

The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl

Florian Mendel¹, Christian Rechberger¹, *Martin Schläffer*¹, Søren S. Thomsen²

¹Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

²Department of Mathematics, Technical University of Denmark Matematiktorvet 303S, DK-2800 Kgs. Lyngby, Denmark

-

1 Motivation

- 2 The Rebound Attack
- 3 The Whirlpool Hash Function
- 4 Rebound Attack on Whirlpool
- 5 Rebound Attack on Grøstl
- 6 Results and Conclusions

E 990

< 17 ▶

1 Motivation

- 2 The Rebound Attack
- 3 The Whirlpool Hash Function
- 4 Rebound Attack on Whirlpool
- 5 Rebound Attack on Grøstl
- 6 Results and Conclusions

E 990

Motivation

- NIST SHA-3 Competition
 - diversity of designs
 - diversity of cryptanalytic tools needed
- Many AES based designs
 - how to analyze them?
 - we contribute with new attack to this toolbox
- Applications?
 - idea of attack is widely applicable
 - Whirlpool, Grøstl

э.

1 Motivation

- 2 The Rebound Attack
- 3 The Whirlpool Hash Function
- 4 Rebound Attack on Whirlpool
- 5 Rebound Attack on Grøstl
- 6 Results and Conclusions

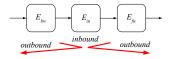
E 990

Collision Attacks on Hash Functions

- iterated hash function h(M, IV)
 - compression function $f: H_t = f(M_t, H_{t-1}), H_0 = IV$
- different types of collision attacks:
 - (1) collision:
 - fixed IV
 - $f(M_t, IV) = f(M'_t, IV), M_t \neq M'_t$

(2) semi-free-start collision:

- random chaining input
- $f(M_t, H_{t-1}) = f(M'_t, H_{t-1}), \ M_t \neq M'_t$


(3) free-start collision:

- random differences and values of chaining input
- $f(M_t, H_{t-1}) = f(M'_t, H'_{t-1}), \ M_t \neq M'_t, H_{t-1} \neq H'_{t-1}$

 \Rightarrow increasing degrees of freedom

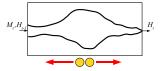
The Rebound Attack

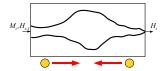
Applies to block-cipher and permutation based designs:

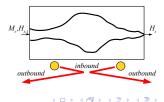
$$E = E_{fw} \circ E_{in} \circ E_{bw}$$
 $P = P_{fw} \circ P_{in} \circ P_{bw}$

- Inbound phase:
 - efficient meet-in-the-middle phase in E_{in}
 - aided by available degrees of freedom
 - called match-in-the-middle
- Outbound phase:
 - probabilistic part in E_{bw} and E_{fw}
 - repeat inbound phase if needed

э


A D b 4 A b



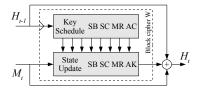

Comparison with other Strategies

inside-out approach:

meet-in-the-middle attack:

4 A >

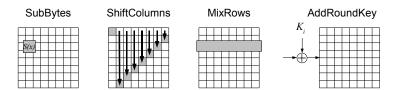
rebound attack:


1 Motivation

- 2 The Rebound Attack
- 3 The Whirlpool Hash Function
- 4 Rebound Attack on Whirlpool
- 5 Rebound Attack on Grøstl
- 6 Results and Conclusions

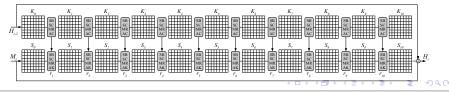
= nar

The Whirlpool Hash Function

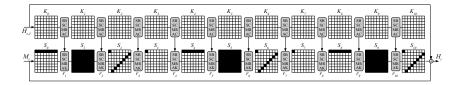


- Designed by Barretto and Rijmen
 - submitted to NESSIE in 2000
 - standardized by ISO/IEC 10118-3:2003
- 512-bit hash value and using 512-bit message blocks
- Block-cipher based (AES)
 - Miyaguchi-Preneel mode with conservative key-schedule
- No attacks in 8 years of existence

ヨトィヨト



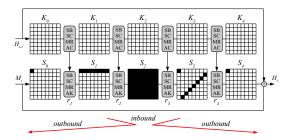
The Whirlpool Round Transformations


- 10 rounds
- AES like round transformations on two 8 × 8 states

 $k_i = AC \circ MR \circ SC \circ SB$ $r_i = AK \circ MR \circ SC \circ SB$

Wide-Trails in Whirlpool

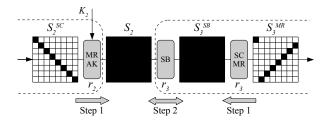
- Minimum number of active S-boxes
 - 81 for any 4-round trail: (8 64 8 1)
 - maximum differential probability: (2⁻⁵)⁸¹ = 2⁻⁴⁰⁵
- Collision attack on Whirlpool: < 2²⁵⁶
 - use "message modification" techniques (first rounds)
 - a full active state remains: probability $(2^{-5})^{64} = 2^{-320}$


1 Motivation

- 2 The Rebound Attack
- 3 The Whirlpool Hash Function
- 4 Rebound Attack on Whirlpool
- 5 Rebound Attack on Grøstl
- 6 Results and Conclusions

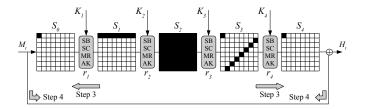
э.

The Rebound Attack on Whirlpool



- Inbound phase:
 - (1) start with differences in round r_2 and r_3
 - (2) match-in-the-middle at S-box using values of the state
- Outbound phase:
 - (3) probabilistic propagation in MixRows of r_1 and r_4
 - (4) match one-byte difference of feed-forward

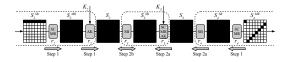
• = •


Inbound Phase

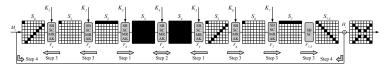
- (1) Start with differences in state S_2^{SC} and S_3^{MR}
 - linear propagation to full active state of S₂ and S₃^{SB}
 - deterministic due to MDS property of MixRows
- (2) Match-in-the-middle at S-box of round r_3
 - differential match for single S-box: probability $\sim 2^{-1}$
 - for each match we get 2-8 possible values for the S-box
- \Rightarrow with a complexity of 2⁶⁴, we get 2⁶⁴ matches

Outbound Phase

(3) Propagate through MixRows of r_1 and r_4


- using truncated differences (active bytes: $8 \rightarrow 1$)
- probability: 2⁻⁵⁶ in each direction

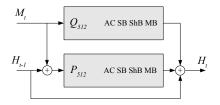
(4) Match difference in one active byte of feed-forward


 \Rightarrow complexity for 4 round collision of Whirlpool: 2¹²⁰

Extension to more Rounds

- Semi-free-start collision on 5 rounds
 - extend inbound phase using degrees of freedom in key
 - same complexity (2¹²⁰) as in 4 round attack

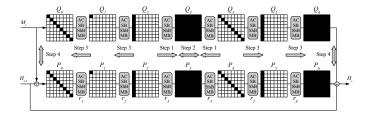
- Semi-free-start near-collision on 7.5 rounds
 - extend outbound phase with probability one (MixRows)
 - near-collision on 52 of 64 bytes (2¹²⁸)


1 Motivation

- 2 The Rebound Attack
- 3 The Whirlpool Hash Function
- 4 Rebound Attack on Whirlpool
- 5 Rebound Attack on Grøstl
- 6 Results and Conclusions

= nar

SHA-3 Candidate Grøstl


- Compression function of Grøstl
 - permutation based, no key-schedule inputs
 - AES based round transformations (AC, SB, ShB, MB)
- Grøstl-256: 8 \times 8 state for P_{512} and Q_{512}
 - 8 \times 8 state for P_{512} and Q_{512}
 - 10 rounds each

э.

ヘロト ヘ戸ト ヘヨト ヘヨト

Rebound Attack on Grøstl-256

Semi-free-start collision on 6 rounds of Grøstl-256

- less degrees of freedom (no key schedule input)
- maximize using differential trails in both permutations
- birthday match on input and output differences
- Complexity of attack: ~ 2¹²⁰

イベト イラト イラト

1 Motivation

- 2 The Rebound Attack
- 3 The Whirlpool Hash Function
- 4 Rebound Attack on Whirlpool
- 5 Rebound Attack on Grøstl
- 6 Results and Conclusions

э.

Results

Summary of attacks:

hash function	rounds	computational complexity	memory requirements	type
Whirlpool	4.5/10	2 ¹²⁰	2 ¹⁶	collision
	5.5/10	2 ¹²⁰	2 ¹⁶	semi-free-start collision
	7.5/10	2 ¹²⁸	2 ¹⁶	semi-free-start near-collision
Grøstl-256	6/10	2 ¹²⁰	2 ⁷⁰	semi-free-start collision

Improvements?

- still degrees of freedom in key schedule left (Whirlpool)
- 8.5/10 rounds attack on Maelstrom¹ (1024 bit key)
- 8.5/12 rounds of SHA-3 candidate Cheetah-512

¹Gazzoni Filho, Barreto, Rijmen (SBSeg 2006) ← □ → ← 团 → ← 国 → ← 国 → → ⊂ ■ → へ ℝ

Conclusions

- The Rebound Attack
 - inbound phase for expensive parts
 - outbound phase for "cheaper" parts
- Contribute to hash function cryptanalysis toolbox
 - improved analysis of AES based designs
 - better attacks for more degrees of freedom
 - simple designs allow simple analysis
- Future work
 - apply to other design strategies
 - analyze SHA-3 candidates
 - give bounds for simple AES based designs