

Chapter 16 Electric Charge and Electric Field

Units of Chapter 16

- Static Electricity; Electric Charge and Its Conservation
- Electric Charge in the Atom
- Insulators and Conductors
- Induced Charge; the Electroscope
- Coulomb's Law
- Solving Problems Involving Coulomb's Law and Vectors
- The Electric Field

Units of Chapter 16

- Field Lines
- Electric Fields and Conductors
- Gauss's Law

16.1 Static Electricity; Electric Charge and Its Conservation

Charge comes in two types, positive and negative; like charges repel and opposite charges attract

16.1 Static Electricity; Electric Charge and Its Conservation

Electric charge is conserved – the arithmetic sum of the total charge cannot change in any interaction.

16.2 Electric Charge in the Atom

Atom is electrically neutral.

Rubbing charges objects by moving electrons from one to the other.

16.2 Electric Charge in the Atom

Polar molecule: neutral overall, but charge not evenly distributed

16.3 Insulators and Conductors

Conductor: Insulator:

Charge flows freely Almost no charge flows

Metals Most other materials

Some materials are semiconductors.

16.4 Induced Charge; the Electroscope

Metal objects can be charged by conduction:

16.5 Coulomb's Law

Coulomb's law:

$$F = k \frac{Q_1 Q_2}{r^2}$$
 (16-1)

This equation gives the magnitude of the force.

16.5 Coulomb's Law

The force is along the line connecting the charges, and is attractive if the charges are opposite, and repulsive if they are the same.

16.5 Coulomb's Law

Unit of charge: coulomb, C

The proportionality constant in Coulomb's law is then:

$$k = 8.988 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$$

Charges produced by rubbing are typically around a microcoulomb:

$$1 \,\mu\text{C} = 10^{-6} \,\text{C}$$

16.5 Coulomb's Law

Charge on the electron:

$$e = 1.602 \times 10^{-19} \,\mathrm{C}$$

Electric charge is quantized in units of the electron charge.

16.5 Coulomb's Law

The proportionality constant k can also be written in terms of ϵ_0 , the permittivity of free space:

$$F = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2}$$

$$\epsilon_0 = \frac{1}{4\pi k} = 8.85 \times 10^{-12} \,\mathrm{C^2/N \cdot m^2}$$
 (16-2)

Figure 16-16 Example 16-1. Find the magnitude and direction of the force on the electron $F = k \frac{Q_1 Q_2}{r^2}$ Proton $k = 8.988 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2$ $r = 0.53 \cdot 10^{-10} \, \text{m}$ $F = 8.2 \cdot 10^{-8} \, \text{N}$

Figure 16-17 Example 16-2 Which charge exerts the greater force? $Q_1 = 50 \ \mu\text{C}$ lCopyright 0 2005 Pearson Prentice Hall, Inc.

16.6 Solving Problems Involving Coulomb's Law and Vectors The net force on a charge is the vector sum of all the forces acting on it. $\vec{\mathbf{F}}_{net} = \vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2 + \cdots$

16.7 The Electric Field

For a point charge:

$$E = k \frac{Q}{r^2}$$
 (16-4a)

$$E=rac{1}{4\pi\epsilon_0}rac{Q}{r^2}$$
 (16-4b)

16.7 The Electric Field

Force on a point charge in an electric field:

$$\vec{\mathbf{F}} = q\vec{\mathbf{E}} \tag{16-5}$$

Superposition principle for electric fields:

$$\vec{\mathbf{E}} = \vec{\mathbf{E}}_1 + \vec{\mathbf{E}}_2 + \cdots$$

16.8 Field Lines

The electric field can be represented by field lines. These lines start on a positive charge and end on a negative charge.

16.8 Field Lines

The number of field lines starting (ending) on a positive (negative) charge is proportional to the magnitude of the charge.

The electric field is stronger where the field lines are closer together.

16.8 Field Lines

Electric dipole: two equal charges, opposite in sign:

16.8 Field Lines

The electric field between two closely spaced, oppositely charged parallel plates is constant.

16.8 Field Lines

Summary of field lines:

- 1. Field lines indicate the direction of the field; the field is tangent to the line.
- 2. The magnitude of the field is proportional to the density of the lines.
- 3. Field lines start on positive charges and end on negative charges; the number is proportional to the magnitude of the charge.

16.9 Electric Fields and Conductors The static electric field inside a conductor is zero – if it were not, the charges would move.

The net charge on a conductor is on its surface.

16.10 Gauss's Law

The net number of field lines through the surface is proportional to the charge enclosed, and also to the flux, giving Gauss's law:

$$\sum_{\substack{\text{closed}\\ \text{surface}}} E_{\perp} \ \Delta A = \frac{Q_{\text{encl}}}{\epsilon_0} \tag{16-9}$$

This can be used to find the electric field in situations with a high degree of symmetry.

Figure 16-39 Gaussian surfaces

Example: electric field near charged spherical shell

Figure 16-41 Example 16-12

Example: electric field at surface of a conductor

σ: surface charge density

$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{A\varepsilon_0}$$

Summary of Chapter 16

- Two kinds of electric charge positive and negative
- Charge is conserved
- Charge on electron:

$$e = 1.602 \times 10^{-19} \,\mathrm{C}$$

- Conductors: electrons free to move
- Insulators: nonconductors

Summary of Chapter 16

- Charge is quantized in units of e
- Objects can be charged by conduction or induction
- Coulomb's law:

$$F = k \frac{Q_1 Q_2}{r^2}$$

• Electric field is force per unit charge:

$$\vec{\mathbf{E}} = \frac{\vec{\mathbf{F}}}{a}$$

Summary of Chapter 16

- Electric field of a point charge: $E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$
- Electric field can be represented by electric field lines
- Static electric field inside conductor is zero; surface field is perpendicular to surface
- Electric flux:

$$\Phi_E = EA\cos\theta$$

• Gauss's law:

$$\sum_{\rm closed} E_{\perp} \; \Delta A = \frac{Q_{\rm encl}}{\epsilon_0}$$