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The Korn-Kreer-Lenssen
Model as an Alternative 
for Option Pricing

1. Introduction
The type of stochastic process, which determines the movement of the
stock price, is of prime importance in option valuation. Traditionally, the
movement of stock price is described to follow a geometric Brownian
motion. This implies that changes in the log prices (log returns) over fixed
intervals of time are i.i.d. and Gaussian random variables. 

However, the geometric Brownian motion model has been ques-
tioned by a number of researchers. For example, Mandelbrot (1963) and
Fama (1963, 1965) observed that the distributions of log returns are not
normal distributions rather they have very thick tails particularly over
short periods of time such as over one day. As a result of his observations,
Mandelbrot (1963) proposed that the thick tailed alternative models
would be more appropriate in describing the movement of stock price. 

Abstract: The first purpose of this paper is to illustrate how the Korn-Kreer-Lenssen model can be implemented in pricing European vanilla options and to analyze the
accuracy of this model. The Korn-Kreer-Lenssen model assumes that the underlying stock price follows a linear birth-death process rather than a geometric Brownian
motion. The second purpose of this paper is to derive two closed-form solutions for pricing American digital options in the Korn-Kreer-Lenssen’s framework, by using the
birth-death process theory, as well as the probability distribution of the first passage time of the underlying stock process.

Cox and Ross (1976) proposed that the birth-death process would be
another kind of alternative stock price model compared to the geometric
Brownian motion. This model serves to explain situations when jumps
in stock prices occur and resolves a number of important problems such
as payouts and bankruptcies, which would be intractable for the lognor-
mal model. For example, stock prices have a positive probability of hit-
ting and remaining at zero, an event that corresponds to the bankruptcy
of a firm. The birth–death process is able to capture the absorbing barri-
er at the origin. The limitation of Cox and Ross’ model (1976) is that it
assumes that jumps in stock prices would not occur more than once
within a short period of time.

Korn, Kreer and Lenssen (1998) extended the Cox and Ross’ (1976)
model to a more general jump model with state dependent jump inten-
sities. This model is able to overcome the limitation of Cox and Ross’
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model, by capturing situations when more frequent jumps in stock
prices would occur. Korn, Kreer and Lenssen investigated a possible
approach to price European vanilla options when the underlying stock
price follows a linear birth-death process. They derived explicit pricing
formulas for European vanilla options by arbitrage arguments.

This paper illustrates how the Korn-Kreer-Lenssen model can be
implemented in pricing European vanilla options. A numerical example
is used to demonstrate the application and accuracy of this model. We
also derive two closed-form solutions for American digital options in the
Korn-Kreer-Lenssen’s framework. 

The structure of this paper is as follows. Section 2 presents a linear
birth-death process for stock prices. In section 3, we derive two explicit
pricing formulas for American digital options. A numerical example is
presented in section 4 to illustrate the implementation and testing of the
Korn-Kreer-Lenssen model for European vanilla options. Conclusions are
drawn in section 5.

2. The Stock Price Model
We model the movement of the stock price S = St by a jump process in
continuous time t with zero drift. More formally, given some T > 0, the
movement of the stock price St in continuous time t ∈ [0, T] can be
described as follows

dSt = dNt(1) − dNt(2), (2.1)

where Nt(1) and Nt(2) are jump processes on the time interval [0, T] with
jump size 1 and intensities λSt and ηSt, respectively. It is assumed that the
jump processes are defined on the probability space (�, F, P) where the his-
tory information is given by the filtration {Ft}t∈[0,T ] generated by Nt(1) and
Nt(2). Also we assume F = FT . Obviously, the two processes,

Nt(1) −
∫ t

0
λSsds and Nt(2) −

∫ t

0
ηSsds,

are martingales with respect to the filtration {Ft}t∈[0,T ] .
Taking the initial value S0 to be a non–negative integer we may

restrict the stock price S = St to a non–negative integer value only. Note
that λ · 0 = 0, η · 0 = 0 guarantee that the stock price will never become
negative, that is, S ∈ {0, 1, 2, . . .}. In case that at some point in time
t∗ ∈ [0, T] the stock price become zero, the choice of the transition rates λ
and η guarantees that St will be zero for all later times t ∈ [t∗, T]. That is to
say, the model allows for cases of bankruptcy. See figures at p.651 in
Korn, Kreer and Lessen (1998) for typical sample paths of linear birth-
death processes.

We denote the probability distribution of stock price by
pn,j(t, t0) = P(St = j|St0

= n), which indicates the probability of stock price
being equal to j at time t conditional on the initial value St0

= n at a pre-
vious time t0 . By the time homogeneous of St , we can further have
pn,j(t, t0) = pn,j(t − t0, 0) ≡ pn,j(t − t0) . These probabilities satisfy the well–
known forward birth-death equations (keeping both t0 and St0

= n fixed,

and writing τ = t − t0 )

∂

∂τ
pn,0 = ηpn,1,

∂

∂τ
pn,j = λ(j − 1)pn,j−1 − (λ + η)jpn,j + η(j + 1)pn,j+1,j ≥ 1,

pn,j(0) = δnj,

(2.2)

where pn,−1(τ ) = 0.
The probabilities also satisfy the system of backward birth-death

equations (keeping both t and St = j fixed, and writing τ = t − t0 )

∂

∂τ
p0,j = 0,

∂

∂τ
pn,j = ηnpn,n−1 − (λ + η)npn,j + λ(n + 1)pn+1,j, j ≥ 1.

(2.3)

By solving the infinite set of coupled ordinary differential equa-
tions (2.2), the probability distribution of stock price pn,j, is obtained.

The basic assumptions concerning the financial market in this paper
are stated as follows. 

• Trading is continuous in [0, T] and takes place in a liquid frictionless
market.

• Short–selling with full use of proceeds is allowed.
• In addition to the stock S, the market trades a European style Low

Exercise Price Option, F∗ , with strike 1 and maturity T . We may
assume this LEPO F∗ to be a put option with strike 1.

• The rate r, at which individuals can borrow and lend freely, is constant.

3. Closed Form Solutions for Pricing
American Digital Options 

Exotic options are a generic name given to derivative securities that have
more complex cash flow structures than standard options. The main
motivation for trading exotic options is that they permit a much more
precise articulation of views on future market behavior than those
offered by standard options. The trading of exotic options requires acute
timing skills in hedging and the use of options to manage volatility risk. 

The simplest exotic option is binary or digital option. A digital option
is a contingent claim on some underlying asset or commodity that has an
all– or– nothing payoff. A digital call option has a payoff

B(ST) =
{

1 if ST ≥ K,

0 if ST < K,
(3.1)

and a digital put has payoff 1 − F(ST). 
In this section, we first review some results for European vanilla

options given by Korn, Kreer and Lessen (1998), then we derive the new
results for American digital options.

For European vanilla options when the underlying stock price fol-
lows a jump process, basically there are two approaches to derive option
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pricing partial differential-difference equations. One approach is the
hedging argument as in Cox and Ross (1975b) or Korn, Kreer and Lenssen
(1998) p.657 to p.659. The other approach is the Capital Asset Pricing
Model (CAPM) argument as in Merton (1992) p.318 to p.319, see
Appendix A for more details.

The no arbitrage argument for pricing contingent claim B payable at
time T states that the price ft of this contingent claim at time t < T must
be given as

ft = Ê(e−r(T−t)B|Ft), (3.2)

where Ê is the expectation with respect to some equivalent martingale
measure P̂ is a martingale with respect to the equivalent martingale
measure. See e.g. Harrison and Pliska (1981) for the presentation of the
relevant arguments.

The existence of equivalent martingale measure is stated as follows. 

Proposition 3.1 A probability measure P̂ associated to a linear birth-
death process with transition rates λ̂ and η̂ is an equivalent martingale
measure for the security price if and only if we have

λ̂ = η̂ + r. (3.3)

Proposition 3.1 indicates that in a risk neutral world (i.e. the dis-
counted stock price is a martingale) the transition rates for up–jumps are
higher than those for down– jumps.

We will further refer transition rates satisfying equation (3.3) as risk
adjusted rates.

The following lemma will enable us to provide not only explicit rep-
resentations for the price of European options, but also a sufficient con-
dition for the uniqueness of equivalent martingale measure. 

Lemma 3.2 The solution of the forward birth-death equation (2.2), with
the risk adjusted rates λ̂ and η̂ satisfying (3.3), subject to the initial condi-
tion P̂n,n(t, t) = 1 and P̂n,j(t, t) = 0 for all other j �= n, is given by

P̂n,0(s, t) = αn,

P̂n,j(s, t) =
min (n,j)∑

i=0

(
n
i

) (
j + n − i − 1

n − 1

)
αn−iβ j−i(1 − α − β)i,

j ≥ 1, t < s,

(3.4)

where

α = η̂
(
er(s−t) − 1

)
η̂

(
er(s−t) − 1

) + rer(s−t)
,

β =
(
η̂ + r

) (
er(s−t) − 1

)
η̂

(
er(s−t) − 1

) + rer(s−t)
.

(3.5)

Proposition 3.3 Let the market price F∗
t at time t < T of the LEPO put

with strike 1 and maturity T satisfy the regular condition er(T−t)F∗
t ≤ 1.

Then the positive parameter η̂ is uniquely determined at time t by the
market price of the LEPO put as solution of 

F∗
t = e−r(T−t)αn, (3.6)

where α is defined in equation (3.5) and α ∈ (0, 1). Thus under the above
regular condition, an equivalent martingale measure P̂ can be uniquely
determined.

Theorem 3.4 The fair price ft,n of a European call option at time t, when
the stock price St is equal to n, is given by

call(T, t, St = n) = e−r(T−t)
∞∑

j=K+1

(j − K)

min (n,j)∑
i=0

(
n
i

) (
j + n − i − 1

n − 1

)

× αn−iβ j−i(−α − β)i.

(3.7)

While in the case of a European put option, we have the following pric-
ing formula

put(T, t, St = n) = e−r(T−t)
K−1∑
j=0

(K − j)
min (n,j)∑

i=0

(
n
i

) (
j + n − i − 1

n − 1

)

× αn−iβ j−i(1 − α − β)i.

(3.8)

Remark: The regular condition in Proposition 3.3 for the uniqueness of
η̂ is sufficient but not necessary. As long as η̂ can be uniquely implied
from market prices of some traded options which have the same under-
lying as that of the option being priced, Theorem 3.4 would still be valid.

For detailed proofs of Proposition 3.1, Lemma 3.2, Proposition 3.3 and
Theorem 3.4, see  Korn, Kreer and Lessen (1998).

From now on, we discuss pricing American digital options. The
American digital call option has a payoff of one dollar if the underlying
asset reaches the strike price K before or at the expiration date T. This
introduces additional time option to the pricing problem. According to
the general principles, the fair value of the American digital call option
at time 0 is given by

f0,n0
= e−rT P̂(TK ≤ T|S0 = n0). (3.9)

In order to give an explicit pricing formula, we need to investigate the
probability distribution of the first passage time TK of the stock process
crossing the strike price boundary K . 

To investigate TK , consider a new process in which the transition
probability is modified by making K an absorbing state. Equation (2.2) is
unaltered for j = 0, 1, . . . , K − 2, and for j = K − 1, K the equation is
replaced by 

∂

∂ t
pn,K−1(t) = λ(K − 2)pn,K−2(t) − (λ + η)(K − 1)pn,K−1(t),

∂

∂ t
pn,K (t) = λ(K − 1)pn,K−1(t).

(3.10)

However, in this situation, the backward equations are rather more con-
venient than the forward equations.

The forward equations are obtained by fixing S0 = n0 and relating the
states of the process at time 0, t and t + 
t. The backward equations are
obtained by fixing St = K
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and relating the states of the process at time −
t, 0 and t. For the process
with an absorbing state K, we have 

Pj,K (t + 
t) = Pj,K (t){1 − (λ + η)j
t} + Pj−1,K (t)ηj
t

+ Pj+1,K (t)λj
t + o(
t),

leading to

∂

∂ t
pj,K (t) = −(λ + η)jpj,K (t) + ηjpj−1,K (t) + λjpj+1,K (t),

0 ≤ j ≤ K − 1,

(3.11)

with PK ,K (t) = 1, Pj,K (0) = 0.
Noticing that P̂(TK ≤ t|S0 = n0) = Pn0, K(t), an explicit pricing formula

for American digital call option can be given from (3.9) as long as we
obtain the solution of (3.11).

Denote 

Qn(t) = dPn,K (t)

dt
. (3.12)

Applying (3.12) to the backward equation (3.11), we have

Q ′
n(t) = −(λ + η)nQn(t) + ηnQn−1(t) + λnQn+1(t), 0 ≤ n ≤ K − 1,

QK (t) = 0,

Qn(0) = δn,K−1λ(K − 1).

(3.13)

The solution of (3.13) is derived from the following theorem.

Theorem 3.5 The solution of equation (3.13) is given by

Qn(t) = − (−1)n−1ηr2

(n − 1)!

∫ t

0

[
QK−1(s)e

−r(t−s)

{
λ

(
1 − e−r(t−s)

)}K−n

{
λ − ηe−r(t−s)

}K+1

× {
η − λe−r(t−s)

}n−1

×
n−1∑
i=0

(
n − 1

i

)
�(K + i + 1)

�(K − n + i + 1)

×
{

−λη
(
1 − e−r(t−s)

)2(
η − λe−r(t−s)

) (
λ − ηe−r(t−s)

)
}i


 ds

+ (−1)n−1λr2

(n − 1)!
e−rt {λ(1 − e−rt)}K−n−1

{λ − ηe−rt}K

{
η − λe−rt

}n−1

×
n−1∑
i=0

(
n − 1

i

)
�(K + i)

�(K − n + i)

{
−λη

(
1 − e−rt

)
(η − λe−rt) (λ − ηe−rt)

}i

(3.14)

Proof: We denote the generating function

Q (z, t) =
K−1∑
n=1

Qn(t)z
n−1. (3.15)

From the initial conditions in (3.13), we have

Q (z, 0) = λ(K − 1)zK−2. (3.16)

Multiplying the equations in (3.13) by zn−1 and summing over n we have
the partial differential equation for Q

− ∂Q

∂ t
+ {ηz2 − (λ + η)z + λ} ∂Q

∂z
= (λ + η − 2ηz)Q

+ ηKQK−1(t)Z
K−1.

(3.17)

The solution of (3.17) is obtained as

Q (z, t) = −Kηr2

∫ t

0
QK−1(s)e

−r(t−s) {λ(1 − e−r(t−s)) − z(η − λe−r(t−s))}K−1

{(λ − ηe−r(t−s)) − ηz(1 − e−r(t−s))}K+1
ds

+ (K − 1)λr2e−rt {λ(1 − e−rt) − z(η − λe−rt)}K−2

{(λ − ηe−rt) − ηz(1 − e−rt)}K
. (3.18)

From (3.15) we have

Qn(t) =
{

1

(n − 1)!

∂n−1Q (z, t)

∂zn−1

}
z=0

. (3.19)

Combining (3.18) and (3.19), we get (3.14).
In the following theorem, we give the first closed form solution for

pricing American digital options when the underlying stock dynamic fol-
lows a linear birth-death process.

Theorem 3.6 Let the market price F∗
t at time t < T of the LEPO put with

strike 1 and maturity T satisfy the regular condition er(T−t)F∗
t ≤ 1. Then

the fair price f0,n0
of an American digital call option at time 0 when the

stock price S0 is equal to n0 is given by

f0,n0
= f (0, T, S0 = n0) = e−rT

∫ T

0
Qn0

(t)dt, (3.20)

where Qn0
(t) has an expression from (3.14).

Proof. Since K is the absorbing barrier of the underlying linear birth-
death process, it is easy to see

P̂(TK ≤ t|S0 = n0) = Pn0 ,K (t). (3.21)

Combining (3.9), (3.21) and (3.12), we prove the theorem.
To investigate TK in more detail, we define the following polynomials:

L0(x) ≡ 1,

L1(x) = x + λ,

Ln(x) = (x + λ + η)Ln−1(x) − ληLn−2(x)(n ≥ 2).

(3.22)

In the following Theorem 3.7, we get a more explicit expression for the
distribution density function of TK .

TECHNICAL ARTICLE 3
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Theorem 3.7 Suppose S0 = n0 , then TK , the first arriving time at state K
of the linear birth-death process {St, t ∈ [0, T]}, has the distribution den-
sity function

Qn0
(t) =

K∑
j=1

λK−n0 Ln0
(−µ

(K)

j )

L K (−µ
(K)

j )
e−µ

(K )

j
t
, (3.23)

where −µK
j is the zero point of LK (x).

Proof. See Wang Zikun and Yang Xiangqun (1992) Theorem 1’ at p. 169.

In the following theorem, we give the second closed form solution for
pricing American digital options when the underlying stock dynamic fol-
lows a linear birth-death process.

Theorem 3.8 Let the market price F∗
t at time t < T of the LEPO put with

strike 1 and maturity T satisfy the regular condition er(T−t)F∗
t ≤ 1. Then

the fair price f0,n0
of an American digital call option at time 0 is given by

f0,n0
= e−rT

∫ T

0
Qn0

(t)dt = e−rT
K∑

j=1

λK−n0 Ln0
(−µ

(K)

j )

L K (−µ
(K)

j )

1 − e−µ
(K )

j
T

µ
(K)

j

(3.24)

Proof. Combining (3.9) and (3.23), we get (3.24).
As we can see, the pricing formula (3.24) for American digital call

option is much simpler than the pricing formula (3.20) in terms of
numerical calculations.

4. A Numerical Example
In this section, we give an illustrative example on how to calibrate the
Korn-Kreer-Lenssen formula (3.8) to price a European put option where
the underlying stock price follows a linear birth-death process. In addi-
tion, the accuracy of this model in pricing the option is analyzed. 

The following data is assumed and used simply for illustration pur-
pose. Suppose we have European put option data of a company on August
28, 2002. At the time of observation, suppose stock price of the company
is 1.58$ and market prices of the European put options of the company
are in Table 1.

Since the stock price process is a birth-death process with non-nega-
tive integer state space, more accurately, we use a finer unit, for example,
a dime unit for stock price in the pricing formula (3.8). Hence the current
stock price is assumed to be 15.

In the formula (3.8), 

n = 15
K = strike price in Table 1
t = August 28, 2002 ——— current date
T = maturity date in Table 1
T-t = business days between current date and maturity date/365
r = 4.5% ———— prime rate.

α and β in (3.8) can be obtained from formula (3.5) as long as we have an
estimation for parameter η̂.

The role of parameter η̂ is critical in the framework and η̂ can be esti-
mated from market prices of LEPO put options or other traded options
with the same underlying as that of the option being priced. 

Just like the volatility smile in the Black-Scholes model, from Figure 1
we see that the implied η̂ from (3.8) of the Korn-Kreer-Lenssen model is
also not a constant but dependent on the maturity date. 

Average of bid
Maturity Strike price and ask market
date in dollar unit price

October 2, 2002 1.5 0.225
October 2, 2002 2.0 0.55 
October 2, 2002 2.5 0.975 
October 2, 2002 3.0 1.425 
December 2, 2002 1.5 0.325 
December 2, 2002 2.0 0.65
December 2, 2002 2.5 1.05 
December 2, 2002 3.0 1.475 
December 2, 2002 3.5 1.95
December 2, 2002 24.0 2.45
December 2, 2002 4.5 2.925
December 2, 2002 5.0 3.375
December 2, 2002 6.0 4.40
December 2, 2002 7.0 5.425
March 3, 2003 1.5 0.45 
March 3, 2003 2.0 0.775
March 3, 2003 2.5 1.15 
March 3, 2003 3.0 1.575
March 3, 2003 3.5 2

TABLE I: 

0
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Maturity Date

Figure 1: Implied downside transition rate.
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using Matlab function fzero or lsqnonlin to esti-
mate η̂, we get a number very close to 16.0928.

From the estimated η̂, α and β can be calculat-
ed from formula (3.5). From the formula (3.8), by
using Matlab programming, we get the theoreti-
cal prices 2.25, 5.6736, 10.1089 and 14.9462 for
the put options with maturity date October 2,
2002 at various strike prices 15, 20, 25, 30 in dime
unit respectively. 

Doing similar calculations for other maturity
dates, we get Table 2.

Comparing Table 1, Table 2 and see Figure 2 ,
we find that the market option price and the
model option price for the European put option
of the company are very close. Moreover, the Korn-
Kreer-Lenssen formula (3.8) is relatively simple for
calculation. 

5. Conclusions
This paper demonstrates implementation and
testing of the Korn-Kreer-Lenssen model for
European vanilla options by an illustrative exam-
ple. The model assumes that the underlying stock
price follows a linear birth-death process rather
than the usual geometric Brownian motion. The

option prices derived from the Korn-Kreer-Lenssen model have been
demonstrated to be very close to the market option prices of European
vanilla options proving the accuracy of this model. The Korn-Kreer-
Lenssen formula (3.8) is relatively simple for calculation. In this paper, we
also derived two closed form solutions for American digital options in
the Korn-Kreer-Lenssen’s framework. 

It would be interesting to compare the market prices of American dig-
ital options with pricing formulas (3.20) and (3.24) derived in this paper.
The analysis will be left for future research. 

Appendix A
Option Pricing Partial Differential-Difference Equations 
When Underlying Stock Returns are Discontinuous 

See Merton (1992) from p.318 to p.324 for more details. When underlying
stock returns are discontinuous, the Black-Scholes “no arbitrage” tech-
nique cannot be directly employed. A different
approach to the pricing problem follows along the lines of the original
Black-Scholes derivation which assumed that the Capital Asset Pricing
Model (CAPM) was a valid description of equilibrium security returns.
The stock price jump dynamic is a reflection of important new informa-
tion that has an instantaneous nonmarginal impact on the stock. If this
type of information is usually firm specific, then it may have little
impact on stocks in general.

TECHNICAL ARTICLE 3

Implied Theoretical price of Theoretical price of
Maturity Strike price downside put options from BD put options from BD
date in dime unit intensity η̂ Model in dime unit Model in dollar unit

October 2, 2002 15 16.0928 2.25 0.225
October 2, 2002 20 5.6736 0.56736
October 2, 2002 25 10.1089 1.01089
October 2, 2002 30 14.9462 1.49462
December 2, 2002 15 12.7109 3.25 0.325
December 2, 2002 20 6.4985 0.64985
December 2, 2002 25 10.5466 1.05466
December 2, 2002 30 15.0682 1.50682
December 2, 2002 35 19.8342 1.98342
December 2, 2002 40 24.7135 2.47135
December 2, 2002 45 29.6413 2.96413
December 2, 2002 50 34.5884 3.45884
December 2, 2002 60 44.4997 4.44997
December 2, 2002 70 54.4157 5.44157
March 3, 2003 15 13 4.5 0.45
March 3, 2003 20 7.6738 0.76738
March 3, 2003 25 11.4355 1.14355
March 3, 2003 30 15.6154 1.56154
March 3, 2003 35 20.077 2.0077

TABLE II: 

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20

O
pt

io
n 

P
ric

e

Market Option Price Model Option Price

Figure 2: Market option price vs. model option price.

On the maturity date October 2, 2002, using the data in the first row
of Table 1, by trial and error in (3.8), we get the implied η̂ = 16.0928. If
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If the source of the jumps is such information, the return of the stock
will represent nonsystematic risk. Hence the jump will be uncorrelated
with the market. Suppose that this is generally true for stocks.

Consider a portfolio strategy which holds the stock, the option, and
the riskless asset with return r per unit time in proportions w∗

1, w∗
2 and

w∗
3 where 

∑3
j=1 w∗

j = 1. Suppose P∗ be the value of the portfolio. The only
source of uncertainty in the return of the portfolio is the jumps of the
stock. But by hypothesis, such jumps represent only nonsystematic risk
and therefor the “beta” of this portfolio is zero. If the CAPM holds, then
the expected return on all zero-beta securities must equal the riskless
rate r. Then follow the derivations at p.319 of Merton (1992), we get par-
tial differential-difference equations for option price F: 

1

2
σ 2S2FSS + (r − λk)SFS − Fτ − rF + λE{F(SY, τ ) − F(S, τ )} = 0 (A.1)

subject to the boundary conditions

F(0, τ ) = 0 (A.2)

F(S, 0) = max(0, S − K) (A.3)
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