CORNERING ON A BICYCLE

Master centrifugal force on curves
by Jan Heine

Cornering on a bicycle is a remarkably simple process. It has two main components: leaning and countersteering. The rider leans the bike by moving the wheels to the outside of the curve. This is called countersteering. At first sight, countersteering may appear counterintuitive, yet all riders do it because it is the only way to make a bike lean. Countersteering explains why training wheels are counterproductive to learning to balance a two-
wheeler. Understanding the processes of confidence and increase your cycling enjoyment.

When we round a corner, the centrifugal force tries to pull us to the outside of the curve. We can see this when a car goes around a curve. It leans on its suspension to the outside of the curve. The springs compress until they counter the centrifu-
gal force.
A bicycle
leaning to
the outside
of the curve would crash, so it needs to coun-
ter the centrifugal ter the centrifugal force in

We do this by leaning the bike. When we lean the inside of the curve while the mindrifugl force wils the
centrifugal force pulls to the outside (Fig, gravity"' is in line with the bike's wheels. The bike is balanced. The bike is balance
How do we get our bike to lean? We spin our bodies and bike around the center of gravity (Fig. 2). For example, center of gravity (rise
to turn left, we move our wheels to the right so our bike spins counterclockwise and leans to the left. Gravity pulls us
bars to the right.
Yes, we turn
our handlebars in the opposite direction of where we want to go! It is called countersteering, and all cyclists do this. We also countersteer when we balance while riding straight ahead. As the bike begins to fall over, we countersteer in the direction of the ean to rotate the bike in the other direction until it is upright again.

> gainl. eaning Your Body: Can't we iust_shift

Can't we just shift our body weight to lean the bike into the curve? Not really. When we move our bodies to one side, iy in the se place So we lean pper body to one side but our bike leaning to the other side. We remain is anced and cannot resist the centrifugal force of cornering (Fig. 3).
If we could just shift our body weigh change the lean of the bike, it would be easy to balance a bike that is standing still. For most of us, it is impossible to balance a stopped bike because we cannot move the wheels sideways to rotate
the bike upright as it falls. (Experienced riders who "trackstand" actually roll back and forth slightly with their front wheel turned sideways. They are counersteering, but instead of going forward and steering right and left, they just steer one way and go back and forth to balance the bike.)
Stability:
Bikes are self-stable because gyroscopic forces and other factors turn the front wheel so that it automatically countersteers to correct changes in lean angle. This means that if you don't provide any input, your bike tends to continue to corner on the same radius. (On the straight, it will continue to go straight.) When we have fully leaned the bike into the left turn, we simply stop the rightward pressure on the handlebars The bike stabilizes
at its current lean at its current lean angle and rou the corner. Straightening:
To upright the To upright the
bike at the exit of bike at the exit of simply push the handlebars to the left into the corner Now the wheels move left, and the bike rotates until it is again upright (Fig. 4).

por Confident Cornering
Cornering can be daunting to som riders who may feel like they are falling over as they lean the bike. It
may help to visualize that cornering uses the same mechanisms as riding uses the same mechanisms as riding
straight. In both cases, we balance the wheels to stay above the center of gravity except that the "local gravty" now is inclined (Fig. 5). Our bike is as stable in mid-corner as it is on a straight path. And the faster you go, the more stable your bike becomes because the self-stabilizing gyroscopic forces of the wheels increase with speed (Fig. 5).
To corner confidently, relax your grip on the handlebars. Your bike is self-stabilizing even as it leans, as long as the front wheel can move in response to changes in lean. A "death grip" on the handlebars prevents the self-stabilizing forces of the bike from working and makes your bike less stable. A light touch is best to guide your bike Look where you want to go. If you focus on the obstacle you are trying to void, you have to steer the bike in you peripheral field of vision. It is much
th you want to take The bike is likely to follow. (Use this technique on the straights as well.)
Ride with an experienced cyclist and fllow their line. Ask them to keep the pel prised how far you sas
Conclusion:
Conclusion
Cornerin
Cornering is so intuitive that we are not even aware of the process. We courard the outside of the tum, which

Fig. 5

leans the bike into the turn. We reverse the process to upright the bike and go straight again. This same countersteering -
Jan Heine is editor of Bicycle Quarterly, a magazine about the culture, technology, and h history of cycling.
This article is adappted from a more detailed drticle published in the Winter 2010 issue (wwww.bikequar tery.com).
 ors room and no obstacles! The reverse is also true. Children have teering a tricycle when the training wheels are removed. From experience among my neighbors, children who had training wheels took longer and fell more often as they tried to ride a two-wheeler than those who did not use training wheels.
Wheels, you can use balancing on two
wheels, you can use a balance bike,
which children power by pushing off the

Mt. Hood Loop Mt. Hood Loop
June to October $\$ 300$ per person single-track options every dzy

- Berein and end in Hood River, tiking through the stunning seenery yof the Colombiaia River Gorge, Mt.
Hocd National Forest, and the historic - Our system of fullyst and the historic Oregon Trail. dhalenging yet converient way to enijoy the ratural

