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BY EDWARD WITTEN

In everyday life, a string—such as a shoelace—is usually used
to secure something or hold it in place. When we tie a knot,

the purpose is to help the string do its job. All too often, we run
into a complicated and tangled mess of string, but ordinarily this
happens by mistake.

The term “knot” as it is used by mathematicians is ab -
stracted from this experience just a little bit. A knot in the
mathematical sense is a possibly tangled loop, freely floating
in ordinary space. Thus, mathematicians study the tangle
itself. A typical knot in the mathematical sense is shown in
Figure 1. Hopefully, this picture reminds us of something we
know from everyday life. It can be quite hard to make sense
of a tangled piece of string—to decide whether it can be
untangled and if so how. It is equally hard to decide if two
tangles are equivalent.

Such questions might not sound like mathematics, if one is
accustomed to thinking that mathematics is about adding, subtracting, multiplying,
and dividing. But actually, in the twentieth century, mathematicians developed a
rather deep theory of knots, with surprising ways to answer questions like whether a
given tangle can be untangled. 

But why—apart from the fact that the topic is fun—am I
writing about this as a physicist? Even though knots are things
that can exist in ordinary three-dimensional space, as a physicist
I am only interested in them because of something surprising
that was discovered in the last three decades. Much of the
theory of knots is best understood in the framework of twentieth-
and twenty-first-century developments in quantum physics. In
other words, what really fascinates me are not the knots per se
but the connections between the knots and quantum physics.

The first “knot polynomial” was actually discovered in
1923 by James W. Alexander. Alexander, a Princeton native
who later was one of the original Professors at the Institute,
was a pioneer of algebraic topology. But the story as I will tell
it begins with the Jones polynomial, which was discovered by
Vaughan F. R. Jones in 1983. The Jones polynomial was an
essentially new way of studying knots. Its discovery led to a
flood of new surprises that is continuing to this very day.

Even though it is very modern, and near the frontier of
contemporary mathematics, the Jones polynomial can be described in such a down-to-
earth way that one could explain it to a high school class without compromising very
much. There are not many frontier developments in modern mathematics about which
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The Tunisian revolution
of 2011 (al-thawra al-

tunisiya) was the result of a
series of protests and insur-
rectional demonstrations,
which started in December
2010 and reached culmi-
nation on January 14, 2011,
with the flight of Zine el-
Abidine Ben Ali, the dic-
tator who had held power
for twenty-three years. It did
not occur in a manner com-
 parable to other revolutions. The army, for instance, did not intervene, nor were there
actions of an organized rebellious faction. The demonstrations were peaceful, although
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Historians today can hardly
answer the question:

when does history begin? Tra-
ditional boundaries between
history, protohistory, and pre-
history have been blurred if
not completely erased by the
rise of concepts such as “Big
History” and “macrohistory.” If
even the Big Bang is history,
connected to human evolu-
tion and social development
through a chain of geological,
biological, and ecological
events, then the realm of his-

tory, while remaining firmly anthropocentric, becomes all-embracing. 
An expanding historical horizon that, from antiquity to recent times, attempts to

include places far beyond the sights of literate civilizations and traditional caesuras
between a history illuminated by written sources and a prehistory of stone, copper, and
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Protests in Tunisia culminated when Zine el-Abidine Ben Ali,
who had ruled for twenty-three years, fled on January 14, 2011. 
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Figure 1



one could make such a claim. For example, no one
would try to explain Andrew Wiles’s proof of Fermat’s
Last Theorem to high school students.

To simplify slightly (see the box on page 5 for more
details), what Jones discovered was a way to calculate a
number for every knot. Let us call our knot K, and we
will write JK for the number that Jones calculates for this
knot. There is a definite rule that allows you to calcu-
late JK for any knot. No matter how complicated K may
be, one can calculate JK if one is patient enough.

If JK is not equal to 1, then the knot K can never be
untangled. For example, let us go back to the knot that
was sketched in Figure 1. If you were to think about
how to untie that particular knot, you certainly would
not succeed. But how could one prove that it is impos-
sible? Jones gave a way to answer this sort of question:
calculate JK, and if it is not equal to 1, then the knot K
can never be untied. Jones’s method of computing JK
was very clever, but once it was found, anyone could use
it without any particular cleverness, just by following
instructions.

In fact, there are an astonishing variety of ways to
calculate JK. I will explain just one of the simplest.
One important rule applies to the “unknot,” which is a

simple untangled loop (Figure 2). If K is an unknot then
JK =1.

For all other knots, we have to play a little game. To
start, we pick three favorite numbers, for example 2, 3,
and 10. Now we are going to do something that might
seem to make life more complicated. Instead of a single
knot K, we are going to consider three knots K, K', and
K". If the three knots that we pick are related in a cer-
tain way, there will be an arithmetic relationship

2 JK + 3 JK' + 10 JK" = 0

This relationship—or, as mathematicians call it, this
identity—is so powerful that it enables us to calculate
the J’s.

How should K, K', and K" be related in order to par-
ticipate in such an identity? In Figure 3, I have drawn a
partial knot. It is only a partial knot because there is a
missing piece, indicated by the question mark. There
are many possible ways to complete the knot by filling
in the missing piece. In Figure 4, I have sketched three
of the simplest ways to do this. Choosing one of these
three fillings gives us a knot that we call K, K', or K",
respectively, and then, as stated previously, we declare
that Jones’s numbers JK, JK', and JK" obey the relation-
ship 2 JK + 3 JK' + 10 JK" = 0.

It turns out that this is a rather powerful relation-
ship, which enables one to calculate JK for any K. The
details of this are explained somewhat more fully in the
box (on page 5).

The surprise here is not so much that this rule can be
used to calculate JK, but that in doing this one never
runs into a contradiction. One could anticipate a con-
tradiction because actually there are many ways to use
the properties that I have described to calculate JK.
However, Jones and other mathematicians showed in
the 1980s that there is never a contradiction—one
always arrives at the same answer for JK no matter how
one uses the procedure just described (or the other,
related, procedures that were discovered in that period)
to calculate it.

These proofs showed that the recipes for calculating
JK were correct, but they left a “why” question. Unfor-
tunately, it is not that easy to explain to someone who
does not work in mathematics or physics or an allied
field the difference between knowing “what” is true
and knowing “why” it is true. Yet the beauty of the
“why” answers is much of the reason that people do
mathematics.

In this case, as people worked on the Jones polyno-
mial, they discovered more and more remarkable for-
mulas, with less and less clarity about what they meant.

But there was a clue. In fact, there were a lot of clues.
As the subject developed, beginning with Jones’s origi-
nal work, it had many ties with mathematical
physics . . . bewilderingly many. If anything, too many
links were found between the Jones polynomial and
mathematical physics. Sometimes it is better to have
one good clue than a dozen of doubtful merit!

Personally, I was most influenced during this period
by the work of IAS Members Erik Verlinde, Greg
Moore, and Nati Seiberg (Seiberg is now a Professor in
the School of Natural Sciences) and of the Japanese
mathematicians Akihiro Tsuchiya and Yukihiro Kanie,
and by the suggestions of former IAS Professor Michael
Atiyah.

It turned out that the explanation of the Jones poly-
nomial has to do with quantum theory. So I need to
explain a little of how quantum theory differs from pre-
twentieth-century physics.

A classical particle that is traveling between one
point and another gets there on a nice orbit that obeys
Newton’s laws (Figure 5a). In contrast, a quantum par-
ticle can follow any path at all. A fairly typical path
might be quite irregular (Figure 5b). For the quantum
particle, we have to allow all possible paths, with any
number of loops and zigzags.

An important point to emphasize is that we are rela-
tivistic physicists, since relativity was also invented in
the twentieth century, along with quantum mechanics.
So when I draw a path, it is really a path in spacetime,
not a path in space.

The physical dimension of the real world we live in
is therefore four—three space dimensions and one
dimension of time. But to understand knot theory, at
least for the moment, we are going to imagine a world
of only three spacetime dimensions—two space dimen-
sions and one time dimension.

In a world of three spacetime dimensions, the parti-
cle path might be knotted. For an example of a knotted
path, see Figure 6.

A quantum physicist has to sum the effects of all pos-
sible paths by which a particle might reach its destina-
tion. How to calculate such a sum is what physicists

learned in constructing quantum theory and what is
now the Standard Model of particle physics.

Quantum mechanically, though any path is possible,
if the particle traveled on a particular path K, then
there is a “probability amplitude” for it to arrive at its
destination, and this amplitude depends on K. The way
that the amplitude depends on K is very important—it
is the reason that there is some order even in a quantum
universe. All paths are possible, but peculiar ones with
a lot of zigzags are not very likely.

The quantum mechanical amplitude that the parti-
cle traveled on a path K is given by something called
the Wilson operator, WK. For our purposes, we really do
not need to know how it is defined. All we need to
know is that it is a basic ingredient in quantum physics;
for instance, physicists use it in calculating the force
between quarks.

The connection between the Jones polynomial and
quantum physics turns out to be simply that if we regard
a knot K as the orbit in spacetime of a charged particle,
then the Jones polynomial is the average value of the
Wilson operator. Thus the quantum formula for the
Jones polynomial is just JK = <WK>, where the symbol
< > represents a process of quantum averaging.

When one carries out this program, the version of
quantum theory that is relevant uses something called
the Chern-Simons function for gauge fields. (Both
Shiing-Shen Chern, who founded much of modern dif-
ferential geometry, and James Simons, now an Institute
Trustee, are former IAS Members.)

This story as I have told it so far goes back to my
early years at the Institute. But there is actually a more
contemporary twist to this tale. This is the reason that
it seems timely to write about this topic now.

In everyday life, a knot is a physical object that exists
in space, but to interpret the Jones polynomial in terms of
quantum theory, we have instead had to view a knot as a
path in a spacetime of only three dimensions. This is per-
haps a less obvious viewpoint about what a knot means.

However, around 1990, when he was a Member at
the Institute, Igor Frenkel started to develop what he
hoped would be a new mathematical theory in which
the knot would indeed be seen as a physical object
rather than a path in spacetime. The new theory was
supposed to involve a more powerful version of the
Jones polynomial.

I wish I could say that I gave Frenkel some useful
advice, but all I did was to tell him that it would not
work because the Chern-Simons function is special to
three dimensions and does not have the right sort of
extension to four dimensions. It actually was a sensible
objection at the time, and I am still surprised that it
turned out to be wrong.
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To define the Jones polynomial (or actually a
generalization of it called the HOMFLYPT

polynomial) using the sort of relation described in
the text, we really should introduce three variables
a, b, and c and consider a general identity
a JK + b JK' + c JK" = 0. By virtue of this identity
(and the normalization that JK =1 for an unknot),
JK turns out to be a homogeneous, rational func-
tion of the three variables.

JK is defined for a link (a disjoint union of
embedded circles in three-dimensional space) and
not only for a knot (a single embedded circle). In
general, some or all of K, K', and K" may have
more than one component. In the original Jones
polynomial, the knots and links are unoriented, as
shown in the illustrations that accompany this
article, but in the general HOMFLYPT polynomial
they are oriented.

The identity a JK + b JK' + c JK" = 0 (for every
triple K, K', K" related as in Figure 4) suffices to
determine the Jones polynomial of any link. This
can be proved by induction in the number of
crossings when the link is projected to two dimen-
sions. For example, a knot with three crossings is
sketched in Figure 7. In the special case b=0, the
relation a JK + b JK' + c JK" = 0 says that any two
strands can be passed through each other while
multiplying the Jones polynomial by – c/a. Of
course, if strands can freely be passed through
each other, we can untie any knot. For b nonzero,
the relationship has an extra term, but this extra
term reduces the number of crossings. So induc-
tively, one reduces to the case that K is a link with
no crossings at all—in other words, a union of s
disjoint circles in the plane, for some s. A simple
application of the identity a JK + b JK' + c JK" = 0
shows that in this special case, JK = (–(a+c)/b)s-1.

The proof that the identity a JK + b JK' + c JK" = 0
leads to a consistent result no matter how one
applies it is less obvious, and is made by showing
that the identity is consistent with certain
relations among links that are known as the
Reidemeister moves.

—Edward Witten

Anyway, Frenkel continued to develop this idea with,
among others, his student Mikhail Khovanov and IAS
Member Louis Crane. Finally, around the year 2000,
Khovanov created what is now known as Khovanov
homology—a refinement of the Jones polynomial in
which the knot is a physical object in four spacetime
dimensions rather than the path of a point particle in a
spacetime of only three dimensions.

Khovanov homology is like the Jones polynomial in
that once it was invented, it could be computed by an
explicit set of rules, though these rules are far more
sophisticated than the ones that go into the Jones
polynomial. I do not think that one would try to

explain the definition of Khovanov homology to high
school students.

Khovanov homology has had a great deal of impact
mathematically. For example, it was a major topic in a
special program in the School of Math at the Institute
a few years ago.

One does not need quantum physics to define Kho-
vanov homology, though one may need quantum physics
to understand what it means. Indeed, in 2004, the physi-
cists Sergei Gukov, Albert Schwarz, and Cumrun Vafa
proposed a quantum interpretation of Khovanov homol-
ogy, based on the earlier work of Vafa with Hirosi
Ooguri. (These physicists are all former IAS Members
and/or students.) Their story used plenty of avant-garde
ideas about quantum fields and strings and all that.

As beautiful and powerful as their story is, I’ve
always suspected that there might be a more direct
route, and I spent the last year trying to construct one.
Though in a sense I succeeded, I am not sure whether
to say that I found a more direct route or just a some-
what different one.1

The main difference between Khovanov homology
and the Jones polynomial is that the goal of Khovanov
homology is more abstract. While the Jones polynomial
of a knot K is a number JK, the Khovanov homology of K
is a “space of quantum states” known as HK. If you think
of a knot as a physical object in three-dimensional space,
then HK is the space of its possible quantum states.

Because Khovanov homology is in four spacetime
dimensions rather than three, it involves ideas that
are even closer to real particle physics than those that
go into understanding the Jones polynomial. One
important idea is symmetry between electric and mag-
netic fields. This is called electric-magnetic duality,
and was pioneered in the 1970s by Peter Goddard
(current Director of the Institute), Jean Nuyts, and
David Olive (all former IAS Members). Since the mid-
1990s, it has been one of the main tools in studies of
quantum fields and strings, at the Institute and else-
where. The use of electric-magnetic duality is actually
crucial in circumventing the obstacle that had con-
vinced me twenty years ago that Igor Frenkel’s idea
could not work.

Another facet of string theory also turns out to be
important: extra dimensions. Even though what we
want is supposed to be a theory in four spacetime dimen-
sions, it turns out that understanding it properly
involves relating it to theories in five or six dimensions.

The biggest surprise of all is that even though it can
be defined by an explicit recipe with no reference to
quantum physics—and that is how it was discovered—
Khovanov homology can be understood, possibly much
better, using the most modern tools of quantum field
theory and string theory. Probably the full story involves
physics ideas that we still do not entirely understand
even today. �
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Edward Witten, Charles Simonyi Professor in the
School of Natural Sciences, first came to the Institute
as a Member in 1984 and was appointed as a Profes-
sor in 1987. His work has significantly enriched the
fields of mathematics and physics, and he has con-
tributed greatly to the modern interest in superstrings
as a candidate theory for the unification of all known
physical interactions. Most recently, he has explored
quantum duality symmetries of field theories and string
theories, opening significant new perspectives on parti-
cle physics, string theory, and topology. A video of a
talk that Witten gave to the Friends of the Institute for
Advanced Study on quantum theory and knots is
available at http://video.ias.edu/witten-friends.

1 Edward Witten, “Fivebranes and Knots,”
http://arxiv.org/abs/1101.3216

Figure 7

Some More Mathematical Details

The Institute Woods:
Photographs by
Vladimir Voevodsky
An exhibit now on view at the
Institute features photographs
of the Institute Woods taken by
Vladimir Voevodsky, Professor
in the School of Mathematics,
illustrating the remarkable
diversity of its insect, bird,
animal, and plant life. For
information about the Woods,
visit www.ias.edu/about/
institute-grounds.
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