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[1] We construct a network of observed climate indices in
the period 1900–2000 and investigate their collective
behavior. The results indicate that this network
synchronized several times in this period. We find that in
those cases where the synchronous state was followed by a
steady increase in the coupling strength between the indices,
the synchronous state was destroyed, after which a new
climate state emerged. These shifts are associated with
significant changes in global temperature trend and in
ENSO variability. The latest such event is known as the
great climate shift of the 1970s. We also find the evidence
for such type of behavior in two climate simulations using a
state-of-the-art model. This is the first time that this
mechanism, which appears consistent with the theory of
synchronized chaos, is discovered in a physical system of
the size and complexity of the climate system.
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1. Introduction

[2] One of the most important and mysterious events in
recent climate history is the climate shift in the mid-1970s
[Graham, 1994]. In the northern hemisphere 500-hPa
atmospheric flow the shift manifested itself as a collapse
of a persistent wave-3 anomaly pattern and the emergence
of a strong wave-2 pattern. The shift was accompanied by
sea-surface temperature (SST) cooling in the central Pacific
and warming off the coast of western North America [Miller
et al., 1994]. The shift brought sweeping long-range
changes in the climate of northern hemisphere. Incidentally,
after ‘‘the dust settled,’’ a new long era of frequent El Niños
superimposed on a sharp global temperature increase begun.
While several possible triggers for the shift have been
suggested and investigated [Graham, 1994; Miller et al.,
1994; Graham et al., 1994], the actual physical mecha-
nism that led to this shift is not known. Understanding
the dynamics of such phenomena is essential for our
ability to make useful prediction of climate change. A
major obstacle to this understanding is the extreme
complexity of the climate system, which makes it difficult
to disentangle causal connections leading to the observed
climate behavior. Here we present a novel approach,
which reveals an important new mechanism in climate

dynamics and explains several aspects of the observed
climate variability in the late 20th century.

2. Methods and Results From Observations

[3] First we construct a network from four major climate
indices. The network approach to complex systems is a
rapidly developing methodology, which has proven to be
useful in analyzing such systems’ behavior [Albert and
Barabasi, 2002; Strogatz, 2001]. In this approach, a com-
plex system is presented as a set of connected nodes. The
collective behavior of all the nodes and links (the topology
of the network) describes the dynamics of the system and
offers new ways to investigate its properties. The indices
represent the Pacific Decadal Oscillation (PDO), the North
Atlantic Oscillation (NAO), the El Niño/Southern Oscilla-
tion (ENSO), and the North Pacific Oscillation (NPO)
[Barnston and Livezey, 1987; Hurrell, 1995; Mantua et
al., 1997; Trenberth and Hurrell, 1994]. These indices
represent regional but dominant modes of climate variabil-
ity, with time scales ranging from months to decades. NAO
and NPO are the leading modes of surface pressure vari-
ability in northern Atlantic and Pacific Oceans, respectively,
the PDO is the leading mode of SST variability in the
northern Pacific and ENSO is a major signal in the tropics.
Together these four modes capture the essence of climate
variability in the northern hemisphere. Each of these modes
involves different mechanisms over different geographical
regions. Thus, we treat them as nonlinear sub-systems of the
grand climate system exhibiting complex dynamics. Indeed,
some of their dynamics have been adequately explored and
explained by simplified models, which represent subsets of
the complete climate system and which are governed by
their own dynamics [Elsner and Tsonis, 1993; Schneider et
al., 2002; Marshall et al., 2001; Suarez and Schopf, 1998].
For example, ENSO has been modeled by a simplified
delayed oscillator in which the slower adjustment time-
scales of the ocean supply the system with the memory
essential to oscillation. Monthly-mean values in the interval
1900–2000 are available for all indices (http://jisao.
washington.edu/datasets, for NAO, PDO and El Nino, http://
www.cgd.ucar.edu/cas.jhurrell/indices.html, for NPO).
[4] In our approach, the four climate indices are assumed

to form a network of interacting nodes. A commonly used
measure to describe variations in the network’s topology is
the mean distance d(t) [Onnela et al., 2005].

d tð Þ ¼ 2

N N � 1ð Þ
X
dt
ij
�Dt

dtij ð1Þ

Here t denotes the time in the middle of a sliding window of

width Dt, N = 4; i, j = 1,. . ., N, and dij
t =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� jrtijj
� �r

,

where rij
t is the cross-correlation coefficient between nodes i

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L13705, doi:10.1029/2007GL030288, 2007
Click
Here

for

Full
Article

1Department of Mathematical Sciences, Atmospheric Sciences Group,
University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.

Copyright 2007 by the American Geophysical Union.
0094-8276/07/2007GL030288$05.00

L13705 1 of 5

http://dx.doi.org/10.1029/2007GL030288


and j in the interval [t � Dt/2, t + Dt/2], and Dt is the NxN
distance matrix. The sum is taken over the upper triangular
part (or the distinct elements of Dt). The above formula uses
the absolute value of the correlation coefficient because the
choice of sign of indices is arbitrary. The distance can be
thought as the average correlation between all possible pairs
of nodes and is interpreted as a measure of the
synchronization of the network’s components. Synchroniza-
tion between nonlinear (chaotic) oscillators occurs when
their corresponding signals converge to a common, albeit
irregular, signal. In this case, the signals are identical and
their cross-correlation is maximized. Thus, a distance of
zero corresponds to a complete synchronization and a
distance of

ffiffiffi
2

p
signifies a set of uncorrelated nodes.

[5] Figure 1a shows the distance as a function of time for
a window length of Dt = 11 years, with tick marks
corresponding to the year in the middle of the window.
The correlations (and thus distance values for each year)
were computed based on the annual-mean indices con-
structed by averaging the monthly indices over the period
of November–March. The dashed line parallel to the time
axis in Figure 1a represents the 95% significance level
associated with the null hypothesis that the observed indices
are sampled from a population of a 4-dimensional AR-1
process driven by a spatially (cross-index) correlated Gauss-
ian noise; the parameters of the AR-1 model and the
covariance matrix of the noise are derived from the full
time series of the observed indices. This test assumes that
the variations of the distance with time seen in Figure 1a are
due to sampling associated with a finite-length (11-yr)
sliding window used to compute the local distance values.
Retaining overall cross-correlations in constructing the
surrogates makes this test very stringent. Nevertheless,
we still find five times (1910s, 1920s, 1930s, 1950s, and
1970s) when distance variations fall below the 95% signif-
icance level. We therefore conclude that these features are
not likely to be due to sampling limitations but they
represent statistically significant synchronization events.
Note that the window length used in Figure 1a is a
compromise between being long enough to estimate corre-
lations but not too long to ‘‘dilute’’ transitions. Neverthe-
less, the observed synchronizations are insensitive to the
window size in a wide range of 7 yr � Dt � 15 yr.
[6] An important aspect in the theory of synchronization

between coupled nonlinear oscillators is coupling strength.
It is vital to note that synchronization and coupling are not
interchangeable; for example, it is trivial to construct a pair
of coupled simple harmonic oscillators whose displace-
ments are in quadrature (and hence perfectly uncorrelated),
but whose phases are strongly coupled [Vanassche et al.,
2003]. As such, coupling is best measured by how strongly
the phases of different modes of variability are linked. The
theory of synchronized chaos predicts that in many cases
when such systems synchronize, an increase in coupling
between the oscillators may destroy the synchronous state
and alter the system’s behavior [Heagy et al., 1995; Pecora
et al., 1997]. In view of the results above, the question thus
arises as to how the synchronization events in Figure 1a
relate to coupling strength between the nodes. It should be
noted that in this study we are interested in the complete
synchronization among the nodes, rather than weaker types
of synchronization, such as phase synchronization [Boccaletti

et al., 2002; Maraun and Kurths, 2005] or clustered
synchronization [Zhou and Kurths, 2006], which are also
important in climate interactions.
[7] For our purposes here, if future changes in the phase

between pairs of climate modes can be readily predicted
using only information about the current phase, those modes
may be considered strongly coupled [Smirnov and
Bezruchko, 2003]. Here we chose to study coupling using
symbolic dynamics. For any given time series point, we can
define a symbolic phase by examining the relationship
between that point and its nearest two neighbors in time.
As shown in Figure 2, if the 3 points are sequentially
increasing, we can assign to the middle point a phase of
0, while if they are sequentially decreasing, a phase of p.
Intermediate values then follow. Notice that this procedure
is totally non-parametric, as it does not compare the actual
values of the points aside from whether a point is larger or
smaller than its neighbors. The advantage of this approach
is that it is blind to ultra-low frequency variability, i.e.,
decadal scale and longer. Use of symbolic dynamics is
appropriate in this case, as we are primarily interested in
changes in the synchronicity and coupling of climate modes
over decadal time scales. The symbolic phase fj

n is con-
structed separately for the four climate indices, where j
denotes the index and n the year. The phases for a given

year n are represented by the complex phase vector ~Zn with
elements Zn

j = exp(i fj
n). The predictability of this phase

vector from year to year provides a measure of the coupling
and is determined using the least squares estimator

~Zest
nþ1 ¼ M~Zn ð2Þ

where M = [Z+ ZT] [Z ZT]�1 is the least squares predictor.
Here Z and Z+ are the matrices whose columns are the
vectors ~Zn and ~Znþ1, respectively, constructed using all
years. A measure of the coupling then is simply k~Zest

nþ1 �
~Znþ1k2, where strong coupling is associated with small
values of this quantity, i.e., good phase prediction.
[8] This quantity is plotted in Figure 1b. Figures 1c and

1d show the global surface temperature (http://data.giss.na-
sa.gov/gistemp/) and El Nino index in our period. Figure 1
tells a remarkable story. First let’s consider the event in
1910s. The network synchronizes at about 1910. At that
time the coupling strength begins to increase. Eventually the
network comes out of the synchronous state sometime in
late 1912 early 1913 (marked by the left vertical line). The
destruction of the synchronous state coincides with the
beginning of a sharp global temperature increase and a
tendency for more frequent and strong El Nino events. The
network enters a new synchronization state in the early
1920s but this is not followed by an increase in coupling
strength. In this case no major shifts are observed in the
behavior of global temperature and ENSO. Then the system
enters a new synchronization state in the early 1930.
Initially this state was followed by a decrease in coupling
strength and again no major shifts are observed. However,
in the early 1940s the still present synchronous state is
subjected to an increase in coupling strength, which soon
destroys it (at the time indicated by the middle vertical line).
As the synchronous state is destroyed, a new shift in both
temperature trend and ENSO variability is observed. The
global temperature enters a cooling regime and El Ninos
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become much less frequent and weaker. The network
synchronizes again in 1950. This state is followed by a
decrease in coupling strength and, as was the case in 1920s
no major shifts occur. Finally, the network synchronizes
again in the mid 1970s. This state is followed by an increase
in coupling strength and incredibly, as in the cases of 1910
and 1940, synchronization is destroyed (at the time marked
by the right vertical line) and then climate shifts again. The
global temperature enters a warming regime and El Ninos
become frequent and strong. The fact that around 1910,
1940, and in the late 1970s climate shifted to a completely
new state indicates that synchronization followed by an
increase in coupling between the modes leads to the
destruction of the synchronous state and the emergence of
a new state.

3. Model Results

[9] According to the theory of synchronized chaos such
shifts in systems of nonlinear coupled oscillators are caused
by bifurcations as the coupling parameter changes. Thus,
the coupling strength acts as an external parameter modi-
fying the system. In our case the coupling strength is
estimated from the data and thus it is not clear whether its
variability is dictated by some external forcing acting on the
system or it is intrinsic. In order to further investigate this
issue we considered two simulations of a state-of-the-art
coupled ocean/atmosphere model. The particular model we
examine here is the GFDL CM2.1 coupled ocean/atmosphere
model [GFDL CM2.1 development team, 2006]. The first
simulation is an 1860 pre-industrial conditions 500-year
control run and the second is the SRESA1B, which is a
‘‘business as usual’’ scenario with CO2 levels stabilizing at
720 ppmv at the close of the 21st century [Intergovernmental
Panel on Climate Change, 2001]. From these model outputs
we construct the same indices and their network.
[10] Figure 3 shows information analogous to Figure 1

but for the 2nd century of the control run. The 1st century is

Figure 1. (a) The distance (see definition in text) of a
network consisting of four observed major climate modes as
a function of time. This distance is an indication of
synchronization between the modes with smaller distance
implying larger synchronization. The parallel dashed line
represents the 95% significance level associated with a null
hypothesis of spatially correlated red noise. (b) Coupling
strength between the four modes as a function of time. (c)
The global surface temperature record. (d) Global-SST
ENSO index. The vertical lines indicate the time when the
network goes out of synchronization for those cases where
synchronization is followed by a coupling strength increase.

Figure 2. The six states for the symbolic phase construc-
tion. The points in each triplet correspond to three
consecutive points in a time series, and their relative vertical
positions to each other indicate their respective values.
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not considered to avoid the effect of transients. In the other
centuries the frequency of synchronization has decrease to
one event per century. The general mechanism observed in
the actual data is observed here as well. We observe three
synchronization events, around years 120–130, years 139–
148, and years 180–188. Once in place, the first two events
are followed by an increase in coupling strength which
eventually destroys the synchronous states. This marks a
shift in both the global temperature trend and ENSO
variability. The third event is not followed by a coupling
strength increase and when it terminates there are no
noticeable shifts. There is a temperature (but not an ENSO
variability) shift in the mid 170s which is not associated
with this mechanism.
[11] Figure 4 is analogous to Figure 1 but for the 21st

century simulation, with the exception that the greenhouse
gases radiative trend of 2�C/century in global temperature
(Figure 4c) is removed to better isolate internal shifts in
behavior. In this simulation we observe two synchronization
events, one in years 2027–2032 and another in years 2065–
2072 (with an interruption in the middle). During both
events the coupling strength increases until the synchronous
states are destroyed. Here again these events are associated
with marked temperature trend and ENSO variability shifts.
[12] We thus find this mechanism present in observations

and in model simulations. The fact that this mechanism is
present in the control run will indicate that the shifts are not
caused by some kind of bifurcation (which will require
external influences) but rather it is an intrinsic property of
the climate system. The mechanism of synchronization
followed by an increase in coupling leading to a change
in climate behavior seems to be rather robust. For example,
it remains in a larger network that includes PNA, WP, and
TNA possibly because of their regional ties to the four
major modes used here. Thus, larger networks may not offer
additional information Note, however, that if new nodes do
not represent significant modes of variability their addition
may mask the mechanism. In addition, we identify the
mechanism in networks with only three nodes as long as
they represent all three major regions (tropics, north Pacific
and north Atlantic; i.e. ENSO, NAO and either PDO or
NPO). It appears that the key to this mechanism is not the
inclusion of many nodes but the interplay of the (few) most
dominant modes of climate variability in the northern
hemisphere.

4. Conclusions

[13] The above observational and modeling results sug-
gest the following intrinsic mechanism of the climate
system leading to major climate shifts. First, the major
climate modes tend to synchronize at some coupling
strength. When this synchronous state is followed by an
increase in the coupling strength, the network’s synchro-
nous state is destroyed and after that climate emerges in a
new state. The whole event marks a significant shift in
climate. It is interesting to speculate on the climate shift
after the 1970s event. The standard explanation for the post
1970s warming is that the radiative effect of greenhouse
gases overcame shortwave reflection effects due to aerosols
[Mann and Emanuel, 2006]. However, comparison of the
2035 event in the 21st century simulation and the 1910s event

Figure 3. Same as Figure 1 but for a control run of GFDL
CM2.1 model with 1860 pre-industrial conditions. See text
for discussion.
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in the observations with this event, suggests an alternative
hypothesis, namely that the climate shifted after the 1970s
event to a different state of a warmer climate, which may be
superimposed on an anthropogenic warming trend.
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Figure 4. Same as Figure 1 but for the GFDL CM2.1
SRESA1B simulation. See text for discussion.
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