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1 For ease of read-

ing, only \he" has

been used in this text.

\He" should be taken

to mean \he or she"

where appropriate.

Preface

As more and more people are using computers routinely, not
out of love for the machine, but because they need to, it be-
comes increasingly important to have easy-to-use, \intuitive"
software. Consider, for example, the catalogue of a public
library. Most people can �nd a book if the catalogue is on
index cards, but having all titles on-line in a computer has
some advantages. For those who need it, it allows looking
up books in ways not possible before { and if it is possible,
sooner or later someone will need it. However, it forces every
visitor of the library to use the computer instead of the card-
tray.
It's not only card-trays that are being replaced by comput-

ers, humans are ousted by them, too. Expert systems are
deliberate attempts at making use of the knowledge of a hu-
man expert without the need of having him (her1) around in
person.
Extracting the knowledge from a human expert and putting

it in a form suitable for processing by a computer is only part
of the problem, however. A computer program only makes
sense if the people who would bene�t from it are able to
use it. Asking someone a question is something we are all
very experienced in, but asking a computer a question is a
completely di�erent thing.
This doesn't imply that the task of the designer of a \user

interface" is to make the computer mimic a human, far from
that! Occasionally talking to a computer is indeed the best
way of interacting, but more often other ways are much more
e�cient. The computer can display pictures, charts and other
things and the designer of the interface would do well to make
use of these capabilities.
That the task of creating a good interface is at least as hard

as that of making the computer solve a particular problem is
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Preface

2 Another reason for

rewriting software

could be that the ex-

isting software has

grown so ine�cient

from many patches

that a complete over-

haul saves more than

it costs.

An example is the

Oberon System, an

operating system,

window system and

programming lan-

guage that together

provide not much

more than other sys-

tems, but in a much

smaller, more con-

sistent and faster

package.

Of course, no such

argument can apply to

user interface devel-

opment systems.

proven by the fact that on average about half of the time of
writing a program is spent on the interface part (assuming it
uses graphics of some kind). Since the interfaces of di�erent
programs often have a lot in common, this is an area where
specialised tools can make life a lot easier. A number of such
tools have been introduced already, most of them meant to be
used in conjunction with a particular \window system", such
as Microsoft Windows on the PC, or X Windows on unix
machines. Tools can be targeted at several types of develop-
ers. Most often they are meant to be used by professional
programmers; these tools usually give access to everything
the window system has to o�er. Some tools are made for
people who only occasionally want to program. These tools
o�er only limited access to the window system, but they are
much easier to use.
One of the most important lessons that every programmer

has to learn, is \not to reinvent the wheel". This means that
using pieces of software that are available is often better than
writing them oneself. This lesson can be extended to the use
of tools. Use available tools, preferrably the simplest, since
it saves you so much time. Only when you are sure you need
more than a particular tool can provide should you switch to
another or to doing it yourself.2

In spite of the sound advice in the last paragraph, part of
this book describes my e�ort to do just that: reinvent the
wheel. Of course, there is a reason and there is a result. The
reason is, that to fully understand user interface technology it
is best to treat it as children do an alarm clock: take it apart
and put it back together again. The result is a perfectly usable
tool, with its own advantages and disadvantages.
Although this book talks about human factors and the de-

sign of interfaces, it is not about designing interfaces per
se, only about implementing them. Designing involves choos-
ing metaphors, creating pictures, choosing colours, selecting
keystrokes and making a lay-out for the screen. It is very
di�cult to do it right and there is no guarantee that you will be
able to create nice looking and usable interfaces after reading
this book. On the other hand, the tools described in this
book are designed to make the task of creating and improving
interfaces easy, so you won't lose much time if you have to
try a few times before it comes out right.
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