and Carnot groups

If {X1, . . . , Xn} is a Malcev basis for a nilpotent Lie algebra, we can consider both canonical

coordinates; we have that the Malcev coordinates are related to the exponential coordinates by a

polynomial diffeomorphism whose Jacobian determinant is constantly equal to 1.

Proposition 3.1.22 ([CG90, Proposition 1.2.7]). Let {X1, . . . , Xn} be a Malcev basis for a nilpotent

Lie algebra g. Let Ψ : Rn → G the Malcev coordinate system and Φ : Rn −→ M the exponential

coordinate system associated to the basis. Then

(i) Ψ(s) = Φ(P (s)) where P : Rn → Rn is a polynomial diffeomorphism with polynomial inverse.

(ii) writing P = (P1, . . . , P, n), then Pj(s) = sj + P̂ (sj+1, . . . , sn).

In other words, we have the relation:

exp(s1X1) · · · exp(snXn) = exp(P1(s)X1 + . . .+ Pn(s)Xn).

Proposition 3.1.23 ([CG90, Proposition 1.2.9]). Assume that G is equipped with either exponential

or Malcev coordinates with respect to some basis. For any g ∈ G, left translation Lg and right

translation Rg are maps whose Jacobian determinants are identically equal to 1.

Proof. We prove the statement for exponential coordinates and left translations. The case of right

translations is similar. For Malcev coordinates it will be true because of they differs from exponential

coordinates by a polynomial diffeomorphism whose Jacobian determinant is constantly equal to 1,

Proposition 3.1.22.

The proof is based on the BCH formula and (3.1.20). Indeed, we can assume that the basis

{X1, . . . , Xn} is a Malcev basis, since linear changes of basis preserve Jacobians. So, let Φ the

exponential coordinate system, and Lg the left translation by g. We need to calculate the Jacobian

of Φ−1 ◦ Lg ◦ Φ. Thus we consider the diagram

Rn Φ // G

(t1, . . . , tn) 7−→ exp(
∑
j tjXj)

Lg

��
(s1, . . . , sn) 7−→ g exp(

∑
j tjXj)

Rn Φ // G,
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3.1 Lie groups and their Lie algebras

and we solve the dependence of the si’s from the tj ’s. Since the Malcev coordinates are surjective

we can find u1, . . . , un and write

g = exp(u1X1) . . . exp(unXn).

It is enough to consider the case g = exp(ukXk) and then conclude considering compositions. Thus

we need to consider the system

exp(
∑
j

siXi) = exp(ukXk) exp(
∑
j

tjXj).

By the BCH formula,∑
j

siXi = ukXk +
∑
j

tjXj +
1

2
[ukXk,

∑
j

tjXj ] + . . . .

Since we have chosen a Malcev basis we have the property (3.1.20). Thus a bracket as [Xk, Xj ]

is only a combination of {X1, . . . , Xj−1}. In other words, the function sj is of the form tj plus a

polynomial that does not depend on the variables t1, . . . , tj . In coordinates, the map Φ−1 ◦ Lg ◦ Φ

is of the form

Φ−1 ◦ Lg ◦ Φ =



t1 ∗ . . . . . . . . . . . . ∗

0
. . .

. . . ∗ . . . ∗
...

· · tk−1 ∗
. . .

...
...

· · 0 tk + uk ∗ ∗
...

· · · 0 tk−1
. . .

...

· · · · ·
. . . ∗

0 · · · · 0 tn


.

Thus the differential is of the form

d(Φ−1 ◦ Lg ◦ Φ) =



1 ∗ . . . . . . . . . . . . ∗

0
. . .

. . . ∗ . . . ∗
...

· · 1 ∗
. . .

...
...

· · 0 1 ∗ ∗
...

· · · 0 1
. . .

...

· · · · ·
. . . ∗

0 · · · · 0 1


.

Thus the Jacobian of a left translation in exponential coordinates with respect to a Malcev basis is

1 at every point.

All the map of the form exp(P1(s)X1+. . .+Pn(s)Xn), where P : Rn → Rn is a polynomial diffeo-

morphism with polynomial inverse, are called polynomial coordinate map. Examples are, obviously,

exponential and, by Proposition 3.1.22, Malcev coordinate maps.
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The key observation is that the Jacobian of any polynomial diffeomorphism with polynomial

inverse is a polynomial that is invertible inside the polynomial ring, so it is a constant. Thus,

changing of coordinates by a polynomial diffeomorphism with polynomial inverse preserves Lebesgue

measure preserving maps.

Any Lie group, as any locally compact group, has a natural class of measures: the Haar measures.

A measure µ is called a left-Haar measure if it is left-invariant, i.e., if, for any left translation Lg,

((Lg)#µ) (B) := µ
(
L−1
g (B)

)
= µ(B), for all Borel set B.

Left-Haar measures, as right-Haar measures, are unique up to a multiplication by a constant.

A consequence of the previous proposition and the last observation above is the following theorem.

Theorem 3.1.24 ([CG90, Theorem 1.2.10]). Let G be an n-dimensional connected, simply con-

nected, and nilpotent Lie group. Any polynomial coordinate map pushes forward the Lebesgue mea-

sure on Rn to a Haar measure on G.

It is not always true that left-Haar measures are also right-Haar measures, groups with such

property are called unimodular. However in any nilpotent Lie group Haar measure are both left and

right-invariant. Theorem 3.1.24 shows such uniqueness for simply connected nilpotent Lie groups

and it is suffices for our cases of interest.

3.1.8 Homogeneous manifolds

This part will probably will omitted in class.

Theorem 3.1.25 ([War83, Theorem 3.58]). Let [...]

Theorem 3.1.26 ([CG90, Theorem 1.2.12]). Let [...]

Theorem 3.1.27 ([CG90, Theorem 1.2.13]). Let [...]

read page 23 [CG90] remark 1 and 3.

3.2 Carnot groups

A Carnot group G of step s ≥ 1 is a connected, simply connected Lie group whose Lie algebra g

admits a step s stratification: this means that we can write

g = V1 ⊕ · · · ⊕ Vs,
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3.2 Carnot groups

with [Vj , V1] = Vj+1, for 1 ≤ j ≤ s− 1, and Vs ̸= {0}.

Question 3.2.1. Can a Carnot group have two non-isomorphic stratifications of its Lie algebra?

no!

Not all simply connected Lie groups that are nilpotent are in fact Lie groups: there are 6-

dimensional nilpotent Lie algebras that are not stratified, cf. [Goo76].

We shall keep the notation n =
∑
i dimVi for the topological dimension of G. The value Q

defined by

Q :=
s∑
i=1

idimVi (3.2.2)

will be the so-called homogeneous dimension of G as a sub-Riemannian manifold.

Indeed, each Carnot group is intrinsically equipped with a sub-Riemannian structure, which is

unique up to biLipschitz equivalence and has an additional structure of dilations, which we will

explain in the next subsection. Fixed the stratification, let ∆ be the left-invariant sub-bundle of the

tangent bundle TG with ∆e = V1. Let ∥·∥ be any left-invariant Finsler norm on G, equivalently one

has to fix a Banach norm on g = TeG and extend it by left-translations. The triple (M,∆, ∥·∥) is

now a sub-Finsler manifold which satisfies the Hörmander’s condition, since one has that

∆[j](e) = V1 ⊕ · · · ⊕ Vj .

Thus one can consider the Finsler-Carnot-Carathéodory distance dCC associated to the sub-Finsler

structure.

One should immediately observe that another choice of the norm would not change the biLipschitz

equivalence class of the sub-Finsler manifold. Namely, if ∥·∥2 is another left-invariant Finsler norm

on G, then

id : (G, dCC,∥·∥) → (G, dCC,∥·∥2
)

is globally biLipschitz. So as a consequence of our interest to metric spaces up to biLipschitz

equivalence, we may assume that the norm ∥·∥ is coming from a scalar product ⟨·|·⟩.

In the definition of the Carnot-Carathéodory distance only the value of the scalar product on

V1, and not on all g, is important. Defining a scalar product on V1 is equivalent to specifying an

orthonormal basis of it. So, denoting by m the dimension of V1, we fix an inner product in V1 by

fixing an orthonormal basis X1, . . . , Xm of V1. This basis of V1 induces the Carnot-Carathéodory
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3- Tangent cones and Carnot groups

left-invariant distance d in G, which we recall can be defined as follows:

d(x, y) := inf


∫ 1

0

√√√√ m∑
i=1

|ai(t)|2 dt : γ(0) = x, γ(1) = y

 ,

where the infimum is among all absolute continuous curves γ : [0, 1] → G such that γ̇(t) =∑m
1 ai(t)(Xi)γ(t) for a.e. t ∈ [0, 1] (the so-called horizontal curves).

3.2.1 The dilation structure

The construction of the dilation structure deeply uses the stratification of the algebra: g = V1 ⊕

· · · ⊕ Vs. We denote by δλ : g → g the family of inhomogeneous dilations defined by

δλ

(
s∑
i=1

vi

)
:=

s∑
i=1

λivi λ ≥ 0

where X =
s∑
i=1

vi with vi ∈ Vi, 1 ≤ i ≤ s. The dilations δλ belong to GL(g) and are uniquely

determined by the homogeneity conditions

δλX = λkX ∀X ∈ Vk, 1 ≤ k ≤ s.

By Theorem 3.1.13, in Carnot groups the map exp : g → G is a diffeomorphism, so any element

g ∈ G can represented as exp(X) for some unique X ∈ g, and therefore uniquely written in the form

exp

(
s∑
i=1

vi

)
, vi ∈ Vi, 1 ≤ i ≤ s. (3.2.3)

This representation allows to define a family indexed by λ ≥ 0 of intrinsic dilations δλ : G → G, by

δλ

(
exp

(
s∑
i=1

vi

))
:= exp

(
s∑
i=1

λivi

)
(i.e. exp ◦δλ = δλ ◦ exp.)

We have kept the same notation δλ for both dilations (in g and in G) because no ambiguity will

arise. Obviously, δλ ◦ δη = δλη, and the Baker-Campbell-Hausdorff formula gives

δλ(xy) = δλ(x)δλ(y) ∀x, y ∈ G. (3.2.4)

Another useful relation between dilations in G and dilations in g is δλX = (δλ)∗X, namely

X(u ◦ δλ)(g) = (δλX)u(δλg) ∀g ∈ G, λ ≥ 0. (3.2.5)

We have indeed

X(u ◦ δλ)(g) =
d

dt
u ◦ δλ(g exp(tX))

∣∣∣∣
t=0

=
d

dt
u(δλgδλ exp(tX))

∣∣∣∣
t=0

=
d

dt
u(δλg exp(tδλX))

∣∣∣∣
t=0

= (δλX)u(δλg).
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3.3 Nilpotization

Another viewpoint is that δλ : g → g is a Lie algebra isomorphism since, from the grading, it is

obvious that

δλ([X,Y ]) = [δλX, δλY ].

Then the map δλ : G → G is the unique group homomorphism with δλ as differential, whose existence

is given by Theorem 3.1.3 since G is simply connected.

Moreover, the Carnot-Carathéodory distance is well-behaved under these dilations, namely

d(δλx, δλy) = λd(x, y) ∀x, y ∈ G. (3.2.6)

Indeed, if γ in a horizontal curve from x to y, then δλ ◦ γ is a curve going from δλx to δλy whose

tangent vectors are, for almost all t,

(δλ)∗γ̇(t) = δλ(γ̇(t)) = λγ̇(t), (3.2.7)

which are horizontal since γ̇(t) is horizontal. Moreover, from (3.2.7), the length of δλ ◦ γ is λ times

the length of γ. Thus 3.2.6 has been shown.

3.3 Nilpotization

We explain now what is the Carnot group which appear as tangent to a given equi-regular distribu-

tion. Let ∆ be a bracket-generating and equi-regular distribution in a manifold M , i.e.,

∆ = ∆[1] ⊂ ∆[2] ⊂ . . . ⊂ ∆[s] = TM

is a flag of sub-bundles of TM , where ∆[j+1] = ∆[j] + [∆,∆[j]]. Note that in the last sum is not

necessarily a direct sum. The simple but crucial fact is that

[∆[k],∆[l]] ⊆ ∆[k+l]. (3.3.1)

Equation (3.3.1) is obvious for k = 1 and can be proved by induction using Jacobi identity:

[∆[k+1],∆[l]] =
[
∆[k] + [∆,∆[k]],∆[l]

]
= [∆[k],∆[l]] +

[
[∆,∆[k]],∆[l]

]
⊆ ∆[k+l] +

[
[∆[k],∆[l]],∆

]
+
[
[∆[l],∆],∆[k]

]
⊆ ∆[k+l] + [∆[k+l],∆] + [∆[l+1],∆[k]]

⊆ ∆[k+l] +∆[k+l+1] +∆[k+l+1]

⊆ ∆[k+l+1]
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3- Tangent cones and Carnot groups

Define H1 := ∆ and Hj := ∆[j]/∆[j−1], for j = 2, . . . , n. Still Hj is a bundle over M , but not a

sub-bundle of the tangent bundle TM . We obviously have the following isomorphism

TM ≃ H1 ⊕H2 ⊕ . . .⊕Hs.

In this notes we also assume that the equi-regular distributions have the further property of having a global framing X1, . . . , Xn of M such
that, for some m1, . . . ,ms,

∆
[j]

(p) = R- span{X1(p), . . . , Xmj
(p)}, ∀p ∈ M.

Fact 3.3.2. For each point p ∈ M , the vector space TpM inherits the structure of a Carnot group,

with respect the stratification Hj(p). Such Carnot group is sometimes called the nilpotization of TpM

with respect to ∆.

The following proof is incomplete - a new proof will be given in the future - for now see [Bul02]. Let

Vj := Hj(p). Obviously TpM and V1 ⊕ · · · ⊕ Vs are isomorphic vector spaces. We need to define a

Lie algebra product and then show that [Vj , V1] = Vj+1. Take x, y ∈ TpM , with x ∈ Vj and y ∈ Vl.

Since Vj = Hj(p) = ∆[j](p)/∆[j−1](p), we have that there exist X ∈ ∆[j] and Y ∈ ∆[l], such that

x = X(p) + ∆[j−1](p) and y = Y (p) + ∆[l−1](p).

We define, naturally,

[x, y] := [X,Y ](p) + ∆[j+l−1](p).

The definition is well posed because of (3.3.1): if u ∈ ∆[j−1], then [X + u, Y ] = [X,Y ] + [u, Y ],

with [u, Y ] ∈ [∆[j−1],∆[l]] ⊆ ∆[j+l−1]. Thus [X + u, Y ](p) and [X,Y ](p) are equal mod ∆[j+l−1](p).

NEED TO SHOW INDEPENDENCE FROM THE REPRESENTATIVE X.

Again, if y ∈ V1, from (3.3.1) we immediately have that [x, y] ∈ ∆[j+1](p)/∆[j](p) = Vj+1. Thus

[Vj , V1] ⊆ Vj+1. To show the reverse inclusion, let z ∈ Vj+1. Consider a representative Z ∈ ∆[j+1]

such that z = Z(p)+∆[j](p). By definition ∆[j+1] = ∆[j]+[∆[j],∆], so there areW ∈ ∆[j], Xl ∈ ∆[j],

and Yl ∈ ∆ such that Z = W +
∑
l[Xl, Yl]. Take xl = Xl(p) (mod ∆[j−1]) and yl = Yl(p). We have

then

∑
l

[xl, yl] =
∑
l

[Xl, Yl](p) (mod ∆[j](p))

= (Z −W )(p) (mod ∆[j](p))

= Z(p) (mod ∆[j](p)).

Therefore we have shown that [Vj , V1] = Vj+1.
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3.4 Mitchell’s Theorem on tangent cones

3.4 Mitchell’s Theorem on tangent cones

Given a metric space (X, d), one defines the dilated metric space (X,λd) dilated by a factor of λ ∈ R

as the same set X endowed with the dilated distance (λd)(p, q) := λd(p, q). Gromov has defined the

notion of tangent space to a metric space as limit of such objects.

We say that a metric space (Z, ρ) is a tangent of (X, d) at the point p ∈ X if there exists p̄ ∈ Z

and a sequence λj → ∞ such that

lim
j
(X, p, λjd) = (Z, p̄, ρ).

It signifies 4 that for each r > 0, there is a sequence of ϵj → 0 such that the ball of radius r + ϵj in

(X,λjd) about the base point p converges to the ball of radius r about p̄. Namely, the infimum of the

Gromov-Hausdorff distance between these compact abstract metric spaces approach 0 as λj → ∞.

The Gromov-Hausdorff distance GH(B1, B2) between two compact metric spaces B1 and B2 is

infimum infψ1,ψ2
H(ψ1B1, ψ2B2) over all isometric embeddings ψ1, ψ2 of B1 and B2 into the same

metric space C of the Hausdorff distance H(ψ1B1, ψ2B2) of the images as subset of C.

A distribution is said to be generic if, for each j, dim∆[j](p) is independent of the point p in M .

Theorem 3.4.1 (Mitchell). For a generic distribution ∆ onM , the tangent cone of a sub-Riemannian

manifold (M,dCC) at p ∈M is isometric to (G, d∞) where G is a Carnot group with a left-invariant

Carnot-Carathéodory metric. In fact, the group G is the nilpotization of TpM with respect to ∆.

Remark 3.4.2. The simple fact that we would like the reader to observe is that the tangent cone of a

Carnot group G is G itself. Indeed, dilations δλ provide isometries between (G, dCC) and (G,λdCC).

Remark 3.4.3. Differently from the Riemannian case, it is NOT true that a sub-Riemannian manifold

is locally biLipschitz equivalent to its tangent cone. It is however true for contact manifolds because

of Darboux Theorem.

3.5 Pansu’s Rademacher Theorem

We would like to observe that the classical Rademacher Theorem states not only the existence almost

everywhere of a tangent map (called the differential), but also its realizability as a linear map, in

4In the case when the metric space (X, d) is geodesic, the limit should be easier to understand. Look at [BBI01,
page 272].
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3- Tangent cones and Carnot groups

other word, as a group homomorphism which is compatible with the respective groups of dilations.

Stated in this terms, the theorem holds for general sub-Riemannian manifolds too.

Theorem 3.5.1 (Pansu’s Rademacher Theorem [Pan89, MM95]). At almost all points, the tan-

gent map of a Lipschitz map between sub-Riemannian manifolds exists, is unique, and is a group

homomorphism of the tangent cones equivariant with respect to their dilations.

Let us clarify what is the tangent map. Each map f : (X, d) → (X ′, d′) induces a map fλ :

(X,λd) → (X ′, λd′), for each λ > 0, which set-wise is the same map f(x) = fλ(x). Fix a point

x ∈ X and assume that (Z, ρ) and (Z ′, ρ′) are tangent cone respectively to (X, d) at x and to (X ′, d′)

at f(x). One says that f̂ : (Z, ρ) → (Z ′, ρ′) is a tangent map of f at x if, for some sequence λj → ∞,

fλj converges uniformly on compact sets to f̂ .

With such a definition above the tangent map could not be unique and could not be linear. For

example the absolute value map has itself as tangent at zero. For Lipschitz maps between sub-

Riemannian manifolds, Pansu-Rademacher Theorem 3.5.1 states not only existence at almost every

point of such a blow up map, but also that, outside of a negiglible set, such limit is a Lie group

homomorphism between Carnot groups that commutes with Carnot group dilations.

The tangent map could be also called blow up differential or, in the Carnot group setting, Pansu

differential. If f : G1 → G2 is a map between two Carnot groups with dilations δ
(1)
λ and δ

(2)
λ

respectively, then its Pansu differential at a point x is the limit

lim
λ→∞

δ
(2)
λ ◦ L−1

f(x) ◦ f ◦ Lx ◦ δ(1)1/λ.

Let us warn the reader about a possible confusion. Each sub-Riemannian manifold is in particular

a differentiable manifold. However, the notion of the differential of a smooth map does not coincide

with the tangent map which is defined in geometric terms.

3.5.1 Applications to non-embeddability

It was observed by Semmes, [Sem96, Theorem 7.1], that Pansu’s differentiation Theorem 3.5.1 implies

that a Lipschitz embedding of the Heisenberg group with its CC distance into an Euclidean space,

cannot be bi-Lipschitz.

Theorem 3.5.2. There is no bi-Lipschitz embedding from an open set in a Heisenberg group to an

Euclidean space Rn.
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3.5 Pansu’s Rademacher Theorem

Proof. Suppose that such an embedding f exists. The Pansu Rademacher Theorem 3.5.1 would

imply that there exists at least one point at which f is differentiable and whose tangent map is

a group homomorphism. The blowing-up procedure used to define the tangent map scales in the

natural way, i.e., if f is L-bi-Lipschitz, then each rescaled fλ is L-bi-Lipschitz and so the tangent map

is bilipschitz too. In particular, the tangent map is injective. We now get a contradiction, because

we considered a tangent map which is a group homomorphism between tangents spaces which are

the 3-dimensional Heisenberg group and the Abelian Rn. However, any homomorphism from the

Heisenberg group into Rn must have a kernel which is at least 1-dimensional (all commutators in the

Heisenberg group must be mapped to 0 by the homomorphism) and hence cannot be injective.

Corollary 3.5.3. Let M1 an M2 be sub-Riemannian manifolds with tangents the Carnot groups G1,

respectively G2. If no subgroup of G2 is isomorphic to G1 then there is no bi-Lipschitz embedding of

M1 in M2.

Corollary 3.5.4. The Heisenberg group, or any other non-commutative Carnot group, is purely

unrectifiable.

A consequence of the proof of Theorem 3.5.2 is that each Lipschitz map from the Heisenberg

group to an Euclidean space has to compress points in the direction of the center of the group.

Proposition 3.5.5 (Center collapse). If U ⊂ H is an open subset, and f : U → Rn is a Lipschitz

map, then for almost every point x ∈ H, the map collapses in the direction of the center of H, i.e.

lim
g→e

∥f(gx)− f(x)∥
d(gx, x)

= 0 , g ∈ Center(H) . (3.5.6)

This last theorem has been generalized by J. Cheeger and B. Kleiner to maps with values in the

Banach space L1. Such a result gave a proof of the following theorem which has been conjectured

by J. Lee and A. Naor.

Theorem 3.5.7 (Lee-Naor-Cheeger-Kleiner). The Heisenberg group equipped with its CC metric

does not admit a bi-Lipschitz embedding into L1.

This conjecture arose from the work of J. Lee and A. Naor, in which it is shown that the nonex-

istence of such an embedding provides a natural counter-example to the Goemans-Linial conjecture

of theoretical computer science; S. Khot and N. Vishnoi gave a first such counterexample. Very

roughly, the point is that in some instances, questions in algorithm design, such as the sparsest
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3- Tangent cones and Carnot groups

cut problem, could be solved if it were possible to embed a certain class of finite metric spaces

(those with metrics of negative type) into ℓ1 with universally bounded bi-Lipschitz distortion, i.e.,

distortion independent of the particular metric and the cardinality.

3.6 Exercises

Exercise 3.6.1. Let g be a Lie algebra with a step s stratification g = V1 ⊕ · · · ⊕ Vs. Denote by gk

the k-th element in the lower central series. Show that

g(k) = Vk ⊕ · · · ⊕ Vs.

Exercise 3.6.2. Show that if a Lie algebra g has a step s stratification, then g is nilpotent of step

s, thus the assumption of a Carnot group being nilpotent is superfluous.

Exercise 3.6.3. Let h be the Heisenberg Lie algebra generated by the vectors X, Y , and Z with only

non-trivial relation [X,Y ] = Z. Show that the decomposition

h = span{X,Y } ⊕ span{Z}

is a step 2 stratification.

Exercise 3.6.4. Let g := R× h be the (commutative) product of R with the (above) Heisenberg Lie

algebra h. Show that

g = (R× span{X,Y })⊕ ({0} × span{Z})

is a step 2 stratification with center R× span{Z} which is stricly bigger than V2.

Exercise 3.6.5. Show that if a Lie algebra g has a step s stratification g = V1 ⊕ · · · ⊕ Vs, then

1. Vs is contained in the center of g;

2. Vk ⊕ · · · ⊕ Vs is normal in g; (Vk ⊕ · · · ⊕ Vs)/(Vk+1 ⊕ · · · ⊕ Vs) is contained in the center of

(V1 ⊕ · · · ⊕ Vs)/(Vk+1 ⊕ · · · ⊕ Vs).

Exercise 3.6.6. Show that if G is a Carnot group and ∆ is the left-invariant distribution with

∆e = V1, then (∆[j])e = V1 ⊕ · · · ⊕ Vj.

Exercise 3.6.7. Show that if G is a Carnot group and ∆ is the left-invariant distribution with

∆e = V1, then the three definitions (2.3.3), (2.6.5), and (3.2.2) of Q coincide.
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Exercise 3.6.8. Use the BCH formula to show (3.2.4).

Exercise 3.6.9. Uses the definitions to prove (3.2.6).

Exercise 3.6.10. Show that is any Carnot groups there is a (strong) Malcev basis

Exercise 3.6.11. Prove that, if M is a Riemannian manifold, then the Carnot group structure that

any TpM inherits is Abelian.

Exercise 3.6.12. Prove that, if M is a contact 3-manifold, then the Carnot group structure that

any TpM inherits is the Heisenberg algebra.

Exercise 3.6.13. Prove that, if G is a Carnot group, then the Carnot group structure that any TpG

inherits is the Lie algebra Lie(G) itself.

Exercise 3.6.14. Give an example of Lie group G with a left-invariant bracket-generating distri-

bution such that Carnot group structure that TeG inherits is NOT isomorphic to the Lie algebra

Lie(G).
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Chapter 4

Analysis on nilpotent groups

4.1 A deeper study of Carnot groups

4.1.1 A good basis for a Carnot group

Let G be a Carnot group with stratification g = V1 ⊕ · · · ⊕ Vs. We want to construct a basis for g

that is structured with respect to the stratification, is a Malcev basis, and each element of the basis

that is not in V1, is the bracket of two vectors of such a basis.

Start by picking a basis X1, . . . , Xm of V1. Then consider all brackets [Xi, Xj ], for i, j = 1, . . . ,m.

Since [V1, V1] = V2, we can find among such brackets a basis for V2, cf. Exercise 4.6.1. Pick some such

basis and call the elements Xm+1, . . . , Xm2 . Iterate the method: extract a basis Xm2+1, . . . , Xm3

of V3 from the set [Xi, Xj ], for i = 1, . . . ,m, j = m + 1, . . . ,m2. And so on. In such a way we

constructed a basis X1, . . . , Xn of g such that

1. Xmj−1+1, . . . , Xmj is a basis of Vj ,

2. For any i = m+ 1, . . . , n, there exist di, li, and ki such that Xi ∈ Vdi , Xli ∈ V1, Xki ∈ Vdi−1,

and

Xi = [Xli , Xki ]. (4.1.1)

3. The order-reversed basis Xn, . . . , X1 is a (strong) Malcev basis; in other words,

[g, span{Xk, . . . , Xn}] ⊆ span{Xk+1, . . . , Xn}.

We would suggest the terminology ‘Carnot basis’ for such basis satisfying the above three conditions.

The reader should notice that the above property 1 implies the property 3. See Exercise 4.6.2.
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4- Analysis on nilpotent groups

To describe a Carnot algebra we prefer to give a Carnot basis as a hierarchical diagram as

V1 : X

��?
??

??
??

? Y

����
��

��
��

V2 : Z

for the 3D Heisenberg algebra,

V1 : X

��

��@
@@

@@
@@

@ Y

����
��

��
��

V2 : Z

��~~
~~

~~
~~

V3 : W

for the Engel algebra,

V1 : X

��

��?
??

??
??

? Y

����
��

��
��

��

V2 : Z

����
��

��
��

��?
??

??
??

?

V3 : U V.

for the rank 2 and step 3 algebra.

The j-th line in the diagram list the vectors that span Vj . The black lines express the non-trivial

brackets. However, one should notice that in the algebra structure might be more relations than

just those in (4.1.1). (Give an example!)

4.1.2 Local-to-global using dilations, and canonical coordinates

Since any Carnot group is nilpotent and simply connected, the map exp g → G is a global diffeo-

morphism, cf. Theorem 3.1.13. Therefore the exponential coordinates are global (and one-to-one)

coordinates. As a consequence, the dilations δλ : G → G are well-defined. From them one has that

such self-similar homomorphisms extend properties that hold in a neighborhood of the identity to

the whole of G. As an example, let us show the fact that Malcev coordinates maps are injective and

surjective.

Proposition 4.1.2. On every Carnot group, Malcev coordinates exist.

Proof. The fact that a Malcev basis X1, . . . , Xn exist was shown in the previous subsection. Now

consider the coordinate map

Ψ : (s1 . . . , sn) → exp(s1X1) · · · exp(snXn).
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4.1 A deeper study of Carnot groups

Obviously

(dΨ)0∂j =
d

dsj
exp(sjXj)

∣∣∣∣
sj=0

Xj ,

so (dΨ)0 is an invertible n× n matrix. Thus Ψ is open at zero, i.e., Ψ(Rn) is a neighborhood of the

identity e. Let us show that Ψ(Rn) = G. Take p ∈ G. Then there exists some λ ∈ R and some

s ∈ Rn such that

δ−1
λ (p) = Ψ(s).

Let s̃ = δλ(s). Then, since δλ on G is a group homomorphism, we have

Ψ(s̃) = exp(δλ(s1X1)) · · · exp(δλ(snXn))

= δλ(exp(s1X1)) · · · δλ(exp(snXn))

= δλ(exp(s1X1) · · · exp(snXn))

= δλΨ(s)

= p.

Let us show injectivity. Since (dΨ)0 is an invertible n × n matrix, then by the Inverse Function

Theorem there is a neighborhood U on which Ψ is injective. Assume now that there are s1, s2 ∈ Rn

such that

Ψ(s1) = Ψ(s2).

Then, for λ ∈ R small enough, we have δλ(s1), δλ(s2) ∈ U . By the above calculation, we have that

Ψ(δλ(s1)) = Ψ(δλ(s2)).

But, since Ψ is injective on U , we have δλ(s1) = δλ(s2), and therefore s1 = s2.

4.1.3 A direct, effective proof of Chow’s Theorem

We will give now an explicit construction of an horizontal path connecting an arbitrary point p in

a Carnot group to the origin e. The reader should remind the elementary fact, cf. Theorem 3.1.6,

that the curve petX is the integral curve of X starting at p.

The brackets as products of exponentials

The philosophy behind the following discussion is that to go in a direction given as a bracket of two

vector fields one can go along a quadrilateral constructed using the flows of the two vector fields. We
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4- Analysis on nilpotent groups

will give a generalization of the following formula with which the reader should be already familiar:

[X,Y ] =
d2

2d2t
e−tY ◦ e−tX ◦ etY ◦ etX

∣∣∣∣
t=0

=
d

dt
e−

√
tY ◦ e−

√
tX ◦ e

√
tY ◦ e

√
tX

∣∣∣∣
t=0

.

In the above formula, etX denotes the flow map of a general vector field on a manifold. So for

left-invariant vector fields in a Lie group we have

etX(p) = petX .

Thus the order might seems reversed.

For X,Y ∈ g and t ∈ R define

Pt(X,Y ) := etXetY e−tXe−tY .

Using twice the BCH formula one has that, for t→ 0,

Pt(X,Y ) = et
2[X,Y ]+o(t2).

Suppose we have defined by induction the function Pt(X1, . . . , Xk), for k ≥ 2, define then

Pt(X1, . . . , Xk+1) := Pt(X1, . . . , Xk)e
tXk+1(Pt(X1, . . . , Xk))

−1e−tXk+1 .

By induction we shall show that, as t→ 0,

Pt(X1, . . . , Xk) = et
k[...[[X1,X2],X3],...,Xk]+o(t

k). (4.1.3)

The case k = 2 has been already mentioned above, and its proof is similar to the induction

step. Assume it true for an arbitrary k. Call ω(t) the o(tk) function such that Pt(X1, . . . , Xk) =

et
k[...[[X1,X2],X3],...,Xk]+ω(t). Then we have, by the BCH formula,

Pt(X1, . . . , Xk+1) = Pt(X1, . . . , Xk)e
tXk+1 (Pt(X1, . . . , Xk))

−1
e−tXk+1

= et
k[...[X1,X2],...,Xk]+ω(t)etXk+1

(
et

k[...[X2,X1],...,Xk]+ω(t)
)−1

e−tXk+1

= et
k[...[X1,X2],...,Xk]+ω(t)etXk+1e−t

k[...[X2,X1],...,Xk]−ω(t)e−tXk+1

= e(tXk+1+t
k[...[X1,X2],...,Xk]+ω(t)+

1
2 t

k+1[...[X1,X2],...,Xk+1]+o(t
k+1)) ·

e(−tXk+1−tk[...[X1,X2],...,Xk]−ω(t)+ 1
2 t

k+1[...[X1,X2],...,Xk+1]+o(t
k+1))

= et
k[...[[X1,X2],X3],...,Xk+1]+o(t

k+1).

One should note that each Pt is in fact a product of element of the form e±tXi . Thus the following

properties are immediate:

Pλt(X1, . . . , Xk) = Pt(λX1, . . . , λXk), (4.1.4)
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4.1 A deeper study of Carnot groups

δλPt(X1, . . . , Xk) = Pt(δλX1, . . . , δλXk). (4.1.5)

We construct now a map that will help in constructing horizontal paths. Consider a Carnot

basis X1, . . . , Xn, so in particular property (4.1.1) holds. Iterating such property, we have that each

element Xj of the basis is such that

Xj = [. . . [[Xj,1, Xj,2], Xj,3], . . . , Xj,dj ],

where the basis elements Xj,1, . . . , Xj,dj are in V1, and dj is such that Xj ∈ Vdj , in other words, it

is the degree of Xj .

For each j, we consider the expression

P (j)(t) := Pt(Xj,1, . . . , Xj,dj ).

In the following we will use the notation tα = sgn(t)|t|α, so for example we have
√
−4 = −2. We

finally define the map

E(t) := P (1)( d1
√
t1) · · ·P (n)( dn

√
tn).

E.g., for the standard basis in the Heisenberg group we get:

E(t) = et1Xet2Y e
√
t3Xe

√
t3Y e−

√
t3Xe−

√
t3Y .

For the standard basis in the Engel group we get:

E(t) = et2X et2Y e
√

t3Xe
√

t3Y e−
√

t3Xe−
√

t3Y

e
3√t4X e

3√t4Y e−
3√t4Xe−

3√t4Y e
3√t4Xe

3√t4Y e
3√t4Xe−

3√t4Y e−
3√t4X e−

3√t4X .

We will show in order that such a map E satisfies the following three properties.

Proposition 4.1.6. Let E be the map defined above.

1. E : Rn → G is open at 0.

2. E is surjective.

3. E gives a natural horizontal path from 0 to E(t).

The second property follows easily from the first one using dilations. The third is also very

elementary since flows of left-invariant vector fields are right multiplications by exponentials. The

first is a consequence of the interpretation of the bracket as product of exponential.
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4- Analysis on nilpotent groups

Proof of Property 1 of Proposition 4.1.6. We just need to show that (dE)0 is a non-singular matrix.

From how E has been defined and from (4.1.3), we have

(dE)0∂j =
d

dtj
E(t)

∣∣∣∣
t=0

=
d

dtj
P (j)( dj

√
tj)

∣∣∣∣
tj=0

=
d

dt
P dj

√
t(Xj,1, . . . , Xj,dj )

∣∣∣∣
t=0

=
d

dt
et[...[[Xj,1,Xj,2],Xj,3],...,Xj,dj

]+o(t)

∣∣∣∣
t=0

=
d

dt
etXj+o(t)

∣∣∣∣
t=0

= Xj .

In other words, (dE)0 sends the basis ∂1, . . . , ∂n to the basis X1, . . . , Xn. Property 1 follows from

the Inverse Function Theorem.

Proof of Property 2 of Proposition 4.1.6. By Property 1, the set E(Rn) is a neighborhood of e. On

the other hand for each fixed point q ∈ G, the dilations δλ of the Carnot group have the property

that limλ→0 δλ(q) = e. From these two facts we have that, for each p ∈ G, there are λ ∈ R and

t ∈ Rn such that

δλ(E(t)) = p.

Now, let t̃ = δλ(t), i.e., t̃j = λdj tj . First by the properties (4.1.4) and (4.1.5) on Pt, and the fact

that Xj,1, . . . , Xj,dj are in V1, one has

P (j)( dj

√
t̃j) = P (j)( dj

√
λdj tj)

= P (j)(λ dj

√
tj)

= P
λ dj
√
tj
(Xj,1, . . . , Xj,dj )

= P dj
√
tj
(λXj,1, . . . , λXj,dj )

= P dj
√
tj
(δλ(Xj,1), . . . , δλ(Xj,dj ))

= δλ

(
P dj

√
tj
(Xj,1, . . . , Xj,dj )

)
= δλP

(j)( dj

√
tj).
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Then, since δλ on G is a group homomorphism, one get

E(t̃) = P (1)(
d1
√
t̃1) · · ·P (n)(

dn
√
t̃n)

= δλ(P
(1)( d1

√
t1)) · · · δλ(P (n)( dn

√
tn))

= δλ

(
P (1)( d1

√
t1) · · ·P (n)( dn

√
tn)
)

= δλE(t)

= p.

Thus E(Rn) is in fact the whole of G, i.e., E is surjective.

Proof of Property 3 of Proposition 4.1.6. Recall, cf. Theorem 3.1.6, that the flow lines of a left-

invariant vector field X are the curves getX , fixed g ∈ G and varying t ∈ R. Now, since Pt is a

product of exponentials, then E is too. More explicitly, fixed t ∈ Rn, we have

E(t) = exp(ξ1t
α1
γ1Xβ1) · · · exp(ξN tαN

γN XβN ),

for ξi ∈ {1,−1}, α−1
i ∈ N, βi ∈ {1, . . . ,m}, γi ∈ {1, . . . n}, and N ∈ N. Now it is enough to observe

that, fixed K, the point

g := exp(ξ1t
α1
γ1Xβ1) · · · exp(ξKtαK

γK XβK )

can be connected to the point

exp(ξ1t
α1
γ1Xβ1) · · · exp(ξKtαK

γK XβK
) exp(ξK+1t

αK+1
γK+1

XβK+1
)

by the path

g exp(ξK+1sXβK+1), for s ∈ [0, |tαK+1
γK+1

|],

which is tangent to ±XβK+1 , thus horizontal.

Corollary 4.1.7 (Chow’s Theorem for Carnot groups). Any point p ∈ G in a Carnot group can

be joined to the identity e by a horizontal path. Moreover, the CC-distance induces the manifold

topology.

Proof. Property 2 and 3 of Proposition 4.1.6 give the existence of a path from e to any given point

p. Thus dCC(e, p) < ∞, for all p ∈ G. By left invariance of dCC we have dCC(p, q) < ∞, for all

p, q ∈ G.

Since E is in fact open at 0, by Property 1 of Proposition 4.1.6, then points close to the origin

can be connected to the origin by short horizontal curves.
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4- Analysis on nilpotent groups

4.1.4 A proof of the Ball-Box Theorem

Let us still denote by dj the degree of the j-th vector Xj in a Carnot basis, i.e., we have Xj ∈ Vdj .

The box with respect to a fixed Carnot basis X1, . . . , Xn is defined as

Box(r) := {(t1, . . . , tn) ∈ Rn : |tj | ≤ rdj}.

Consider the exponential coordinate map Φ(t) = exp(
∑
j tjXj). Since the exp : g → G is a

diffeomorphism, we have that

Φ(Box(1))

is a (bounded) neighborhood of e ∈ G. Thus, since by Chow’s Theorem 4.1.7 the CC distance

induces the standard topology, there exists a constant C such that

B(e, 1/C) ⊆ Φ(Box(1)) ⊆ B(e, C), (4.1.8)

where B(e, r) is the CC-ball of center the origin e and radius r. Recall that

δλ (B(e, r)) = B(e, λr).

On the other hand,

δλ (Φ (Box(1))) = δλ

{exp(
∑
j

tjXj) : |tj | ≤ 1}


= {exp(

∑
j

λdj tjXj) : |tj | ≤ 1}

= {exp(
∑
j

t̃jXj) : |t̃j | ≤ λdj}

= Φ(Box(λ)) .

In general,

δλ (Φ (Box(r))) = Φ (Box(λr)) .

Thus, (4.1.8) implies

Φ
(
Box(C−1r)

)
⊆ B(e, r) ⊆ Φ(Box(Cr)) . (4.1.9)

Theorem 4.1.10 (Ball-Box Theorem for Carnot groups). Let G be a Carnot group. Fix a Carnot

basis. Then there exists a constant C > 1 such that, for all p ∈ G, if Φp denotes the exponential

coordinate map from p with respect to the Carnot basis, then

Φp
(
Box(C−1r)

)
⊆ B(p, r) ⊆ Φp (Box(Cr)) , (4.1.11)

for all r > 0.
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4.1 A deeper study of Carnot groups

Proof. Notice that

Φp(t) = p · exp(
∑
j

tjXj) = Lp (Φ(t)) .

Now, since dCC is left-invariant, then (4.1.9) implies (4.1.11).

4.1.5 Haar, Lebesgue and Hausdorff measures.

We shall denote by volG the volume form and, at the same time, the right-invariant Haar measure.

Carnot groups are nilpotent and so unimodular, therefore the right and left Haar measures

coincide, up to constant multiples. We fix one of them and denote it by volG.

We shall denote by H k (resp. S k) the Hausdorff (resp. spherical Hausdorff) k-dimensional

measure; these measures depend on the distance, and, unless otherwise stated, to build them we will

use the Carnot-Carathéodory distance in G and the Euclidean distance in Euclidean spaces.

Using the left translation and scaling invariance of the Carnot-Carathéodory distance one can

easily check that the Haar measures of G are a constant multiple of the spherical Hausdorff measure

S Q and of H Q. In exponential coordinates, all these measures are a constant multiple of the

Lebesgue measure L n in Rn, namely

volG
(
{exp(

n∑
i=1

xiXi) : (x1, . . . , xn) ∈ A}
)
= cL n(A) for all Borel sets A ⊆ Rn

for some constant c. Using this fact, one can easily prove that

volG(δλ(A)) = λQ volG(A) (4.1.12)

for all Borel sets A ⊆ G.
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4- Analysis on nilpotent groups

4.2 Regularity problems

We will discuss the following issues:

- smoothness of geodesic curves;

- smoothness of metric spheres;

- smoothness (and existence) of minimal surfaces;

- smoothness (and existence) of solution of the isoperimetric problem.

Comments regarding geodesics

1. The existence is ensured by Ascoli-Arzelà Theorem, as a priori just Lipschitz curves, so differ-

entiable almost everywhere.

2. People expect that when (M,∆, ⟨·, ·⟩) is a sub-Riemannian manifold, then any geodesic is C1,

or, in fact, C∞. The question is still open.

3. People expect that when ∥·∥ is a norm coming from a polytope, i.e., the unit ball of ∥·∥ is the

convex hull of finitely many points, then there exists a constant N ∈ N such that each pair of

points can be connected with a geodesic made of N smooth pieces. The question is still open.

4. The query cannot be solved using the standard arguments from geometric analysis (e.g., Cal-

culus of Variation or differential geometry) as in Riemannian geometry.

Comments regarding metric spheres

1. In Carnot groups, metric spheres are topological spheres. (In general, the conjecture is that

small metric spheres are topological spheres.)

2. In the Heisenberg geometry, spheres are not smooth at the pole. See the picture of the section

of the ball.

3. The expectation is that small metric spheres (at least in Carnot groups) should be piecewise

smooth.

4. The regularity of geodesics is linked (at least philosophically) to the regularity of metric spheres.

Comments regarding minimal surfaces and isoperimetric solutions

1. They do exists in an extended sense.

2. Regularity is a tricky issue.
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4.2.1 Common general philosophical strategy for regularity

Step 1 Consider the geometric objects as special elements inside a wider class of analytical objects.

Step 2 Prove that such analytical objects are in fact ‘rectifiable’, e.g., ‘piece-wise Lipschitz’. (Here

there will be an issue since Carnot groups are purely unrectifiable.)

Step 3 Rectifiability should be first improved as low (e.g., C1) regularity, for example in the case

of minimal objects.

Step 4 Minimal C1 (or C2) objects are in fact C∞, or even analytic.

4.3 Generalized hyper-surfaces: sets with finite perimeter

Both metric spheres and (n−1)-dimensional minimal surfaces inside an n-dimensional Carnot group

have codimension 1. We can see them as boundary of an n-dimensional domain Ω. We then think

about studying Ω instead ∂Ω. The idea is to consider the characteristic function χΩ of Ω:

χΩ(x) = 1 if x ∈ Ω, χΩ(x) = 0 if x /∈ Ω.

We consider the wide class of all measurable sets Ω, in other words, we have χΩ ∈ L1
loc.

Which are the good χΩ? Clearly, even a request of continuity is too strong. The feeling is that

if Ω is a hyper-space, then χΩ should be good. As an toy example, let us consider the I-don’t-

remember-the-name function, i.e. χR>0 . A nice property of such a function is that its derivative

exists in the generalized sense, it is the delta measure δ0.

We arrive at the conclusion that “our good sets are those whose characteristic functions have

measures as generalized derivatives.” We should explain in the following what is this generalized

derivative.

4.3.1 A review of divergence and distributions

Let M be any smooth differentiable manifold with topological dimension n, endowed with an n-

differential volume form volM . For example, volM could be a Riemannian volume form; however,

eventually, M will be a Lie group G, and volM a right Haar measure.

We use the volume form to define the divergence as follows:

Definition 4.3.1. For any vector field X ∈ Γ(M) define the function divX :M → R implicitly as∫
M

Xud volM = −
∫
M

u divX d volM ∀u ∈ C∞
c (M). (4.3.2)
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4- Analysis on nilpotent groups

We say that X is divergence-free if divX ≡ 0.

For example the vector fields
∂

∂j
in Rn are divergence-free, because of the Fundamental Theorem

of Calculus and the fact that the test functions have compact support.

When (M, g) is a Riemannian manifold and volM is the volume form induced by g, then an explicit

expression of this differential operator can be obtained in terms of the components of X, and (4.3.2)

corresponds to the divergence theorem on manifolds. We won’t need either a Riemannian structure

or an explicit expression of divX in the sequel, and for this reason we have chosen a definition based

on (4.3.2): this emphasizes the dependence of divX on volM only.

Note that by Leibniz rule X(uv) = uXv + vXu, integrating over the manifold when X is a

divergence-free vector field, one obtains∫
M

uXv d volM = −
∫
M

vXud volM ∀u, v ∈ C∞
c (M). (4.3.3)

This last identity motivates the following classical definition.

Definition 4.3.4 (X-distributional derivative). Let u ∈ L1
loc(M) and let X ∈ Γ(TM) be divergence-

free. The generalized derivative of u in the direction of X is the operator Xu ∈ (C∞
c (M))

∗
defined

as

⟨Xu, v⟩ := −
∫
M

uXv d volM , v ∈ C∞
c (M).

If f ∈ L1
loc(M), we write Xu = f if ⟨Xu, v⟩ =

∫
M
vf d volM for all v ∈ C∞

c (M). Analogously, if µ

is a Radon measure in M , we write Xu = µ if ⟨Xu, v⟩ =
∫
M
v dµ for all v ∈ C∞

c (M).

SinceX is divergence-free and so (4.3.3) holds (it is still valid when u ∈ C1(M)), the distributional

definition of Xu is equivalent to the classical one whenever u ∈ C1(M).

Proposition 4.3.5. (i) Let G be a nilpotent Lie group, and let volG be a right Haar measure.

Then each left invariant vector field is divergence-free.

(ii) More generally, for any manifold M , any volume form volM ), and any X ∈ Γ(M), one has

that if the flows of X are volM -preserving, then divX ≡ 0.

Proof. The first assertion is consequence of the second one, since, as we saw, flows of left invariant

vector fields are right translations, g 7→ getX . Regarding (ii), let ΦtX(·) be the flow of X at time t.

Thus we know that, for any t, we have

(
ΦtX
)
#
volM = volM .
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Therefore, for any test function u,
∫
M
u ◦ΦtX d volM =

∫
M
u d volM . Such independence of t implies

that

−
∫
M

u divX d volM =

∫
M

Xud volM

=

∫
M

(Xu) ◦ ΦtX d volM

=

∫
M

d

dt

(
u ◦ ΦtX

)
d volM

=
d

dt

∫
M

u ◦ ΦtX d volM

= 0.

Therefore
∫
M
u divX d volM = 0 for all u ∈ C1

c (M), and X is divergence-free.

One can prove the inverse implication: the flows are volM -measure preserving if divX is equal

to 0, cf. the proof of Theorem 2.12 in [AKLD08].

4.3.2 Caccioppoli sets: sets of locally finite perimeter

Definition 4.3.6 (Sets of locally finite perimeter). A Borel set E in a Carnot group, with stratifi-

cation g = V1 ⊕ · · · ⊕ Vs, is said a Caccioppoli set or to have locally finite perimeter if, for any left

invariant horizontal vector field X ∈ V1, the distribution XχE is a Radon measure.

Now that we generalized the object of study, we should first understand how to obtain back our

hyper-surfaces.

Pick X1, . . . , Xm a basis of V1. We form the Rm-valued Radon measure

DχE := (X1χE , . . . , XmχE), (4.3.7)

and call it the perimeter vector measure. One can write

DχE = νE |DχE |,

where |DχE | is the (positive) measure given by the variation of DχE : if A is any Borel set, then

|DχE |(A) = sup
π

∑
B∈π

∥DχE(B)∥ ,

where the supremum is taken over all partitions π of A into a finite number of disjoint measurable

subsets. And νE is the vector measurable function obtained as

νE(x) := lim
r↓0

DχE(Br(x))

|DχE |(Br(x))
,
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which exists |DχE |-almost everywhere.

The terminology is that |DχE | is the perimeter measure, and νE is the normal of the set. Finally,

Per(E) := |DχE |(G) (4.3.8)

is the perimeter of E. More generally, if Ω is a Borel set, then Per(E,Ω) := |DχE |(Ω) is the perimeter

of E inside Ω.

All such objects depend on the choice of X1, . . . , Xm. The choice of such a basis is in correspon-

dence to the choice of a sub-Riemannian metric on the Carnot group G, for which X1, . . . , Xm is an

orthonormal basis.

Definition 4.3.9 (De Giorgi’s reduced boundary). Let E ⊆ G be a set of locally finite perimeter.

Define the reduced boundary FE as the set of points x ∈ supp |DχE | where:

(i) the limit defining νE exists and

(ii) |νE(x)| = 1.

E.g., the reduced boundary of a square on the (Euclidean) plane is formed by its four edges with

the four vertices removed.

Why it is better to consider such sets? Because in such class minima always exist.

Theorem 4.3.10 (Compactness [GN96] + Lower semicontinuity for BV functions [FSSC96]). Let G

be a Carnot group and let Ej be a sequence of locally finite perimeter sets such that their perimeters

in some Borel set Ω converge to a value c ∈ R, i.e.,

|DχEj |(Ω) → c.

Then there exists a locally finite perimeter set F such that, up to passing to a subsequence,

1. χEj → χF in L1
loc(Ω) and

2. |DχF |(Ω) ≤ c.

4.3.3 Notions of rectificability

In general metric spaces the classical definition of ‘good’ surfaces goes back at least to Federer (see

[Fed69, 3.2.14]). The ‘good’ surfaces are those that are images of open subsets in Euclidean spaces

via Lipschitz maps.
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However, there is a problematic fact: in the Heisenberg group there are no Lipschitz embedding

of an open set U ⊂ R2 into the group. Indeed, differentiability theorems implies that the Heisenberg

group is 2-purely unrectifiable, cf. [AK00, Theorem 7.2]. This means that each Lipschitz map

f : U ⊂ R2 → G is such that H2(f(U)) = 0. Roughly speaking, since the 3D Heisenberg group

has Hausdorff dimension equal to 4, then the metric dimension of a hyper-surface is espected to

be 4 − 1 = 3. But the image by a Lipschitz map of a 2-dimensional Euclidean set has Hausdorff

dimension no greater than 2.

There is a second notion (cf. [FSSC03, FSSC01]) of good surfaces which is only valid for hyper-

surfaces: being (locally) the zero set of a ‘intrinsically’ C1 real-valued function with non-vanishing

gradient:

Definition 4.3.11 (G-regular functions and hyper-surfaces). Let G be a Carnot group with V1 as

horizontal layer. Let U be an open subset of G and f : U → R. We say that f belongs to C1
G(U)

if f and Xf are continuous functions in U , for all X ∈ V1. We say that S ⊂ G is a G-regular

hyper-surface if for any p ∈ S there is an neighborhood U of p in G and there is f ∈ C1
G(U) with

(Xf)(q) ̸= 0, for all q ∈ U and all X ∈ V1 \ {0}, such that

S ∩ U = f−1(0).

Notice that if f is in C1 then it is clearly in C1
G. However, the hyper-surface f−1(0) is G-regular

only if ∇f is never orthogonal to V1.

Definition 4.3.12 (G-rectifiable hyper-surface). Let G be a Carnot group of Hausdorff dimension

Q. A set Σ ⊂ G is said ((Q − 1)-dimensional) G-rectifiable if there exist a countable collection of

G-regular hyper-surfaces Sj such that

HQ−1
cc (Σ \ ∪jSj) = 0.

The following theorem is due to De Giorgi in the Euclidean setting and to Franchi, Serapioni,

and Serra Cassano in Carnot groups of step 2, cf. [DG54, DG55, FSSC03, FSSC01].

Theorem 4.3.13 (Structure of finite perimeter sets). Let G be either the Euclidean space or a step-2

Carnot group. If E has locally finite perimeter, then its reduced boundary FE is G-rectifiable.

Question 4.3.14. Is the above theorem true in Carnot groups of arbitrarily step?

A partial answer to the above question has been obtained in [AKLD08].
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4.3.4 Notions of surface measures

We reach the conclusion that the problem of studying hyper-surfaces can be rephrased as the study

of characteristic functions χE , focusing on their perimeter measures |DχE | and their reduce bound-

aries FE. The reason for doing so is that perimeters have properties of compactness and lower

semicontinuity, cf. Theorem 4.3.10.

For hyper-surfaces then we have that there are two natural notions of measures: HQ−1
cc restricted

to the hyper-surface or the perimeter of one of the side domains determined by the hyper-surface.

People expect that the two notions should be related. For doing so, one should first prove rectifiability

of reduced boundaries, cf. Question 4.3.14.

However, if S = f−1(0) is given as level set of a C1 function f , the two measures are equal.

Indeed, let E = f−1((−∞, 0)), so ∂E = S. Then

Per(E) =

= ...

= HQ−1
cc x∂E

4.4 Partial regularity results and open questions

4.4.1 Results on geodesics

The following theorem can be found in [Str86], however, in that paper the claim was wrongly stated

in more generality. In fact, the proof was valid only for step-2 distributions. The paper has been

corrected in [Str89].

Theorem 4.4.1 (Strichartz [Str89]). If (M,∆, ⟨·, ·⟩) is a sub-Riemannian manifold of step-2, then

each geodesic for the CC-distance is C∞.

The following theorem is proved more generally in [LM08], however the assumptions of step ≤ 4

and rank 2 are deeply used.

Theorem 4.4.2 (Leonardi-Monti). [LM08] If G is a Carnot group of step ≤ 4 and with 2-dimensional

horizontal layer V1, then each geodesic for the CC-distance is C∞.

The next result is proved in these notes.
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Proposition 4.4.3. Let G be a connected, simply connected, and nilpotent Lie group. Let ∆ ⊂ g be

a left-invariant sub-bundle such that

∆⊕ [g, g] = g.

E.g., G could be a Carnot group. Then, if X is a left-invariant vector field in ∆, then t 7→ etX is a

(smooth) geodesic with respect to any CC-distance of (G,∆, ∥·∥), for any left-invariant norm ∥·∥.

The following theorem should be found in [Bre07].

Theorem 4.4.4 (Breuillard 2007). Let G be the 3D Heisenberg group. Let ∥·∥1 be the ℓ1 norm on

V1. Then the geodesics with respect to the CC-distance of (G,V1, ∥·∥1) are made of at most 4 pieces

of horizontal lines, i.e., each geodesic is the concatenation of at most 4 curves of the form t 7→ getX ,

with g ∈ G and X ∈ V1.

Conjecture 4.4.5 (Regularity conjecture for sub-Reimannian manifolds). If (M,∆, ⟨·, ·⟩) is a sub-

Riemannian manifold, then each geodesic for the CC-distance is C∞.

Conjecture 4.4.6 (Weak regularity conjecture for sub-Reimannian Carnot groups). If G is a Carnot

group, then each pair of points can be connected by a C1 geodesic.

Conjecture 4.4.7 (Regularity Conjecture for sub-Finsler Carnot groups). If (G, V1, ∥·∥1) is a

Carnot group where ∥·∥1 is the ℓ1 norm, then there exists a constant K such that each pair of

points can be connected by a geodesic that is the concatenation of at most K horizontal lines.

There are several statements that are true but for possibly a measure-zero collection of distribu-

tions. Compare the following result with Theorem 4.4.12.

Theorem 4.4.8 (Chitour-Jean-Trélat [CJT06]). For generic sub-Riemannian structures (M,∆, ⟨·, ·⟩)

of rank greater than or equal to 3, i.e., dim∆p ≥ 3, for all p ∈M , all geodesics for the CC-distance

are C∞.

4.4.2 Results on metric spheres

Proposition 4.4.9. If G is the 3D Heisenberg group, then each metric sphere ∂B(e, r), r > 0, is

an (Euclidean) Lipschitz manifolds, and there are two points pN and pS (the two poles) such that

∂B(e, r) \ {pN , pS} is a C∞ manifold.
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In the Carnot group setting, one can uses the dilations and the standard proof of the fact that

open sets that are star-shaped are topological balls, to prove that metric balls in Carnot groups are

topological balls. Moreover, the spheres can be written as graphs using ‘inhomogeneous’ spherical

coordinates with respect to the dilations. Since metric spheres in CC-metrics are closed, one get

the following result.

Proposition 4.4.10. If G is a Carnot group, then each metric sphere ∂B(e, r), r > 0, is topologically

a sphere.

The following theorem should be found in [Bre07].

Theorem 4.4.11 (Breuillard 2007). Let G be the 3D Heisenberg group. Let ∥·∥1 be the ℓ1 norm

on V1. Then the metric spheres of the sub-Finsler geometry of (G,V1, ∥·∥1) are piece-wise analytical

sub-variety.

The work of Agracev and Gauthier [AG01] gives an piece-wise analytic answer in generic cases:

Theorem 4.4.12 (Agrachev-Gauthier). Generically, small balls in a sub-Riemannian manifold

(M,∆, ⟨·, ·⟩) are sub-analytic if the rank of the distribution is ≥ 3.

Conjecture 4.4.13. If (M,∆, ∥·∥) is any sub-Finsler manifold, then small metric spheres are piece-

wise smooth.

Proposition 4.4.14. Metric balls in Carnot groups are sets of finite perimeter and metric spheres

are G-rectifiable hyper-surfaces.

4.4.3 Results on the isoperimetric problem

In studying minimal problems for hyper-surfaces inside a Carnot group G of Hausdorff dimension

Q, it is more convenient to minimize the intrinsic perimeter of a class of sets E ⊂ G than the

(Q− 1)-dimensional Hausdorff measure of their boundaries.

Theorem 4.4.15 (Existence of isoperimetric sets). In any Carnot group, there exist solutions of

the isoperimetric problem, i.e., sets minimizing the intrinsic perimeter among all measurable sets

with prescribed volume measure.

The above theorem is due, in the Carnot group setting to Leonardi and Rigot in [LR03], and it

has been then generalized by Danielli, Garofalo, and Nhieu.

80



4.4 Partial regularity results and open questions

Proposition 4.4.16. Metric spheres ∂B(e, r), r > 0, in the Heisenberg group are not solutions of

the isoperimetric problem.

In [Pan82, Pan83a], Pierre Pansu draw attention on a class of sets which are called today Pansu

spheres. Denote by Sλ the compact embedded surface of revolution, which is homeomorphic to a

sphere, obtained considering a geodesic between two points in the center of the group at distance

π/λ and rotating such a curve around the center. Any left traslation of an Sλ is called a Pansu

sphere.

Ritoré and Rosales arrived at a characterization of complete, oriented, connected C2 immersed

volume preserving area-stationary surfaces in the 3D Heisenberg group [RR08, Theorems 6.1, 6.8,

6.11], which led to a proof of the Pansu conjecture (cf. [Pan83a, page 172]) for the isoperimetric

profile of the Heisenberg group in the C2-smooth category [RR08, Theorem 7.2].

Theorem 4.4.17 (Ritoré and Rosales [RR08]). In the 3D Heisenberg group, C2 isoperimetric sets

are Pansu spheres.

Theorem 4.4.18 (Monti-Rickly [MR09]). (Euclidean) convex isoperimetric sets are Pansu spheres.

4.4.4 Results on minimal surfaces

Let S be a hyper-surface inside a Carnot group G of Hausdorff dimension Q. The first two natural

surface measures on S are the (Q− 1)-Hausdorff measure HQ−1
cc xS or the perimeter measure of one

of the side regions determined by S, i.e., Per(E) with ∂E = S, where the perimeter has been defined

in (4.3.8). The perimeter measure Per(E) has a better behavior and, at least when ∂E is a C2

hyper-surface, it coincides with HQ−1
cc x∂E

Let us clearify now the terminology of ‘minimal surface’.

Definition 4.4.19. If Σ ⊂ G is such that for all Σ′ such that there exists R > 0 such that

[...] then we say that Σ is globally area-minimizing

Definition 4.4.20 (...). then we say that Σ is (locally) area-minimizing

Definition 4.4.21 (...).

−∇G · ∇GF

|∇GF |
≡ 0, where ∇Gf = (X1f, . . . , Xmf), (4.4.22)

then we say that Σ has zero mean curvature or that it is a solution of the minimal surface equation.
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Definition 4.4.23 (...). then we say that Σ is area-stationary.

With the term ‘minimal surface’ authors can reefer to any of the 4 above definitions.

Theorem 4.4.24 (Existence of area-minimizing sets [GN96]). In sub-Riemannian manifolds, area-

minimizing sets exist.

Explicitly, let Ω be a bounded open set in a Carnot group G. Let L be a locally finite perimeter

set. Then the above theorem guarantees the existence of a locally finite perimeter set E such that

i) (E∆L) \ Ω = ∅, and

ii) (F∆L) \ Ω = ∅ =⇒ Per(E ∩ Ω) ≤ Per(F ∩ Ω).

In other words, the (reduced) boundary of E is the area minimizing (generalized) hyper-surface

inside Ω with boundary data L outside Ω.

Cheng, Hwang and Yang [CHY07] have studied the weak solutions of the minimal surface equa-

tion for intrinsic graphs in the Heisenberg group and have proven existence and uniqueness results.

Fact: The minimal surface equation is a sub-elliptic PDE: a priori, neither existence, not unique-

ness, nor regularity can be deduced.

Theorem 4.4.25 (Non-uniqueness of minimal surfaces [Pau04]). There are loops in the Heisenberg

group that admit more than one filling by zero-mean curvature disks.

N.B. This happens in the Euclidean case too.

The main difference between Euclidean and sub-Riemannian geometry is the existence of low-

regular minimal surfaces.

Theorem 4.4.26 (Existence of low-regular area minimizing surfaces [Rit09, CHY07, Pau04]). There

are area-minimizing surfaces in the 3D Heisenberg group that are not C2.

This is due to the fact that not all area-minimizing surfaces have zero-mean curvature. On

the other hand, there are examples of zero-mean curvature surfaces that are not area-minimizing,

cf. [DGN08]. Does this happen in Euclidean geometry?

Moreover, the condition of having zero mean curvature is not enough to guarantee that a given

surface of class C2 is area-stationary [RR08].
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Theorem 4.4.27 (Regularity of zero mean curvature surfaces [Pau06, CHY09, CCM08]). Let S be

a surface in the Heisenberg group that is either C1 or a Lipschitz intrinsic graphs. If S have zero

mean curvature (in an extended sense), then it is smooth.

Theorem 4.4.28 (Bernstein problem). In the Euclidean 3D space, any entire minimizing graph

{(x, y, f(x, y) : x, y ∈ R} is a plane.

One would expect that such a fact would be true for any n-dimensional graph in Rn+1, but

Bombieri, De Giorgi and Giusti established the surprising result that the Bernstein property fails if

n ≤ 8.

Theorem 4.4.29 (Counterexample in R9, [BDGG69]). If n ≤ 8 there exist complete minimal

graphs in Rn+1 that are not hyper-planes: For m ≥ 4, a Simons cone, i.e., the set E ⊂ R4 defined

by x1
2 + x2

2 + · · ·+ xm
2 = x2m+1 + x2m+2 + · · ·+ x2m

2 is a minimal surface.

Theorem 4.4.30 (Counterexample in Heisenberg-Garofalo and Pauls). Let G ∼ R3 be the Heisen-

berg group. The real analytic surface

S = {(x, y, t) ∈ G|y = −x tan(tanh(t))},

is an entire graph with zero mean curvature.

4.4.5 More results on regularity

The work of Agracev and Gauthier [AG01] gives an analytic answer in generic cases:

Theorem 4.4.31 (Agrachev-Gauthier). Generically, the germ at a point q0 of the function q 7→

ρ(q)
def→= dist(q, q0) is subanalytic if the dimension n of the manifold and the dimension k of the

distribution satisfy n ≤ (k − 1)k + 1.

Theorem 4.4.32 (Agrachev-Gauthier). Generically (and, in fact, on the complement of a set of

distributions of infinite codimension), small balls {q : ρ(q) ≤ r} are subanalytic if k ≥ 3.

Theorem 4.4.33 (Agrachev-Gauthier). Generically, the germ of ρ at q0 is not subanalytic if n ≥

(k − 1)
(
k2

3 + 5k
6 + 1

)
.

(Monti, 2000, 2003), (Leonardi-Masnou, 2005): There is no direct counterpart of the Brunn-

Minkowski inequality in Euclidean space

83



4- Analysis on nilpotent groups

(Ritor -Rosales, 2005), (Danielli-Garofalo-Nhieu, 2006): The sets bounded by Sλ are isoperimet-

ric regions in restricted classes of sets (C2 rotationally symmetric and C1 unions of two graphs over

a ball in the xy-plane t = 0 divided by t = 0 into two regions of equal volumes)

Bonk-Capogna: flow by mean curvature of a C2 convex surface which is the union of two radial

graphs, converges to Sλ

4.5 Translations and flows

Given X ∈ Γ(TM) we can consider the associated flow, i.e., the solution ΦX : M × R → M of the

following ODE 
d

dt
ΦX(p, t) = XΦX(p,t)

ΦX(p, 0) = p.

(4.5.1)

Notice that the smoothness of X ensures uniqueness, and therefore the semigroup property

ΦX(x, t+ s) = ΦX(ΦX(x, t), s) ∀t, s ∈ R, ∀x ∈M (4.5.2)

but not global existence; it is guaranteed, however, for left-invariant vector fields in Lie groups. We

obviously have

d

dt
(u ◦ ΦX)(p, t) = (Xu)(ΦX(p, t)) ∀u ∈ C1(M). (4.5.3)

An obvious consequence of this identity is that, for a C1 function u, Xu = 0 implies that u is

constant along the flow, i.e. u ◦ ΦX(·, t) = u for all t ∈ R. A similar statement holds even for

distributional derivatives along vector fields: for simplicity let us state and prove this result for

divergence-free vector fields only.

Theorem 4.5.4. Let u ∈ L1
loc(M) be satisfying Xu = 0 in the sense of distributions. Then, for all

t ∈ R, u = u ◦ ΦX(·, t) volM -a.e. in M .

Proof. Let g ∈ C1
c (M); we need to show that the map t 7→

∫
M
gu ◦ΦX(·, t) d volM is independent of

t. Indeed, the semigroup property (4.5.2), and the fact that X is divergence-free yield∫
M

gu ◦ ΦX(·, t+ s) d volM −
∫
M

gu ◦ ΦX(·, t) d volM

=

∫
M

ug ◦ ΦX(·,−t− s) d volM −
∫
M

ug ◦ ΦX(·,−t) d volM

=

∫
M

ug ◦ ΦX(ΦX(·,−s),−t) d volM −
∫
M

ug ◦ ΦX(·,−t) d volM

= −s
∫
M

uX(g ◦ ΦX(·,−t)) d volM +o(s) = o(s).
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Remark 4.5.5. We notice also that the flow is volM -measure preserving (i.e. volM (ΦX(·, t)−1(A)) =

volM (A) for all Borel sets A ⊆M and t ∈ R) if and only if divX is equal to 0. Indeed, if f ∈ C1
c (M),

the measure preserving property gives that
∫
M
f(ΦX(x, t)) d volM (x) is independent of t. A time

differentiation and (4.5.3) then give

0 =

∫
M

d

dt
f(ΦX(x, t)) d volM (x) =

∫
M

Xf(ΦX(x, t)) d volM (x) =

∫
M

Xf(y) d volM (y).

Therefore
∫
M
f divX d volM = 0 for all f ∈ C1

c (M), and X is divergence-free. The proof of the

converse implication is similar, and analogous to the one of Theorem 4.5.4.

Let G be a Lie group with Lie algebra g. We shall also consider as volume form volG a right-

invariant Haar measure.

Let X ∈ g and let us denote, as usual in the theory, by exp(tX) the flow of X at time t starting

from e (that is, exp(tX) := ΦX(e, t) = ΦtX(e, 1)); then, the curve g exp(tX) is the flow starting at

g: indeed, since X is left-invariant, setting for simplicity γ(t) := exp(tX) and γg(t) := gγ(t), we

have

d

dt
γg(t) =

d

dt
(Lg(γ(t))) = (dLg)γ(t)

d

dt
γ(t) = (dLg)γ(t)X = Xγg(t).

This implies that ΦX(·, t) = Rexp(tX) and so the flow preserves the right Haar measure, and the

left translation preserves the flow lines. By Remark 4.5.5 it follows that allX ∈ g are divergence-free,

and Theorem 4.5.4 gives

f ◦Rexp(tX) = f ∀t ∈ R ⇐⇒ Xf = 0 (4.5.6)

whenever f ∈ L1
loc(G).

4.5.1 X-derivative of nice functions and domains

If u is a C1 function in Rn, then Xu can be calculated as the scalar product between X and the

gradient of u:

Xu = ⟨X,∇u⟩. (4.5.7)

Assume that E ⊂ Rn is locally the sub-level set of the C1 function f and that X ∈ Γ(TRn) is

divergence-free. Then, for any v ∈ C∞
c (Rn) we can apply the Gauss–Green formula to the vector

field vX, whose divergence is Xv, to obtain∫
E

Xv dx =

∫
∂E

⟨vX, νeuE ⟩ dH n−1,
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where νeuE is the unit (Euclidean) outer normal to E. This proves that

XχE = −⟨X, νeuE ⟩H n−1x∂E .

However, we have an explicit formula for the unit (Euclidean) outer normal to E, it is νeuE (x) =

∇f(x)/|∇f(x)|, so, by (4.5.7),

⟨X, νeuE ⟩ = ⟨X, ∇f
|∇f |

⟩

=
⟨X,∇f⟩
|∇f |

=
Xf

|∇f |
.

Thus

XχE = − Xf

|∇f |
H n−1x∂E . (4.5.8)

4.6 Exercises

Exercise 4.6.1. Let V and W ⊂ g be two sub-vector spaces with X1, . . . , Xl and Y1, . . . , Ym basis

of V and W respectively. Then show that the vectors [Xi, Yj ], for i = 1, . . . , l, j = 1, . . . ,m span

[V,W ], thus one can extract a basis among such brackets.

Exercise 4.6.2. Let g = V1⊕· · ·⊕Vs be a stratification of a Lie algebra. Assume that Xmj+1, . . . , Xmj

is a basis of Vj, then show that the order-reversed basis Xn, . . . , X1 is a (strong) Malcev basis.

Exercise 4.6.3. Considering the horizontal path constructed in the proof of Property 3 in Proposition

4.1.6, give a lower bound on dCC(e, E(t)).

Exercise 4.6.4. Let G be a simply connected nilpotent Lie group and let V1 be a sub-space such that

g = V1 ⊕ [g, g].

Denote by g(i) the i-th term in the lower (or descending) central series of g, Show first that

g(2) = [V1, V1] + g(3).

Then, by induction, show

g(i) = [V1, [V1, [. . . , [V1, V1] . . .]] + g(i+1),

where in the above bracket there are i many V1’s. Finally deduce that such a V1 generates the whole

Lie algebra.
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Chapter 5

Nilpotent discrete groups

5.1 Elements of Geometric Group Theory

A discrete group Γ is a topological group that as topological space is discrete.

A set S inside a group Γ is said to be generating if there is no proper subgroup of Γ containing

S. In other words, every element in the group Γ can be written as a finite product of elements in S.

If one interprets the elements in S as words of an alphabet, then one can use the expression: ‘each

element in Γ is represented by a word with letters in S’.

A group is said to be finitely generated if it admits a finite generating set.

After having fixed such a set S, one can construct a geometric graph related to the group Γ.

Definition 5.1.1 (Cayley graph). Let Γ be a discrete group and let S be a generating set. The

(colored and directed) Cayley graph G = G(Γ, S) is the colored directed graph constructed as follows:

The vertex set Vertex(G) of G is identified with Γ. Each generator s of S determines a color cs and

the directed edges of color cs consists of the pairs of the form (g, gs), with g ∈ Γ.

Geometric Group Theory mostly studies finitely generated groups considering the large scale

geometry (or coarse geometry) of the Cayley graph. In such case, the set S is usually assumed to

be finite, symmetric, i.e., S = S−1, and not containing the identity element of the group. In this

case, the (uncolored) Cayley graph is an ordinary graph: its edges are not oriented and it does not

contain loops.

Definition 5.1.2 (Word metric). Let Γ be a discrete group and let S be a generating set. For any

two elements g and h ∈ Γ, their word distance with respect to S, is denoted by dS(g, h) and is

defined as the minimum number of elements (=letters) in S whose product (=word) equals g−1h.
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Analogously, the word metric dS on the whole Cayley graph G(Γ, S) is the length metric that gives

length 1 to each edge of G(Γ, S). We have then an isometry between (Γ, dS) and the vertex set of the

graph (Vertex (G(Γ, S)) , dS)

The group Γ acts naturally on its Cayley graph G(Γ, S) sending the vertex h to the vertex gh,

for each fixed g ∈ Γ. One can easily check that such left translations preserve the graph structure

of G.

Proposition 5.1.3 (Isometry of the left action). The left translation of a group Γ are isometries

with respect to the word metric. Analogously, the left translations induce an isometric action of the

group Γ on the metric space (G(Γ, S), dS), and such action is transitive on the vertex set.

The word metric on a group Γ is not unique, because different symmetric generating sets give

different word metrics. However, finitely generated word metrics are unique up to biLipschitz equiv-

alence.

Proposition 5.1.4 (Bilipschitz invariants of a group). If S and S′ are two symmetric, finite gen-

erating sets for Γ with corresponding word metrics dS and dS′ , then there is a constant K such that

the identity map from (Γ, dS) to (Γ, dS′) is a K-biLipschitz map. In fact, K is just the maximum of

the dS word norms of elements of S′ and the dS′ word norms of elements of S.

Definition 5.1.5 (Quasi-isometry). Suppose (M1, d1) and (M2, d2) are metric spaces, and f :M1 →

M2 is a function (not necessarily continuous). Then f is called a (A,L)- quasi-isometric embedding,

with L ≥ 1 and A ≥ 0, if

1

L
d2(f(x), f(y))−A ≤ d1(x, y) ≤ L d2(f(x), f(y)) +A for all x, y ∈M1.

Moreover, a quasi-isometric embedding is called a quasi-isometry if there exists a constant C ≥ 0

such that to every u ∈M2 there exists x ∈M1 with

d2(u, f(x)) ≤ C.

The spaces M2 and M2 are called quasi-isometric if there exists a quasi-isometry between them.

Theorem 5.1.6 (Fundamental observation of Geometric Group Theory). Let X be a metric space

which is geodesic and proper, let Γ be a group acting on X by isometries. Assume that the action is

proper and the quotient space X/Γ is compact.
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Then the group Γ is finitely generated and quasi-isometric to X.

More precisely, for any x0 ∈ X, the orbit mapping

Γ → X

γ 7→ γ(x0)

is a quasi-isometry.

Such fact was known in the 50’s. A proof can be essentially re-contruct from [Lemma 2]Milnor.

A detailed proof is in [Theorem 23]delaharpe.

From the above fundamental observation we deduce that Geometric Group Theory links the

study of fundamental groups of compact manifolds and their Riemnnian universal covers. Namely,

let M be a compact differentiable manifold. Let π1(M) the fundamental group of M . By the above

observation, such discrete group is finitely generated. We endow the group with a word metric. Fix

now a Riemannian metric g on M . Then there is a unique Riemannian metric g̃ on the universal

cover M̃ of M such that the universal projection

(M̃, g̃) � (M, g)

is a local isometry. We refer to such g̃ as the lifted Riemannian metric. The crucial result is that

the coarse geometry of M̃ is the same that the coarse geometry of π1(M). A prove of the following

proposition can be found in the lecture notes of M. Kapovich on GGT, use his Lemma 1.31.

Proposition 5.1.7. Assume M is a Riemannian manifold that is compact.

(i) The fundamental group π1(M) is finitely generated.

(ii) The universal cover M̃ , endowed with the lifted Riemannian distance, is quasi-isometric to

π1(M), endowed with any word metric.

Proposition 5.1.8. Assume G is a finitely generated group and H < G a subgroup.

(i) If H has finite index in G, then G and H are quasi-isometric.

(ii) If H is a finite group (and it is normal in G), then G and G/H are quasi-isometric.

Definition 5.1.9. We say that a group G is virtually nilpotent if there exists a sub-group H < G

of finite index in G that is nilpotent.
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5- Nilpotent discrete groups

5.2 The growth rate of balls

The bilipschitz equivalence of word metrics implies in turn that the growth rate of a finitely generated

group is a well-defined isomorphism invariant of the group Γ, independent of the choice of a finite

generating set S. This implies in turn that various properties of growth, such as polynomial growth,

the degree of polynomial growth, and exponential growth, are isomorphism invariants of groups.

Given a finitely generated group Γ, we fix a finite symmetric generating set S. For each R > 0,

let BS(e,R) be the metric ball in Γ with respect the distance dS with center the origin e and radius

R. We then denote by #(BS(e,R)) the cardinality of the finite set BS(e,R).

Definition 5.2.1. The growth rate of a finitely generated group Γ is the growth rate of the function

R 7→ #(BS(e,R)).

5.2.1 Invariance of the growth rate

Proposition 5.2.2. If two metric spaces are quasi isometric, then they have the same growth rate.

Corollary 5.2.3. Assume M is a Riemannian manifold that is compact. Then the grow rate of the

group π1(M) is the same as the grow rate of the volume function on the universal cover of M .

Namely, consider the Riemmanian structure on M̃ lifted from the structure on M . Let B̃(p, r)

be the metric ball in M̃ . Let volM̃ be the Riemmanian volume form on M̃ . Then the above corollary

states that there exist constants k, c such that, for all R > 1, one has the bounds

k−1 #(BS(e, c
−1R)) ≤ volM̃ (B̃(p,R)) ≤ k #(BS(e, cR)).

Now, if a group Γ is virtually nilpotent, then by definition it has a nilpotent sub-group Γ′ of finite

index. Then Γ and Γ′ are quasi-isometric and thus have the same growth rate. We will describe the

fact that the groups that are virtually nilpotent are exactly those that have a polynomial growth

rate.

5.2.2 Polynomial growth and virtual nilpotency

Definition 5.2.4 (Polynomial growth). A discrete group Γ is said to have polynomial growth if,

for some (and thus for any) generating set S, there exist C > 0 and k > 0 such that for any integer

R ≥ 1

#(BS(e,R)) ≤ C ·Rk.
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5.3 Asymptotic cone

Another choice for S would only change the constant C, but not the polynomial nature of the

bound, because of Proposition 5.2.2. Actually one only requires that the growth of the balls are

bounded by a polynomial function. However, a result of Pansu states that, in fact, the above

equation can be improved saying that there exists c(S) > 0 and an integer d(Γ) ≥ 0 depending on

Γ only such that the following holds:

#(BS(e,R)) = c(Γ)Rd(Γ) + o(Rd(Γ)), as R→ ∞.

The condition of polynomial growth can be further weakened, cf. [vdDW84, Kle09].

A result of J. Wolf is that a group has polynomial growth if it is nilpotent. A deep result of

Gromov is the equivalence of polynomial growth and virtual nilpotency.

Theorem 5.2.5 (Gromov’s polynomial growth). A finitely generated group has polynomial growth

rate if and only if it is virtually nilpotent.

The original proof in [Gro81] is based on Gleason-Montgomery-Zippin-Zippin-Yamabe structure

theory of locally compact groups. A new short proof has been given by Kleiner in [Kle09].

A non trivial consequence of Gromov’s Theorem is that if a group has polynomial growth then

the exponent of the growth rate is an integer. The plan of this chapter is to give an exposition

of how sub-Riemannian geometry plays a role in the polynomial growth theorem and observe that

such integer exponent is in fact the Hausdorff dimension of a Carnot group associated to the finitely

generated group.

5.3 Asymptotic cone

Theorem 5.3.1 (Wolf-Bass-Gromov-Pansu). The degree of growth of a finitely generated group Γ

of polynomial growth is an integer and equals the Hausdorff dimension of the Carnot group that is

the asymptotic cone of Γ.

The asymptotic cone is also known as the tangent cone at infinity.

Theorem 5.3.2 (Pansu [Pan83b]). The asymptotic cone of a nilpotent finitely generated discrete

group Γ is a Carnot group G∞ endowed with a left-invariant sub-Finsler structure. The Hausdorff

dimension of G∞ is the exponent of the growth rate of Γ.
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5- Nilpotent discrete groups

5.4 The Malcev closure

Briefly, a lattice is a discrete subgroup with finite covolume. Here is the formal definition:

Definition 5.4.1 (Lattice). Let G be a locally compact topological group. A subgroup Γ < G is a

lattice if it is discrete (as topological subspace) and has the property that on the quotient space G/Γ

there is a finite G-invariant1 measure.

Proposition 5.4.2. Let G be a Lie group endowed with a left-invariant Riemannian metric. Let Γ

be a lattice in G. Then the quotient G/Γ is in fact compact and thus Γ is quasi-isometric to G.

Theorem 5.4.3 ([Rag72, Theorem 2.18]). A group Γ is isomorphic to a lattice in a simply connected

nilpotent Lie group if and only if

1. Γ is finitely generated,

2. Γ is nilpotent, and

3. Γ has no torsion.

Corollary 5.4.4 (Malcev Theorem [Mal51]). If Γ is a finitely generated group which is nilpotent

and has no torsion then it is isomorphic to a discrete cocompact subgroup of a simply connected

nilpotent Lie group G.

Some useful facts:

1. Every subgroup of a nilpotent group is nilpotent. (easy!)

2. Every subgroup of a finitely generated nilpotent group is finitely generated, cf. [Theorem

9.16]Mac or [Rag72, Theorem 2.7].

3. Every nilpotent group generated by finitely many elements of finite order is finite, cf. [Theorem

9.17]Mac.

These facts implies the following:

Lemma 5.4.5. The elements of finite order in a nilpotent group G form a normal sub-group Tor(G),

called the torsion sub-group of G. If G is finitely generated, Tor(G) is finite. The quotient G/Tor(G)

is torsion-free, that is, its only element of finite order is the identity.

Proposition 5.4.6. Let Γ be a finitely generated discrete group Γ of polynomial growth, then Γ is

quasi-isometric to a connected, simply connected, and nilpotent Lie group G.

1Recall that the quotient on G/Γ is on the right, so G acts naturally on the left.
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5.5 The graded algebra

If a group Γ has polynomial growth, then, by Gromov Theorem 5.2.5, there is a subgroup Γ1 < Γ

that is nilpotent and [Γ,Γ1] <∞. Let Tor(Γ1) be the torsion of Γ1, which is a *finite* and *normal*

subgroup. Define Γ2 := Γ1/Tor(Γ1). Then Γ2 is nilpotent and has no torsion, thus, by Malcev

Theorem 5.4.4, there is a connected, simply connected, and nilpotent Lie group G and a discrete

cocompact subgroup Γ′ < G, such that Γ2 is isomorphic to Γ′.

The groups Γ, Γ1, Γ2, Γ
′, and G are quasi-isometric.

5.5 The graded algebra

Definition 5.5.1 (Graded algebra). Let g be a Lie algebra that is nilpotent of step s. Let g(i+1) :=

[g; g(i)] be the descending central series of g. The graded algebra of g is the Lie algebra g∞ given by

the direct sum decomposition

g∞ :=
s⊕
i=1

g(i)/g(i+1),

endowed with the unique Lie bracket [·, ·]∞ that has the property that, if x ∈ g(i) and y ∈ g(j), the

bracket is defined, modulo g(i+j), as

[x̄, ȳ]∞ = [x, y].

5.6 The limit CC metric

Let Γ′ be a discrete cocompact sub-group in a connected, simply connected, and nilpotent Lie group

G. Let G∞ be the unique connected, simply connected Lie group whose Lie algebra is the graded

algebra g∞ of g.

Let ∥·∥ := dS(e, ·) be a ‘norm’ on Γ′ induced by a finite generating set S. We shall describe the

CC metric induced on the Carnot group G∞.

Consider the two sets:

A := Γ′/[Γ′,Γ′] and B := G/[G,G].

Both A and B are Abelian groups. Moreover, B is a (finite dimensional) vector space.

A is a subgroup of B. (?!?)

∥·∥ induces a norm on A. (?!?)

One defines

∥a∥∞ := lim
k→∞

1

k
∥ka∥ .

93



- Nilpotent discrete groups

Such norm extends to B. (?!?)

Recall that, as in any Carnot group, V1 ≃ g/[g, g]. Thus we consider the projection

π : G∞ � G∞/[G∞, G∞].

Therefore we can transport the norm on V1, using the isomorphism between V1 and B := G/[G,G].

(?!?)
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Appendix A

Curves in sub-Finsler nilpotent
groups

A.0.1 A special sub-Finsler geometry on nilpotent groups

Let G be a simply connected nilpotent Lie group. Let V1 ⊆ TeG be a sub-vector space. Let ∆ be

the left-invariant distribution with ∆e = V1. Considering V1 as a sub-space of the Lie algebra g of

G, assume that the algebra generated by V1 is the whole of g. In other words, assume that ∆ is

bracket generating. Thus we have the flag of left-invariant bundles

∆ = ∆[1] ⊆ ∆[2] = ∆+ [∆,∆] ⊆ . . . ⊆ ∆[s] = TG.

There is a one-to-one correspondence between vectors in V1 and vector fields in the intersection

g ∩ Γ(∆) of the Lie algebra of G and the sections of ∆. We will confuse the two notions without

problems.

Fix a norm ∥·∥ on V1. It extends to a left-invariant norm on ∆. The triple (G,∆, ∥·∥) is a

sub-Finsler manifold.

In the sequel, whenever we speak of the FCC metric on the simply connected nilpotent Lie group

G, we mean one that is associated to a norm ∥·∥ on a sub-space V1 such that g = V1 ⊕ [g, g] where

g = Lie(G).

One can easily check that any such V1 generates the Lie algebra, cf. Exercise 4.6.4.

Assume that G is a simply connected nilpotent Lie group with a left-invariant distribution ∆

such that

g = ∆e ⊕ [g, g], (A.0.1)

as, for example, a Carnot group.
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A- Curves in sub-Finsler nilpotent groups

Question A.0.2. If G is a simply connected nilpotent Lie group and V1 and W1 are sub-spaces such

that

g = V1 ⊕ [g, g] =W1 ⊕ [g, g],

then, does exist a Lie algebra isomorphism ϕ : g → g such that ϕ(V1) = W1? The aswer should be

no, however, see Exercise 4.6.4.

Definition A.0.3 (The projection π1). Let proj : TeG → V1 = ∆e be the projection onto V1 with

kernel [g, g]. Define

π1 : G→ V1

p 7→ π1(p) := proj(exp−1(p)). (A.0.4)

Lemma A.0.5. The following properties hold:

(i) The map π1 : (G, ·) → (V1,+) is a group homomorphism.

(ii) The differential of π1 is the identity when restricted to V1:

dπ1|V1
= idV1

.

Proof of (i). By Theorem 3.1.13, since G is a simply connected and nilpotent, for all p and q ∈ G,

exist X and Y ∈ g such that exp(X) = p and exp(Y ) = q. Then, by BCH formula and assumption

(A.0.1)

π1(p · q) = proj(exp−1(pq)) = proj
(
exp−1(exp(X) exp(Y ))

)
= proj

(
X + Y +

1

2
[X,Y ] + . . .

)
= proj(X + Y ).

On the other hand,

π1(p) + π1(q) = proj(exp−1(p)) + proj(exp−1(q)) = proj(exp−1(p) + exp−1(q)) = proj(X + Y ).

Proof of (ii). Since Theorem 3.1.6(iii), dπ1|V1 = d(proj|V1) = d(id |V1) = idV1 .

The “development” of a curve

The map π1 is useful since it gives a second link between the tangents of an horizontal curves

and vector at the identity. Let γ(t) be an absolute continuous curve with γ̇(t) horizontal, i.e.,
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γ̇(t) ∈ ∆γ(t) ⊆ Tγ(t)G for almost every t. The vector γ̇(t) can be identified with a vector in V1, so

as a tangent vector at the identity. We define γ′(t) ∈ V1 ⊆ TeG as

γ′(t) := (Lγ(t))
−1
∗ γ̇(t).

We then have the following formula

γ′(t) =
d

dt
(π1 ◦ γ) (t) (A.0.6)

Proof of Formula (A.0.6). Using Lemma A.0.5, and that π1(e) = 0, we get

d

dt
(π1 ◦ γ) (t) = lim

h→0

π1(γ(t+ h))− π1(γ(t))

h

= lim
h→0

π1(γ(t)
−1) + π1(γ(t+ h))

h

= lim
h→0

π1(γ(t)
−1γ(t+ h))

h

= lim
h→0

π1(L
−1
γ(t)γ(t+ h))

h

= lim
h→0

π1(L
−1
γ(t)γ(t+ h))− π1(L

−1
γ(t)γ(t))

h

=
d

dh

(
(π1 ◦ L−1

γ(t) ◦ γ
)
(t+ h)

∣∣∣∣
h=0

= (π1)∗ ◦ (L−1
γ(t))∗γ̇(t)

= id(γ′(t)) = γ′(t)

A.0.2 Horizontal lines as geodesics

Definition A.0.7. Let X ∈ V1. The curve γ(t) := exp(tX) is the one-parameter sub-group of the

horizontal vector X, and it is called the horizontal line in the direction of X.

The curve γ(t) is obviously horizontal with respect to ∆, since

γ̇(t) = Xγ(t) ∈ ∆γ(t).
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A- Curves in sub-Finsler nilpotent groups

The length of γ(t), for t ∈ [0, T ], with respect to the CC metric of (M,∆, ∥·∥) is T ∥X∥. Indeed,

Length(γ) =

∫ T

0

∥γ̇(t)∥ dt

=

∫ T

0

∥∥Xγ(t)

∥∥ dt
=

∫ T

0

∥∥(Lγ(t))∗Xe

∥∥ dt
=

∫ T

0

∥X∥ dt

= T ∥X∥ ,

where we used that both X and the norm are left-invariant. Thus we get the formula

Length
(
exp(tX)|t∈[0,T ]

)
= T ∥X∥ . (A.0.8)

In a Lie group endowed with a left-invariant Riemannian metric, the one-parameter subgroups

are NOT always geodesics.

For instance in SL(2,R) the upper triangular unipotent one parameter subgroup(
1 t
0 1

)
is not a geodesic, because it’s distance to Id is roughly log(t), not t.

In a non-compact simple Lie group only the one-parameter groups coming from the p part of the

Cartan decomposition will be geodesics.

Also in the Heisenberg group, if you consider the vertical line, then it is a one-parameter group,

but not a geodesic in Riemannian left-invariant metrics.

Proposition A.0.9. Let G be any Lie group endowed with a left-invariant Riemannian metric.

Then the one-parameter subgroups in the direction of X is geodesic if and only if X is orthogonal to

[X, g].

Proposition A.0.10. Consider a nilpotent Lie group G endowed with a left-invariant sub-Finsler

distance with respect to some distribution ∆ such that

∆⊕ [g, g] = g.

Then one-parameter subgroups of horizontal vectors are geodesics.
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Proof. What we need to show is that

∥π1(g)∥ ≤ dCC(e, g), (A.0.11)

where dCC is the Finsler-Carnot-Carathéodory distance and π1 is the projection defined in (A.0.4).

Restricting (A.0.11) to g belonging to exp(V1) will finish the proof because of calculation (A.0.8).

Indeed, if now X ∈ V1 then the curve t 7→ exp(tX) is a geodesic since

dCC(e, exp(TX)) ≤ Length
(
exp(tX)|t∈[0,T ]

)
= T ∥X∥ = ∥TX∥ ≤ dCC(e, exp(TX)).

Now inequality (A.0.11) is true because, by definition of the metric on G, there is a sequence

of piece-wise linear (or piece-wise smooth) horizontal curves joining e and g whose length tends to

dCC(e, g). But if γ(t) : [0, 1] → G is such a curve, then, by Formula (A.0.6),

∥π1(g)∥ = ∥π1(γ(1))− π1(γ(0))∥

=

∥∥∥∥∫ 1

0

d

dt
(π1 ◦ γ) (t)dt

∥∥∥∥
≤

∫ 1

0

∥∥∥∥ ddt (π1 ◦ γ) (t)
∥∥∥∥ dt

=

∫ 1

0

∥γ′(t)∥ dt

=

∫ 1

0

∥∥(Lγ(t))−1
∗ γ̇(t)

∥∥ dt
=

∫ 1

0

∥γ̇(t)∥ dt

= Length(γ).

A.0.3 Lifts of curves

Lemma A.0.12. Let ϕ : g → h a Lie algebra homomorphism.

(i) If ϕ has the property that ϕ(V
(G)
1 ) ⊆ V

(H)
1 , then

projH ◦ ϕ = ϕ ◦ projG,

where projG : g → g and projH : h → h are the projections onto V G1 and V H1 respectively with

kernels [g, g] and [h, h] respectively.

(ii) If ϕ has the property that ϕ(V
(G)
1 ) ⊇ V

(H)
1 , then ϕ is surjective.
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A- Curves in sub-Finsler nilpotent groups

(iii) If

φ∗|V (G)
1

: V
(G)
1 → V

(H)
1

is an isometry of normed spaces, then φ : G→ H is a 1-Lipschitz, with respect to the respective

FCC metrics.

Proof of (i). If X ∈ V
(G)
1 , then (ϕ ◦ proj)(X) = ϕ(X). Since by assumption we also have ϕ(X) ∈

V
(H)
1 , then (proj ◦ϕ)(X) = ϕ(X). So proj ◦ϕ and ϕ ◦ proj are two homomorphisms that coincide on

V
(G)
1 . Since V

(G)
1 generates the algebra g, then the two homomorphisms are equal.

Proof of (ii). It is obvious since ϕ(g) is an algebra that contains the generating sub-space V
(H)
1 .

Proof of (iii). It is enough to observe that if γ : [0, 1] → G is a geodesic, then

d(γ(0), γ(1)) = Length(γ)

=

∫ 1

0

∥γ̇(t)∥ dt

=

∫ 1

0

∥γ′(t)∥V1(G) dt

=

∫ 1

0

∥φ∗(γ
′(t))∥V1(H) dt

=

∫ 1

0

∥∥∥∥ ddt (φ(γ(t)))
∥∥∥∥
V1(H)

dt

= Length(φ ◦ γ)

≥ d(φ(γ(0)), φ(γ(1))).

Lemma A.0.13. The projection map π1 : G→ V1 has the following properties.

(i) For any Lipschitz curve σ in V1 with σ(0) = 0, there exists a unique Lipschitz horizontal curve

γ with π1(γ) = σ and γ(0) = e, and such a curve is the solution of the ODE{
γ̇(t) = (Lγ(t))∗σ̇(t)
γ(0) = e.

(A.0.14)

(ii) The length of the horizontal curves equals the length of their projections:

Length(γ) = Length(π1 ◦ γ),

for all horizontal curves γ, with γ(0) = e, where the first length is with respect to the FCC

metric and the second one is in the normed space (V1, ∥·∥).
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(iii) If φ : G→ H is a Lie group homomorphism with φ∗(V
(G)
1 ) ⊆ V

(H)
1 , then

π
(H)
1 ◦ φ ◦ γ = φ∗ ◦ π(G)

1 ◦ γ,

for all horizontal curves γ, with γ(0) = e.

Proof of (i). The existence of a solution of the ODE is a consequence of the general Carathéodory’s

theorem, cf. cite[page 43]Coddington-Levinson (1955). The uniquesess can be shown proving that,

if γ1(t) and γ2(t) are two solutions, then

d

dt

(
γ1(t)γ2(t)

−1
)
≡ 0.

Let γ(t) be the solution of the ODE. Then

γ′(t) = (Lγ(t))
∗γ̇(t) =

d

dt
(σ(t)).

Since Formula (A.0.6), we have that π1 ◦ γ and σ are two curves in V1 with same starting point

π1(γ(0)) = 0 = σ(0) and same derivative

d

dt
(π1 ◦ γ) =

d

dt
σ.

Therefore π1 ◦ γ = σ.

Proof of (ii). By Formula (A.0.6), one has

Length(π◦γ) =

∫ 1

0

∥∥∥∥ ddt (π1 ◦ γ) (t)
∥∥∥∥ dt

=

∫ 1

0

∥γ′(t)∥ dt

=

∫ 1

0

∥∥(Lγ(t))−1
∗ γ̇(t)

∥∥ dt
=

∫ 1

0

∥γ̇(t)∥ dt

= Length(γ).

Proof of (iii). By Theorem 3.1.7 and Lemma A.0.12(i), one has

π
(H)
1 ◦ φ ◦ γ = proj ◦ exp−1 ◦φ ◦ γ

= proj ◦ φ∗ ◦ exp−1 ◦γ

= φ∗ ◦ proj ◦ exp−1 ◦γ

= φ∗ ◦ π(G)
1 ◦ γ.

101



A- Curves in sub-Finsler nilpotent groups

We have the following formula combining (i) and (iii):

(dφ)γ(t)γ̇(t) =
(
(Lφ(γ(t)))∗ ◦ φ∗

)( d

dt
(π ◦ γ)(t)

)
.

A.0.4 Curves in free nilpotent Lie groups

Proposition A.0.15. Assume that each pair of points in G can be joined by a smooth geodesic. If

there is a homomorphism φ : G→ H such that

φ∗|V (G)
1

: V
(G)
1 → V

(H)
1

is an isometry of normed spaces, then each pair of points in H can be joined by a smooth geodesic.

In the proposition, the word smooth can be replaced by Ck, Cω, or piece-wise linear, since the

good geodesics in H will be images under φ of good geodesics in G.

Proof. Now pick a point p ∈ H and a geodesic ξ : [0, 1] → H connecting the identity.to p. Then

Push the curve on V
(H)
1 and then back to V

(G)
1 , i.e., consider the curve

(φ∗)
−1 ◦ π1 ◦ ξ.

By Lemma A.0.13(i) consider a/the curve ξ̃ such that

π
(G)
1 ◦ ξ̃ = (φ∗)

−1 ◦ π(H)
1 ◦ ξ.

Note that φ(ξ̃(1)) = p. In fact φ ◦ ξ̃ = ξ. Indeed, φ ◦ ξ̃ and ξ are the unique lift of π
(H)
1 ◦ ξ under

π
(H)
1 , since

π
(H)
1 ◦ φ ◦ ξ̃ = φ∗ ◦ π(G)

1 ◦ ξ̃ = φ∗ ◦ (φ∗)
−1 ◦ π(H)

1 ◦ ξ = π
(H)
1 ◦ ξ,

where we initially used Lemma A.0.13(iii). Let γ̃ be a smooth geodesic joining e to ξ̃(1). We

claim that φ ◦ γ̃ is the desired geodesic. Indeed, using, in order, that φ is 1-Lipschitz (cf. Lemma

A.0.12(iii)), Lemma A.0.13(ii), the assumption φ∗|V (G)
1

isometry, and Lemma A.0.13(ii) again, we
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get

L(φ ◦ γ̃) ≤ L(γ̃)

≤ L(ξ̃)

= L(π
(G)
1 ◦ ξ̃)

= L((φ∗)
−1 ◦ π(H)

1 ◦ ξ)

= L(π
(H)
1 ◦ ξ)

= L(ξ)

= d(e, p).

Let G and H two nilpotent Lie groups, with horizontal layers V
(G)
1 and V

(H)
1 , respectively. Consider

a homomorphism

φ : G→ H,

such that

φ∗|V (G)
1

: V
(G)
1 → V

(H)
1

and it is an isomorphism. Notice that such φ is surjective.

Endow justH with a (left-invariant) FCC-metric with V
(H)
1 as horizontal bundle. In other words,

we have fixed a norm ∥·∥H on V
(H)
1 .

Considering that φ∗|V (G)
1

is an isomorphism, we might consider the following norm ∥·∥G on V
(G)
1 :

∥v∥G := ∥φ∗(v)∥H , for v ∈ V
(G)
1 .

Such a norm induces a (left-invariant) FCC-metric with V
(G)
1 as horizontal bundle.

Then our surjective homomorphism φ : G→ H becomes 1-Lipschitz (cf. Lemma A.0.12(iii)).

Now suppose we know that the problem has a positive answer for G, i.e. that any point in G

can be joined to the identity by a piece-wise linear geodesic.

Now pick a point in H and a geodesic connecting this point to the identity. This geodesic lifts to a

rectifiable path in G with the same length (because of the choice of lifted FCC on G). Of course here

I’m using the fact that since the homomorphism is surjective, the dimension of the abelianisation of

M is at least that of N.
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A- Curves in sub-Finsler nilpotent groups

Now observe that this new path on G is a geodesic, because otherwise there would be another

path joining the endpoints of strictly smaller length ; however its projection to H will also be of

strictly smaller length, because we said out projection map was 1-Lipschitz, thus contradicting that

we had started with a geodesic in H.

Ok, so now we have this lifted path in G and we know it’s a geodesic. By assumption we may now

find another geodesic, piece-wise linear this time, joining the two points. Then its projection will

also be piece-wise linear of course and it will again be a geodesic because once again the projection

is 1-Lipschitz.

A.0.5 Open questions

Question A.0.16. If ρ is a FCC metric w.r.t. a polyhedral unit ball on G, then does there exist a

constant K such that for any p and q there exists a geodesic for ρ joining p and q that has less than

K breack points?

Question A.0.17. Let G be a free nilpotent Lie group. If ρ is a FCC metric w.r.t. a stricly convex

unit ball on G, then, for any p and q, does there exist a smooth geodesic for ρ joining p and q?

Question A.0.18. Let G be a connected simply connected nilpotent Lie group. If ρ is a G-invariant

metric which is coarsely geodesic, i.e.,

d(x, y) ≥ L(γx,y) + C.

Is ρ at bounded distance from a FCC metric.
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