
A SEMANTIC WIKI FOR COLLABORATIVE

KNOWLEDGE FORMATION

Sebastian Schaffert, Andreas Gruber, Rupert Westenthaler

Knowledge-based Information Systems Group, Salzburg Research, Austria
sschaffe,agruber,rwesten@salzburgresearch.at

Abstract. In this paper, we explore some of the apparent problems in adopting

semantic technologies for content management and investigate a methodology

and a tool to overcome these barriers. Our approach tries to benefit from both

the networked collective intelligence of social software and the obvious need

for methodologies and well-defined explicit semantics in our information and

knowledge systems in order to support business processes.

1. Introduction

The Semantic Web. In recent years, various approaches have been investi-
gated in the so-called “Semantic Web” initiative, with a view to making the
meaning of Web data – normally only amenable to human readers – accessible
to machines. Indeed, Semantic Web research has become one of the major re-
search endeavours in information technology world wide, covering a wide
range of technologies. As a recent Gartner report shows (Figure 1), some of
these technologies are now close to the “plateau of productivity” (e.g. “Busi-
ness Rule Engines”), while some others are still in their infancy and just emerg-
ing (e.g. “Corporate Semantic Web”). It is particularly interesting that the term
“Semantic Web” itself has disappeared in the 2005 report while it was at the
peak of the hype cycle in 2004. This reflects the recent perception of the Se-
mantic Web as a collection of technologies (some of which are more mature
than others), rather than a single technology.

Although the Semantic Web has recently been gaining significant attention
from both academia and industry, the amount of knowledge available in formal
representations that are accessible by machines is still small compared to the
“traditional” Web. A major reason for this is that Semantic Web technologies
and tools require considerable technical expertise, and are thus not well suited
for users outside the field of computer science. Also, knowledge engineering
tools for the Semantic Web are currently mostly single user and do not provide
good support for the collaborative creation of formal knowledge. This makes it
hard for domain experts and knowledge engineers to work together on knowl-
edge engineering tasks.

2

Figure 1 Gartner's Hype Cycle Special Report for 2005, http://www.gartner.com

Social Software. On the other hand, social software, like wikis or weblogs,
has in the last few years significantly simplified the creation of content on the
traditional Web (Wikipedia being the most well-known representative). Also,
social software is heavily based on collaboration between users. In a sense, so-
cial software helps to realise the original vision of the Web as a space where
anyone can participate. With the dynamic nature and the growing amount of the
content, however, there is also a growing need to make the semantics of this
space at least partly machine accessible, so that efficient searching and naviga-
tion of the content becomes feasible.

Beyond the Semantic Web and Social Software. Given these develop-
ments, combining the Semantic Web with Social Software appears natural. On
the one hand, social software can support the creation of semantically enriched
content by lowering technical barriers and by allowing domain and knowledge
experts to collaborate. On the other hand, social software can itself benefit from
semantic annotations that allow easier searching, navigation, and integration of
content.

Indeed, various sources see this as the next big step in the evolution of the
Web. For example, Nova Spivack proclaimed in 2003/2004 the “Metaweb” as a
convergence of the Web, Social Software, and the Semantic Web (Figure 2).1

1

http://novaspivack.typepad.com/nova_spivacks_weblog/2004/03/the_metaweb_is_.html

3

Figure 2 Nova Spivak: The Metaweb

In this article, we aim to investigate how social software can help the Se-
mantic Web to “take off”. We begin with a short summary of different knowl-
edge representation formalisms (Section 2) and then present preliminary results
of work done towards a methodology that helps users to decide which kind of
knowledge representation and which technology to choose (Sections 3 and 4).
We then introduce a semantic wiki system called IkeWiki that we developed as
a tool for collaborative creation of formal knowledge (Section 5).

2. Knowledge Models

“Knowledge” can be represented on many different levels of formality and
in a wide variety of formalisms. Although languages like OWL or RDF are con-
sidered state-of-the-art for the Semantic Web, other formalisms (such as XML,
XML Schema, Topic Maps, and even relational databases) are in many situa-
tions better suited for knowledge representation.

Also, although the term “Semantic Web” is commonly associated with very
complex and formal ontologies, the most successful knowledge models tend to
be very simple and specific. For example, the well-known Dublin Core and
FOAF models (as well as LOM and News-ML) are good examples of simple,
yet successful knowledge models in their domains. Thesauri like WordNet and

4

DMOZ are also successfully used in state of the art software applications. As
Jim Hendler proclaims2, “a little semantics goes a long way”.

On the other hand, complex and abstract knowledge models like DOLCE
[9], SUMO [10], or OpenCyC [11] are not widely accepted in commercial set-
tings, but are used in research projects and prototypes, and will possibly gain
more acceptance in the near future.

Knowledge models are known under many different names. Foundational,
domain, sector, group, or application ontology are used to refer to knowledge
models based on their level of generality, granularity and scope. Term list, the-
saurus, taxonomy, and ontology segment the range of knowledge models ac-
cording to the richness of their formal semantics .

3. Ontology classification with a 3D Matrix

The first step in designing a knowledge-based system is to identify what
kind of knowledge is actually being modelled. Based on this insight, a knowl-
edge engineer can then make the decision on what modelling languages and
tools to use. In general, we distinguish two different types of knowledge mod-
els, based on their intended usage:

• ontologies are semantic models describing a thematic part of the world.
Top-level ontologies concentrate on the semantic principles, whereas
domain ontologies concentrate on features specific to a certain domain. To
avoid redundancy and the need for ontology alignment, the scopes of
different domain ontologies should not overlap.

• application/service profiles aim to capture all semantics needed to provide
some functionality. Typically, they combine semantic statements from
different domains and therefore, from different ontologies. The scopes of
different application profiles typically overlap, especially if the applications
are in the same business sector.

In the next section, we propose a scheme for classifying ontologies using
three properties: scope, expressiveness, and acceptance. Our model is based on
Nicola Guarino's traditional and well known scheme for classifying ontologies
[1], which is widely accepted and used as a two-dimensional matrix (scope and
formalisation). Our extension splits the “scope”-dimension into two aspects,
“model scope” and “model acceptance”.

2 as conference chair in the opening speech of the 2003 International Semantic Web
Conference; Sanibel Island, Florida, USA, October 2003

5

Figure 3 3D Matrix

Model
Scope

Level of
Expressiveness

Model
Acceptance

The following sections explain the three dimensions in more detail. The fi-
nal section provides some example classifications of well known knowledge
models.

3.1. Scope

The model scope refers to the areas of semantics that is of interest to a
model. It is important to understand that the scope does not restrict the observ-
able individuals, but only the observable features of such individuals. Individu-
als with no features inside the model scope cannot be described and are there-
fore invisible for the model.

Figure 4 Model Scope Dimension

Level of
Expressiveness

Core

Top-level Ontologies

Model
Scope

Model
Acceptance

Domain
Ontologies

Derived

Specific Extensions

The classification scheme of the scope dimension is intended to be used for
ontologies. Application profiles will typically include semantics of all of the
different classifications defined in the scope dimension.

The scope of top-level ontologies includes axiomatic concepts and relations
of global relevance, such as space, time, matter, event, action, etc. Such ontolo-

6

gies are often called foundational ontologies, but this term usually indicates a
higher level of expressiveness and thus does not really convey the intended
meaning. For example, a simple list with axiomatic terms can also serve as a
top-level ontology. As there may be several top-level ontologies with the same
scope, it means that the different top-level ontologies have to be integrated. In
practice, one would opt for a single top-level ontology when building applica-
tion profiles.

The scope of domain-level ontologies includes generic as well as specific
concepts, as well as relations of a specific thematic area. Tasks, weather,
date/time zones and food are examples of rather generic domains; wine, beer,
and pizza are also domains, but more specific ones. The scope of domain on-
tologies with different domains (e.g. wine and beer) should not overlap with
each other. Different domain ontologies about the same domain will have simi-
lar scopes and therefore describe the same knowledge with different semantics.
This means that alignment is typically only necessary between domain ontolo-
gies describing the same domain (typical example: an OO-domain model and a
relational data model might require alignment via O/R mapping frameworks).
Within domain ontologies, we distinguish two sub types:

• core domains, defining semantics which are not dependent on semantics of
other domains;

• derived domains, combining and extending definitions of other “parent”
domains; the scope of derived domains should be more specific than the
union of the scopes of all “parent” domains.

For the definition of an application profile, it is important that the domain
ontologies participating in defining the profile should not have any overlapping
scopes. This implies that all domain ontologies should use the same (or no) top-
level ontology and that only one ontology can be used for each domain.

Specific extensions to a domain ontology build the last scope classification
category. Such extensions are usually defined in the context of a distinct usage
of a more general knowledge model. Typically, this includes additional con-
straints to existing resources or new concepts and properties which are only
valid in the context of the actual application.

Independent of possible application profiles, ontologies as described above
constitute an interdependent framework which we call “ontology stack”. Al-
though such stacks are not common at present, we strongly believe that the
definition of such frameworks will become more necessary in the future to im-
prove granularity, interoperability, and re-usability of ontologies. Such ontol-
ogy stacks would also improve semantic interoperability between application
profiles which are based on the same stack.

7

3.2. Level of Expressiveness

The expressiveness dimension (dubbed “level of formalism” in [1]) is al-
ready well defined. In our 3D Matrix, we use an existing classification scheme
for the expressiveness dimension. We add the aspect of purpose to this cate-
gory, providing a further criterion for the required expressiveness. This scheme
by O. Corcho [2] is shown in the following figure.

Figure 5 Model Expressiveness Dimension

Level of
ExpressivenessTerm

 lis
t

Thesauru
s

Info
rm

al h
iera

rc
hy

Form
al ta

xonom
y

Fra
me (c

lass / p
ro

perty
)

Range value re
stri

ctio
n

Very
 expre

ssive constra
ints

Lim
ite

d lo
gical c

onstra
ints

heavy-weight
ontologies

light-weight
ontologies

Model
Scope

Model
Acceptance

Corcho distinguishes between the two main groups – light-weight ontolo-
gies and heavy-weight ontologies – and defines eight sub categories based on
their level of expressiveness:

1. a term list or controlled vocabulary contains a list of keywords. Such lists
are typically used to restrict possible values for properties of some kind of
instance data in the domain;

2. a thesaurus also defines relations between terms, e.g. proximity of terms;
3. an informal taxonomy defines an explicit hierarchy (generalisation and

specialisation), but there is no strict inheritance, i.e. an instance of a
subclass is not necessarily also an instance of the superclass. Most available
dictionaries like DMOZ are members of this category;

4. a formal taxonomy, in contrast, defines a strict inheritance hierarchy;
5. a frame or class/property based ontology is similar to object-oriented

models. A class is defined by its position in the subclass hierarchy and its
properties. Properties are inherited by subclasses and realised in instances;

6. a range value restriction defines, in addition, restrictions for the defined
properties. Possible restrictions are data type or domain;

7. by using logic constraints, property values may be further restricted;
8. very expressive ontology languages often use first-order logic constraints.

These constraints may include disjoint classes, disjoint coverings, inverse
relationships, part-whole relationships, etc.

8

The adequate level of expressiveness for a knowledge model is driven by
the requirements of its usage. According to John Harris [3], there are five layers
in his “anatomy of an ontology”. Apart from his layers zero (ontology definition
language) and four (operational data), there are three layers which define possi-
ble purposes for a semantic model:

1. a knowledge model (or a part of such a model) can be used as reference
data. Typically, there are no instances for this use case: the semantics
defined in the model is only used to annotate instances built by another part
of the model. This is e.g. common for term lists, thesauri, and taxonomies.
Knowledge models used for such purposes are often referred to as
“controlled vocabularies”.

2. a knowledge model can be used as a data structure. Here, the model is
mainly used to work with operational data of the application, which means
that instances are created based on the semantics defined in the model. Such
knowledge models are often referred to as “data models” and are typically
implemented by database management systems. The expressiveness needed
for a knowledge model used as data structure is approximately the border
between light- and heavy-weight ontologies. In practice, relational, object-
oriented, and hierarchical models are used to define such models, but RDFS
and OWL-DL are used more and more frequently.

3. a knowledge model can be used to make assertions or to define constraints.
In this case, knowledge models and particular ontologies are used by the
application to gain information about individuals by analysing constraints
defined in the model e.g. by integrity checking and inferencing. This
imposes the highest requirements on the expressiveness of the model.
Models requiring these additional checks are usually referred to as domain
models and are typically hard coded in the business logic of applications.
The corresponding realisation, based on Semantic Web technologies, is to
encode all semantics using a formal ontology language like first-order logic
and to use a generic rule/inference engine to make the semantics
operational.

3.3. Model Acceptance

The acceptance dimension is useful for classification of knowledge models
w.r.t. two processes that are of importance for ontology engineering. The first
aspect is to be clear about target communities of the application and its knowl-
edge model. The second aspect deals with various methods of building consen-
sus within a specific community. Involved communities include not only the in-
tended users, but also the developers of a system. As far as web-based, distrib-
uted systems are concerned, wide acceptance is an important criterion of suc-
cessful applications.

9

Figure 6 Model Acceptance Dimension

Level of
Expressiveness

Community

Individual

Model
Scope

Model
Acceptance

World

Group

Sector

Company

The acceptance dimension ranges from the individual, over different levels
of communities, to a worldwide acceptance of the model. It is important to no-
tice that every transition towards a higher level requires different methods and
tools.

• An individual is seen as the starting point of the knowledge model creation
process and as its first intended user. Knowledge model development does
not always start from scratch, but first attempts to solve a modeling problem
are often done by an individual.

• The group level requires collaboration between the members of a group of
developers and/or domain experts; it is essential for quality assurance of any
knowledge model. The deployment of the application and/or knowledge
model at company level requires economic measurements of the models.
New kinds of collaboration for different stakeholders – and therefore,
various methods – must be integrated. Different stages of development have
to be clearly defined in a life-cycle model. Sector level applications are
needed, where the user scenario includes the whole sector. Consequently,
standardisation is an important condition to reach this level.

• The development of knowledge models on a world level is controlled by
various criteria that are out of the scope of our methodology (diffusion
through market mechanisms, as well as community needs). In our
perception, it seems almost impossible to describe explicit constructive
processes that will be needed to reach this level.

3.4. Classification Examples

In the following, we use the 3D Matrix to classify some of the knowledge
models presented in Section 2. Classification is mainly based on the expres-
siveness and acceptance dimensions. The scope dimension would be of impor-
tance to analyse the internal structure (the ontology stack), but this is not in the

10

main focus of these examples. Nonetheless, the height of the vertical lines mark
the core category in the scope dimension of the associated knowledge model.

Figure 7 Classification examples

Core Domain

Top-level Ontologies

Model
Scope

Derived Domain

Specific Extensions

Level of
Expressiveness

Term
 lis

t

Thesauru
s

In
fo

rm
al h

iera
rc

hy

Taxonom
y

Fra
me

Restri
ctio

n

Very
 expre

ssive constra
ints

Lim
ite

d lo
gical c

onstra
ints

In
d

iv
id

u
a

l

Model
Acceptance

W
o

rl
d

G
ro

u
p

S
e
c
to

r

C
o

m
p

a
n

y

CC/PP

Word-Net
DMOZ

Dublin Core
V-Card

LOM LOM + Austrian meta data
Specification for learning Materials

DOLCE

• Dublin Core and V-Card are both classified as term lists, as they define
attributes without using value constraints (V-Card only uses very few). The
acceptance of Dublin Core and V-Card is near to “world” because both are
used in different sectors by various applications.

• Both WordNet and the DMOZ Directory define informal hierarchies. Their
acceptance is not sector specific, but they are not as widely used as Dublin
Core or v-card.

• IEEE LOM (Learning Object Metadata)3 is a standard for the e-learning
sector; it defines a hierarchy of elements together with some value types and
value ranges. The CC/PP standard defines a frame-structure in RDFS. It is
primarily used to create instances (profiles) for multimedia devices such as
smart phones or set top boxes.

• DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) is
a highly formalised ontology of particulars; it is intended as a reference
system for top-level ontologies.

As a specific extension of the LOM (and Dublin Core) standard, the Aus-
trian Metadata Specification [4] represents an application profile. Using the
LOM standard as basis and as classification model, it adds a country specific
taxonomy that acts as controlled vocabulary to fill attributes defined in LOM.

3 http://ieeeltsc.org/wg12LOM/

11

In addition, it defines cardinality constraints to identify optional and required
fields. Such a knowledge model must be classified as a heavy-weight ontology.
Within the acceptance dimension, it can be classified as accepted on company
level – in this specific case a sector within an country. Furthermore, it is impor-
tant to notice that, based on the different parts of the application profile, it is
possible to create different external views (export models).

By omitting the cardinality constraints and the taxonomy, it is still possible
to define LOM-compliant export models. The categorisation of such an export
model would be equal to the LOM standard. That means it would be accepted
by the e-learning sector and therefore applicable for interoperability with other
applications in this sector.

To conclude: the plane spanned by the expressiveness and acceptance di-
mensions is an important measure of the complexity one can expect for imple-
menting semantic applications. It also explains why relatively simple models
such as Dublin Core or V-Card have such high levels of acceptance. It is fur-
thermore observable that newer standards such as CC/PP or News-ML come
with a higher degree of expressiveness, indicating an increasing need to formal-
ise semantics of business sectors in order to increase effectiveness, and reduce
IT costs.

4. Towards a Methodology and Adequate Tools

After the “gold rush” phase of the Semantic Web and – from the cost per-
spective – unsuccessful developments of intelligent applications and ontologies,
we are now returning to methodological questions.

There is sort of a déjà vu [5] in ontology engineering: software engineering
and its methods (architectures, requirements analysis, object-oriented analysis
and design, design patterns) [6] are also useful to ontological engineering.

The previous sections showed typical properties of different knowledge
models. By contrast, a methodology must first identify the necessary character-
istics of a knowledge model before it can answer questions on how to specify a
knowledge model.

As ontology engineering is still in its infancy, only a few methodologies for
building ontologies can serve as a good basis for more integrated approaches,
because some important parts of these methodologies are still missing. In par-
ticular, the “acceptance” dimension has so far received little attention, although
it is one of the main distinguishing features of ontologies, as compared to data-
schemas and domain models. Communities that are supposed to accept a

12

knowledge model must have the possibility to contribute their own knowledge
during the design process.

Almost none of the well-known knowledge engineering methodologies or
tools provide support for collaborative work. Only the DILIGENT methodology
provides a process for distributed engineering of knowledge structure from the
building, local adaption, analysis, revision, and local update of locally-defined
ontologies.

Cristiani and Cuel [7] summarise that “these methodology and tools should
allow both the creation of a schemata from scratch (analyzing documents, re-
peated occurrences within databases, etc.) and the management of sense-making
processes on concepts”, and noticed some emerging problems, e.g. “most of the
tools give support for designing and implementing the ontologies, but they do
not support all the activities of the ontological life-cycle, as defined by several
software engineering methods.”

More than 50% of all 96 ontology editors evaluated by Michael Denny [8]
are described as having no multi-user support at all. Most of the others have
only simple support for collaboration, like CVS or simple user management.
Only a few of the ontology editors provide basic collaborative features beyond
simple user management (e.g. communication features like notification of
changes made or instant messaging, annotations, or views). But none of these
tools provide advanced capabilities, that allow collaboration of subject experts
and engineers based on different views that can be defined on the models.

5. Semantic Wikis

In the following, we introduce the idea of “semantic wikis” as a means to
support knowledge engineers in their task of formalising knowledge. We con-
clude this section with a presentation of our own semantic wiki called IkeWiki.

5.1. The Wiki Idea

For the “traditional” Web, so-called “wiki” systems have been very success-
ful in enabling non-technical users to create Web content. A wiki (Hawaiian:
“quick”, “fast”) is essentially a collection of Web pages that allows users to add
content via a browser interface. Content is usually expressed in a simplified hy-
pertext format (“wiki syntax”) that is much easier than HTML for humans to
grasp. Anyone can change anything in a wiki – often, edits are completely unre-
stricted (but usually all edits can be undone using a rollback mechanism). Col-
laborative knowledge creation is thus a central aspect of a wiki system. Wiki
pages are accessible and usable at any time, and the content constantly evolves.

13

Unlike other groupware or content/knowledge management tools, a wiki
system gives users almost complete freedom over the content development
process without rigid workflow, access restrictions, or predefined structures.
Users need not adapt their practice to the “dictate of the system”, but can allow
their own practice to define the structure. This is important, because different
domains often have – or even require – different kinds of workflow.

Wiki systems are currently used for a wide variety of purposes, including:

• encyclopaedia systems: collect knowledge in a certain area (e.g.
Wikitravel4) or unrestricted (e.g. Wikipedia5) in a community effort with
contributions from a wide range of users

• software development: collaboratively create documentation, collect ideas,
track bugs; most of today's high-profile Open Source projects (e.g. Apache,
Mozilla, OpenOffice) use wikis for coordination

• project knowledge management: brainstorming and exchange of ideas,
coordination of activities, coordination and records of meetings, notepad for
common information items

• personal knowledge management: sketchpad to collect and elaborate
personal ideas, addresses, dates, tasks, bookmarks, etc.

5.2. Semantic Wikis

Arguably, wikis have changed the way content is authored on the Web. In a
sense, they have helped to realise the original vision of the “traditional Web” by
allowing everyone to participate and freely share information. This leads to the
question of whether “semantic wikis” could help realise the “Semantic Web” in
the same way. Possible advantages of semantic wikis include:

• lowering the technical barrier for non-technical users by hiding (to some
extent) the complexity of Semantic Web technologies such as RDF or OWL

• supporting the evolution of knowledge along the “expressiveness axis” (cf.
Section 3.2) from informal text to formal ontologies or similar
representations

• allowing instant access to and usability of knowledge, even if it is not yet
completely formalised

• allowing for collaborative creation of knowledge (“model acceptance axis”,
Section 3.3) such that domain experts and ontology experts can work
together

• giving freedom over the knowledge creation process to users

4 http://wikitravel.org/en/Main_Page
5 http://www.wikipedia.org/

14

A number of systems that integrate Semantic Web technologies with tradi-
tional wiki systems are currently under development.6

5.3. IkeWiki

IkeWiki (ike: “knowledge”, wiki: “fast”) is a prototype wiki system currently
being developed at Salzburg Research. IkeWiki serves several purposes: (1) it
can be used to annotate existing data with semantic terms (e.g. typing relation-
ships between pages) to improve searching and navigation; (2) it can be used to
create instance data, based on an existing ontology; and (3) it can be used as a
(limited) tool for creating and editing ontologies themselves. All three purposes
can be followed at the same time, possibly by users with different roles and dif-
ferent levels of experience in knowledge engineering. Indeed, many more com-
plex knowledge engineering tasks would probably require this kind of collabo-
ration.

Besides this, IkeWiki has the following design goals:

• compatibility in syntax and look and feel with existing systems (currently
Wikipedia); this allows users to take existing knowledge (e.g. from
Wikipedia), import it into IkeWiki, and begin formalising the knowledge
straight away

• compatibility with existing Semantic Web technologies; currently, IkeWiki
uses RDF and OWL for storing and reasoning with formal knowledge

• immediate exploitation of existing formal knowledge for enhanced

navigation and editing; users need to get an instant reward for the
additional effort they put into formalising their knowledge

• easy access to frequent tasks; but still give users the full capabilities and
complexity if they so desire

• feeling of an application, not a Web site; the user interface should support
the user beyond “wiki syntax” by providing modern, graphical interaction
with the system (e.g., WYSIWIG editing)

Knowledge creation in IkeWiki is supposed to be an open community proc-
ess where experts from different fields can collaborate. A domain expert could
begin by describing his domain knowledge in IkeWiki, up to the point where
his expertise in knowledge technologies is not sufficient to do more. If neces-
sary, a knowledge engineering expert could then join in, and help to create
more formal representations.

6 A constantly updated overview is given on
http://wiki.ontoworld.org/index.php/Semantic_Wiki_State_Of_The_Art

15

5.4. Implementation

IkeWiki is implemented as a Java web application running on the Tomcat
server and using the Jena RDF library for storing metadata. It makes use of up-
to-date technologies like AJAX for user interaction. The system is freely avail-
able under Lesser GNU General Public License (LGPL) from
http://ikewiki.salzburgresearch.at.

6. Acknowledgments

Research work for this paper was partly funded by the following projects:
Dynamont, BMVIT FIT-IT Semantic Systems (2005-2007); Metokis, EU IST
FP6 Semantic-based Knowledge Systems (2004-2005). The authors thank Rich
Morin and the other cross-readers for suggesting important improvements to the
article.

7. References

[1] Guarino, N., Formal Ontology and Information Systems, pp. 3-15, 1998,
http://www.loa-cnr.it/Papers/FOIS98.pdf

[2] O. Corcho, M. Fernández-López and A. Gómez-Pérez: Methodologies, tools and
languages for building ontologies. Where is their meeting point? Data & Knowl-
edge Engineering 46(1), pp. 41–64, 2003.

[3] John Harris: Judging the likely Success of an Ontology,
http://www.virtualtravelog.net/entries/2004/01/
judging_the_likely_success_of_an_ontology.html

[4] Österreichische Metadatenspezifikation für elektronische Lernressourcen. Ver-
sion 1.32, Stand: 2004-01-12. Im Auftrag des Bundesministeriums für Bildung,
Wissenschaft und Kultur, MR Dr. Robert Kristöfl, http://www.bildung.at.

[5] Vladan Devedzic (2002): Understanding ontological development. Communica-

tions of the ACM. April 2002/Vol. 45, pp. 136-144.

[6] Aldo Gangemi (2005): Ontology Design Patterns for Semantic Web Content.
Proceedings ISWC 2005, LNCS 3729, 2005, pp. 262-276.

[7] Mateo Cristani und Roberta Cuel (2005): A survey on ontology creation meth-
odologies. International Journal on Semantic Web & Information Systems. Idea
Group Publishing, 2005.

[8] Michael Denny (2004) Ontology Tools Survey, Revisited.
http://www.xml.com/lpt/a/2004/07/14/onto.html, [Last visited: 09.10.2005]

[9] http://www.loa-cnr.it/DOLCE.html

[10] http://suo.ieee.org/SUO/Evaluations/

[11] http://www.cyc.com/

