
RAPID USER INTERFACE

DEVELOPMENT WITH THE

SCRIPT LANGUAGE GIST

G



Groningen Dissertations in Linguistics 8

ISSN 0928{0030



R�ksuniversiteit Groningen

Rapid user interface

development with the

script language Gist

proefschrift

ter verkr�ging van het doctoraat in de Letteren

aan de R�ksuniversiteit Groningen op gezag

van de Rector Magni�cus Dr S. K. Kuipers

in het openbaar te verdedigen op donderdag

24 juni 1993 des namiddags te 1.15 uur precies

door

G�sbert Bos

geboren op 10 november 1963 te 's-Gravenhage.

A B
C D
E F
G H



1e Promotor: prof. dr F. Zwarts
2e Promotor: prof. dr J. van den Bos



1 For ease of read-

ing, only \he" has

been used in this text.

\He" should be taken

to mean \he or she"

where appropriate.

Preface

As more and more people are using computers routinely, not
out of love for the machine, but because they need to, it be-
comes increasingly important to have easy-to-use, \intuitive"
software. Consider, for example, the catalogue of a public
library. Most people can �nd a book if the catalogue is on
index cards, but having all titles on-line in a computer has
some advantages. For those who need it, it allows looking
up books in ways not possible before { and if it is possible,
sooner or later someone will need it. However, it forces every
visitor of the library to use the computer instead of the card-
tray.
It's not only card-trays that are being replaced by comput-

ers, humans are ousted by them, too. Expert systems are
deliberate attempts at making use of the knowledge of a hu-
man expert without the need of having him (her1) around in
person.
Extracting the knowledge from a human expert and putting

it in a form suitable for processing by a computer is only part
of the problem, however. A computer program only makes
sense if the people who would bene�t from it are able to
use it. Asking someone a question is something we are all
very experienced in, but asking a computer a question is a
completely di�erent thing.
This doesn't imply that the task of the designer of a \user

interface" is to make the computer mimic a human, far from
that! Occasionally talking to a computer is indeed the best
way of interacting, but more often other ways are much more
e�cient. The computer can display pictures, charts and other
things and the designer of the interface would do well to make
use of these capabilities.
That the task of creating a good interface is at least as hard

as that of making the computer solve a particular problem is

v



Preface

2 Another reason for

rewriting software

could be that the ex-

isting software has

grown so ine�cient

from many patches

that a complete over-

haul saves more than

it costs.

An example is the

Oberon System, an

operating system,

window system and

programming lan-

guage that together

provide not much

more than other sys-

tems, but in a much

smaller, more con-

sistent and faster

package.

Of course, no such

argument can apply to

user interface devel-

opment systems.

proven by the fact that on average about half of the time of
writing a program is spent on the interface part (assuming it
uses graphics of some kind). Since the interfaces of di�erent
programs often have a lot in common, this is an area where
specialised tools can make life a lot easier. A number of such
tools have been introduced already, most of them meant to be
used in conjunction with a particular \window system", such
as Microsoft Windows on the PC, or X Windows on unix
machines. Tools can be targeted at several types of develop-
ers. Most often they are meant to be used by professional
programmers; these tools usually give access to everything
the window system has to o�er. Some tools are made for
people who only occasionally want to program. These tools
o�er only limited access to the window system, but they are
much easier to use.
One of the most important lessons that every programmer

has to learn, is \not to reinvent the wheel". This means that
using pieces of software that are available is often better than
writing them oneself. This lesson can be extended to the use
of tools. Use available tools, preferrably the simplest, since
it saves you so much time. Only when you are sure you need
more than a particular tool can provide should you switch to
another or to doing it yourself.2

In spite of the sound advice in the last paragraph, part of
this book describes my e�ort to do just that: reinvent the
wheel. Of course, there is a reason and there is a result. The
reason is, that to fully understand user interface technology it
is best to treat it as children do an alarm clock: take it apart
and put it back together again. The result is a perfectly usable
tool, with its own advantages and disadvantages.
Although this book talks about human factors and the de-

sign of interfaces, it is not about designing interfaces per
se, only about implementing them. Designing involves choos-
ing metaphors, creating pictures, choosing colours, selecting
keystrokes and making a lay-out for the screen. It is very
di�cult to do it right and there is no guarantee that you will be
able to create nice looking and usable interfaces after reading
this book. On the other hand, the tools described in this
book are designed to make the task of creating and improving
interfaces easy, so you won't lose much time if you have to
try a few times before it comes out right.

Acknowledgments

During the time that I did the research for this thesis and
while I was writing it I learned a lot more than I was able to put

vi



Acknowledgments

into the text. I want to thank my colleagues and ex-colleagues
of the section Alfa-informatica, Jan de Vuyst, Harry Gaylord,
George Welling, Peter Blok, Yvonne Vogelenzang, Erik Tjon,
Erik Kleyn and Gosse Bouma, for many inspiring talks. I
want to thank Gosse especially, for his critical reading of a
draft version and for the shower of useful articles and books.
Erik Tjon was the �rst user of Gist, his enthusiastic e�orts
inspired many small improvements and he also made the �rst
non-trivial interface.
I learned a lot from Kees de Vey Mestdagh, especially about

writing articles, going to conferences and the like. I am in-
debted to the members of Phonk for keeping my curiosity alert
and o�ering many other interesting topics.

Groningen, 23 November 1993

vii



Groningen Dissertations in Linguistics (Grodil)

1. Henri �ette de Swart (1991). Adverbs of quanti�cation: a
generalized quanti�er approach.

2. Eric Hoekstra (1991). Licensing conditions on phrase
structure.

3. Dicky Gilbers (1992). Phonological networks: a theory
of segment representation.

4. Helen de Hoop (1992). Case con�guration and noun
interpretation.

5. Gosse Bouma (1993). Nonmonotonicity and categorial
uni�cation grammar.

6. Peter I. Blok (1993). The interpretation of focus: an
epistemic approach to pragmatics.

7. Roelien Bastiaanse (1993). Studies in aphasia.

8. Bert Bos (1993). Rapid user interface development with
the script language Gist.

To appear in 1993:

9. Wim Kosme�er. Barriers and licensing.

10. Jan-Wouter Zwart. Dutch syntax: a minimalist
approach.

11. Sietze Looyenga. Syntax and semantics of
nominalizations.

12. Ale de Boer. VP-anaphora in contemporary English.

13. Petra Hendriks. Comparatives in categorial grammar.

14. Mark Kas. The semantics of verbs.

colofon

Opgemaakt met TEX3.14t en Postscript 2.0,
Illustraties met X�g 2.1.3
Lay-out: Bert Bos
Lettertypes: Gladiator & Helvetica
Printer: VariTyper 600
O�set-druk: Universiteitsdrukker�, Groningen
Oplage: 250
23 november 1993



Contents

Preface v

Contents viii

1 Introduction 1
1.1 Sociology 2
1.2 Psychology 2
1.3 Ergonomics 3
1.4 Audience 3
1.5 Preliminaries 3
1.6 De�nitions 4
1.6.1 Workstations 4
1.6.2 Interaction 7
1.6.3 UIMS and UIDE 7
1.6.4 Conversation analysis 8
1.6.5 Resources 9
1.6.6 E�ciency 9
1.6.7 Client-server model 10
1.6.8 Hypertext/hypermedia 10
1.7 Overview 12

2 Human factors & gui's 15
2.1 The user's perspective 16
2.1.1 Crammed displays 16
2.1.2 The use of colour 17
2.1.3 Interesting failures 18
2.2 Classi�cation of interfaces 19
2.3 Goals of user interfaces 20
2.4 Direct Manipulation 24
2.4.1 Virtual Reality 27
2.5 Windows 28

viii



Contents

2.6 GUI's 29
2.7 Interface elements 31
2.7.1 Windows 31
2.7.2 Boxes & menus 31
2.7.3 Icons 33
2.7.4 Buttons 34
2.7.5 Images 35
2.7.6 Sliders 37
2.7.7 Prompts (text �elds) & editors 37
2.7.8 Lists 38
2.7.9 File selectors 39
2.7.10 Accelerators 41
2.8 Resources 41
2.9 Con�gurability, adaptability & intelligent interfaces

43
2.9.1 Con�gurability 43
2.9.2 Adaptability 43
2.9.3 Conversation and role playing 44
2.9.4 Small scale intelligence 44
2.10 The process of designing UI's 45
2.11 Style guides and guidelines 47

3 User interface development systems 49
3.1 Software development techniques 50
3.1.1 Speci�cation vs. iterative design 50
3.1.2 Prototyping 51
3.1.3 Object-oriented programming 51
3.1.4 Lazy & eager evaluation 52
3.1.5 Non-deterministic design 52
3.2 Some history 52
3.3 Current systems 56
3.4 Advantages & disadvantages 59
3.4.1 Toolkits 60
3.4.2 Interactive systems 61
3.4.3 Interactive script-based systems 61
3.4.4 Non-interactive script-based systems 63

4 Gist 69
4.1 Separation of interface and application 71
4.2 Building an interface 72
4.3 The script language 73
4.3.1 User input 74
4.3.2 Messages among objects 75
4.3.3 Physical and synthetic events 77
4.3.4 Actions 78

ix



Contents

4.3.5 Expressions 80
4.3.6 Calling external programs 84
4.3.7 An example that uses cloning 84
4.4 Modelling the application 87
4.5 Setting global defaults 88
4.6 Con�guring & extending Gist 89
4.7 Portability 89
4.8 Advantages, disadvantages, possible enhancements

90
4.8.1 Coupling of application and interface 90
4.8.2 Script language 91
4.8.3 On-line help & error handling 92
4.8.4 Interactive design 93
4.8.5 Possible enhancements 93

5 The implementation of Gist 95
5.1 Flow of control 95
5.2 Datastructures 97
5.3 The \main" module 100
5.4 The \parse�le" module 101
5.5 The \scan" module 102
5.6 The \parse" module 102
5.7 The \parseaux" module 103
5.8 The \actions" module 104
5.9 The \classes" and \classes.def" modules 105
5.10 Con�guration 106

A Gist syntax 111
A.1 Terminal symbols 112
A.2 Rules 113

B Gist example 119
B.1 Application model 120
B.2 Dialog boxes 121
B.3 Main window 122
B.4 Flagging impossible moves 123
B.5 Using higher level objects 123

Bibliography 125

Samenvatting 131

Index 135

x


