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Abstract— Peer-to-Peer (P2P) technologies have found
much success in applications like file distributions, and
its adoption in live video streaming has recently attracted
significant attentions. With the emerge of commercial P2P
streaming systems that are orders of magnitude larger than
the academic systems, understanding its basic principles and
limitations are important in the design of future systems.

Coolstreaming represented one of the earliest large-scale
live streaming trials in the Internet. In this paper, we discuss
the fundamental design principles and examine the system
dynamics. By leveraging the recent results obtained from live
event broadcast, we develop some basis to demonstrate that
a random partnership selection has the potential to scale.
Specifically, first, we examine the overlay topology and how
it converges. Second, using a combination of real traces and
analysis, we quantitatively provide insights on how buffering
technique resolves the problems associated with dynamics
and heterogeneity. Third, we discuss the main limitations
and the implications on the scalability.
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I. INTRODUCTION

Recently there has been significant interest in adopting
the Peer-to-Peer (P2P) technology for Internet live video
streaming [1]-[2]. There are primarily two factors fueling
this development: First, a P2P system requires minimum
support from the Internet, thus it is cost-effective and easy
to deploy. Second, in such a system, each peer node that
participates in a video program is not only downloading
content, but also uploading to other participants watching
the same program. Consequently, it has the potential to
scale as greater demand also generates more resources.

Coolstreaming represented one of the earliest large-
scale peer-to-peer video streaming experiments [3], which
was built on the notion of data-driven, somewhat similar
to the technique used in BitTorrent but with much more
stringent timing and rate constraints. The key idea is that
every node periodically exchanges its data availability
information with a set of partners, and retrieves unavail-
able data from one another. The system demonstrated
excellent self-scaling property over the global Internet, in
which the earlier experiment reported a peak of 80,000
concurrent users with streaming rates over 400 Kbits/sec.
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Since then, systems such as PPlive [4], Sopcast [5] and
PPstream [6] have also been developed and deployed.
However, question remains whether a P2P streaming
system can really scale to millions of viewers. Perhaps
more importantly, the question is what set of challenges
and possible technical solutions are for these system to
scale with the QoS constraints. We believe understanding
the fundamental design principles and system dynamics
is an important step toward their further development.
Moreover, there has been few experimental studies on
large-scale P2P streaming systems. The main constrain in
prior studies was the lack of internal knowledge in the ar-
chitecture and control mechanisms, due to the proprietary
nature of commercial systems, in which few measurement
studies [7]-[8] could only seek for mechanisms at network
edges, such as packet sniffing, to capture the external
behaviors of such systems. This, however, often fails to
provide insights into the fundamental design trade-offs
and to offer rational explanations for the engineering
decisions.

Our study in this paper differs from all prior works in
that it examines the workload, performances and system
dynamics based on an internal logging system we have
designed, with full knowledge of the architecture and
control mechanisms. Specifically, we leverage a large
set of traces we obtained from live streaming events
using Coolstreaming on 27th September, 2006. The main
contributions from this study are: 1) we describe the
fundamental design principles and trade-offs in Cool-
streaming system; 2) based on a simple topology model,
we illustrate how a random peer selection algorithm can
lead to the topology convergence; 3) using the set of real
traces and analysis, we quantitatively provide the insights
on how buffering technique resolve the problems asso-
ciated with dynamics and heterogeneity; 4) we discuss
the fundamental limitations in such a system and the
implications on the scalability.

The rest of this paper is organized as follows. Section
II briefly reviews the related works. Section III describes
the basic architecture of the Coolstreaming system and
the key components. Section IV discusses the system
dynamics, in particular peer joining and peer adaptation
processes. Section V presents results from live event
broadcast and examines the performance implications.
Section VI concludes the paper with highlights on future
research.
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II. RELATED WORKS

Earlier Internet video streaming systems were largely
built on the IP multicast model [9]. This model, while
being efficient in data delivering, encountered a number of
practical problems. Perhaps most significantly it requires
each router to maintain state, which violates the “state-
less” architecture principle and also brings difficulty in the
design of such high level functionalities as error, flow, and
congestion control. Later, researchers advocated moving
multicast functionalities away from routers towards end
systems [10]-[12], in which multicast functions like group
membership and multicast routing were implemented at
end systems assuming only unicast service underneath. A
node participate in multicast via an overlay structure, in
which each of its edges corresponds to a unicast path with
another such node. It has been demonstrated in small scale
that it is feasible to implement such multicast functions
at end systems while keeping the core functionalities of
the Internet intact.

We make a distinction in this paper by referring
Coolstreaming as a data-driven P2P streaming system, in
which there is no explicit overlay topology construction.
We refer to the other approaches as tree-based overlay
multicast, given the explicit construction and maintenance
of multicast tree(s). This can be in the form of a single tree
[11][12] or multi-trees [13][14]. Data-driven systems do
not explicitly construct and maintain an overlay structure
and often adopts a gossip-like protocol to locate a peer
with video content. Such a system has demonstrated great
potential to scale in the global Internet, as proven by
Coolstreaming [3], PPlive [4], Sopcast [5] and PPstream
[6], which have attracted millions of viewers.

The success of Coolstreaming and similar systems has
attracted significant research interests. For example, Fran-
cis et al. proposed an architecture called Chunkyspread
[15] , in which a randomized multi-tree is constructed to
spread the slices of the video stream and that the topology
could be improved iteratively by swapping parents with
respect to the load and delay measurement. In [16], Reza
et al. examined the data-driven P2P streaming system in
a static setting and showed that swarming and diffusion
can be efficient for content delivery. Recently, many
measurement works have also been done to understand
these complex systems. In [7], the performance of PPLive
was measured using passive packet sniffing and presented
several interesting insights on the streaming performance
and workload characteristics. Another measurement was
done in [8] for PPLive and SopCast, which provides
additional observations on the stability of the system
and the cost of the download. Other recent measurement
studies can be found in [7][17]-[19]. However, there is
a major constraint in these studies, that is, the lacks
internal knowledge of system architecture. Hence, such
measurements could not completely reveal the internal
dynamics and basic design trade-offs.
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Fig. 1. Coolstreaming system diagram

III. BASIC ARCHITECTURE

Coolstreaming was developed in Python language ear-
lier 2004. This implementation is platform independent
and its supports RealPlayer and Window media formats.
Since the first release (Coolstreaming v0.9) in March
2004, it has attracted millions of downloads worldwide.
The peak concurrent users reached over 80,000 with an
average bit rate of 400Kbps. From our previous work, [20]
summarized the distributions of the IP addresses obtained
from worldwide.

A. Basic Components

Fig. 1 depicts the current system design for Coolstream-
ing. There are three basic modules in the system: 1)
Membership manager, which maintains partial view of
the overlay. 2) Partnership manager, which establishes
and maintains TCP connections, or partnership, with other
peer nodes. It also exchanges the availability of stream
data in the buffer map (BM) with the peer nodes, which
we will explain later. 3) Stream manager, which is the key
component for data delivery. Besides providing stream
data to the media player, it also makes decisions on
where and how to retrieve stream data. The central design
in this system is based on the data-driven notion, in
which every peer node periodically exchanges its data
availability information with a set of partners to retrieve
unavailable data, while also supplying available data to
others. The fundamental advantage of such an approach is
the elimination of explicitly constructing and maintaining
any specific overlay network. This also offers a few other
advantages: 1) easy to deploy, as there is no need to
maintain any global structure; 2) efficient, in that data
forwarding is not restricted by the overlay topology but
by its availability; 3) robust and resilient, as both the
peer partnership and data availability are dynamically and
periodically updated.

B. Overlay Construction and Maintenance

Each node in the system has an unique identifier and
maintains a membership cache (mCache) containing a
partial list of the currently active nodes in the system. The
gossip protocol is used for overlay construction. Such a
technique has been widely used in BitTorrent and other
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P2P system [21]-[22]. The random choice of the gossip
algorithm achieves excellent resilience against random
failures and also enables decentralized operation. Specif-
ically, in Coolstreaming, a newly joined node contacts a
boot-strap node for a list of peer nodes and stores that
in its own mCache. It then randomly selects a few nodes
from this list to establish partnership maintained by the
partnership manager module in Fig. 1. In other words, the
partnership specifies that two peers can exchange video
availability information with each other. A parent-children
relationship can be established when a node (the child) is
actually receiving video content from another node (the
parent). Apparently, the parent-children nodes are a subset
of the nodes from the partnership.

Partnership can be broken from time to time due to
many reasons and nodes will need to perform partner re-
selection to maintain the continuity of video streams. For
example this occurs when a node is receiving insufficient
bit rates from its partners or the departure of a parent
node (churn), in which cases the node has to drop some
partners and re-establish partnership with other peers.

C. Sub-streams and Buffering

The video stream is divided into multiple sub-streams,
and nodes could subscribe to sub-streams from different
partners. Each sub-stream is further divided into blocks
with equal size, in which each block is assigned a se-
quence number representing its playback order. Each node
maintains an internal buffer, whose structure is illustrated
in Fig. 2a. It is composed of two parts: synchronization
buffer and cache buffer. A received block is firstly put
into the synchronization buffer for each corresponding
sub-stream. They will be combined into one stream when
blocks with continuous sequence numbers have been
received from each sub-stream. An example is given in
Fig. 2b, in which the combination process stops at the
third sub-stream while it awaits the block from the 4th

sub-stream with sequence number 8.
A buffer Map or BM is introduced to represent the

availability of the latest blocks of different sub-streams in
the buffer. This information also has to be exchanged peri-

R bit rate of the live video stream
K number of sub-streams
B length of a peer’s buffer in unit of time
Ts out-of-synchronization threshold, i.e. upper bound of

acceptable deviation between sub-streams
Tp maximum allowable latency for a partner behind others
Ta the period a peer re-select a parent if needed
Dp the out-going sub-stream degree of node p

TABLE I
SYSTEM PARAMETERS OF COOLSTREAMING

odically among partners in order to determine which sub-
stream(s) to subscribe to. Specifically, BM is represented
by a 2K-tuple, where K is the number of sub-streams.
The first K components of the tuple records the sequence
number of the latest received block from each sub-stream.
The second K components of the tuple represents the
subscription of sub-streams from the partner.

IV. INSIDE LOOK INTO SYSTEM DYNAMICS

In this section, we discuss the system dynamics in-
cluding peer joining, peer adaptation and relevant timing.
Table I summarizes the parameters and notations.

A. Peer Joining

A newly joined node first contacts the boot-strap node
for an initial list of nodes that it expects to establish
partnership and stores the information in its mCache. With
the exchange of BM information, the newly joined node
can obtain the video availability information from a set
of randomly selected nodes from the list. As we have
discussed before, the node then needs to determine the
initial sequence number of the block that it will start to
retrieve.

Suppose the range of the blocks available (i.e., the
sequence number of the video blocks) in all its partners
are from n to m; intuitively, the node should request from
a block with sequence number somewhere in the middle.
The rationale for this is if the node requests the block
starting from the largest sequence number m, the partner
nodes might not have sufficient follow-up blocks to satisfy
the continuity requirement for the video stream; on the
other hand, if the node requests the block from the lowest
sequence number n, this can result in two problems: 1)
such blocks might no longer be available once it is pushed
out of the partners’ buffer due to the playout; 2) it might
take considerable amount of time for the newly joined
node to catch up with the current video stream, which
would incur long initial delay.

From the above arguments, in the Coolstreaming sys-
tem, a node subscribes (i.e., pulls) from a block that is
shifted by a parameter Tp (to be defined in next sub-
section) from the latest block m. Once the initial sequence
number is determined, the node checks the availability of
blocks in its partners’ BM and then selects appropriate
partner nodes as its parents for each sub-stream.



B. Peer Adaptation

Since congestion and peer churns occur frequently in
the Internet, it is important for any P2P system to do peer
adaptation, i.e., to search for new parent(s).

In simple terms, a peer node needs to constantly mon-
itor the status of the on-going sub-stream transmissions
and re-selects new parents when existing TCP connections
are inadequate in satisfying the streaming requirement.
The questions are what triggers this adaptation, i.e., how
to detect possible congestion or churns, and how to re-
select new parent(s).

The status of insufficient upload capacity could be
detected by the following metric: First, we introduce two
thresholds {Ts, Tp}, which are related to the sequence
number of blocks for different sub-streams in each node
(say, node A). Ts can be interpreted as the threshold of the
maximum sequence number deviation allowed between
the latest received blocks in any two sub-streams in
node A. Tp is defined as the threshold of the maximum
sequence number deviation of the latest received blocks
between the partners and the parents of node A. We de-
note HSi,A as the sequence number of the latest received
block for sub-stream Si at node A. For monitoring the
service of sub-stream j by corresponding parent p, two
inequalities can be introduced

max{|HSi,A −HSj ,p| : i ≤ K} < Ts (1)
max{HSi,q : i ≤ K, q ∈ partners} −HSj ,p < Tp (2)

Inequality (1) is used to monitor the buffer status of
received sub-streams for node A. If this inequality does
not hold, it implies that at least one sub-stream is delayed
beyond threshold value Ts. This is an indication for either
congestion or insufficient upload capacity for this sub-
stream, which will subsequently trigger peer adaptation.
The second Inequality (2) is used to monitor the buffer
status in the parents of node A. Node A compares the
buffer status of current parents to that of its partners. If
this inequality does not hold, it implies that the parent
node is considerably lagging behind in the number of
blocks received when comparing to at least one of the
partners, which currently is not a parent node for the given
node A. This will also trigger node A to perform peer
adaptation by switching to a new parent node from its
partners.

When a peer selects a new parent from its partners
either due to peer adaptation or new joining, the selected
partner must satisfy the two inequalities. If there is more
than one qualified partners, the peer will choose one of
them randomly. A parent node however will always accept
requests and it will simply push out all blocks of a sub-
stream in need to the requesting node. Apparently such
a peer adaptation can potentially cause stream disruption
and instability of the overlay topology. A cool-down timer
is introduced to confine nodes to perform peer adaptation
once only within a cool-down period of time Ta.

Since the selection of a new parent is based on In-
equalities (1) and (2), here we only consider the se-
quence numbers instead of the parent’s available upload

bandwidth. In that case, a parent with insufficient upload
bandwidth can be selected, and its upload capacity can be
insufficient to support all children nodes. This is because
the parent will continue accepting new children as long as
its total number of partners is less than the upper bound M
introduced earlier. In this case, all children nodes have to
compete for the insufficiently aggregated upload capacity
from the parent. We call this situation peer competition,
in which eventually one or more nodes will lose and
trigger peer adaptation. This causes a chain reaction of
peer adaptations. During the process, the inequalities can
be violated and some temporary parents may be selected
and abandoned before a capable parent is located.

C. System Dynamics

In this subsection, we discuss the relative timing in-
volved in the peer adaptation process. The average bit rate
required for one single sub-stream transmission is R/K.
Consider the case that node p (the parent) is pushing data
to node q (the child). Suppose that node p is capable of
providing upload bandwidth (i.e., bit rate) r↑ > R/K,
in this case node q can eventually catch up with node p
in terms of the missing blocks from a sub-stream. This
can be referred to as a catch up process. Let us assume
initially there are l blocks missing from node q comparing
to node p, then time t↑ for the catch up process can be
easily computed by

r↑ · t↑ = R/K · t↑ + l

t↑ =
l

r↑ −R/K (3)

Now, let us examine the chain reaction of peer adap-
tation. Suppose the parent of node p is incapable of
supporting its children nodes including p; p loses the
competition and if p cannot find a new capable parent fast
enough, its children (such as node q) can be stalled. The
time, is denoted as t↓, for a child q of parent p to abandon
p as its parent, i.e., the sub-stream obtained from node p
in node q lags behind other sub-streams beyond threshold
Ts. In other words, if p can find a new capable parent
within time t↓, there is no need for node q to perform
peer adaptation.

A node can still receive blocks from those temporary
parents, suppose with an average bit rate r↓, and r↓ <
R/K. Then time t↓ can be computed by

t↓ · r↓ + l = t↓ ·R/K
t↓ =

l

R/K − r↓ (4)

Suppose the sub-stream degree of p is Dp when q is
accepted as a child, and p can satisfy all its children before
q’s subscription. After q is accepted, the upload bandwidth
for each sub-stream transmission of p decreases from
R/K down to r↓, where

r↓ =
Dp

Dp + 1
·R/K (5)

The result of competition depends on the buffer status
of the children nodes at the beginning of the competition.



Suppose it takes tlose time for one of the children to lose
the competition due to a subscribed sub-stream lagging
behind others from tδ to Ts in unit of blocks, i.e., it
violates Inequality (1). We have

(Ts − tδ) = R/K · tlose − Dp

Dp + 1
·R/K · tlose

tlose =
(Dp + 1)(Ts − tδ)

R/K

As discussed earlier, the system confines nodes to
perform peer adaptation once only in time period Ta.
Node q will unsubscribe from p if there is no other
children of p losing the competition within Ta. Thus
we can calculate the probability for a child to lose the
competition by

P (tlose ≤ Ta) = P (
(Dp + 1) · (Ts − tδ)

R/K
≤ Ta)

= P (tδ ≥ Ts − Ta ·R/K
Dp + 1

) (6)

V. RESULTS

In this Section, we present the results obtained from
live streaming events using Coolstreaming on 27th

September, 2006. We will describe the internal log-
ging system and data collection method followed by
results and discussions on a wide range of system per-
formances. Specifically, we will examine the overlay
topology, user distributions, video playback quality and
sensitivity against system size, user types and system dy-
namics. Finally we discuss the issues related to scalability.

A. Log and Data Collection

In this subsection, we describe the system configu-
ration, log system and format. Each video program is
streamed at a bit rate of 768 Kbps, a typical rate for
TV-quality streaming. The users contact a web server to
select the program that they intend to watch. We use
an ActiveX component in JavaScript code to collect the
peer activities as well as status information and reports
back to a log server. To provide better streaming service,
we have also deployed a set of dedicated servers (24)
with 100 Mbps connections. The source sends video
streams to the servers, which are collectively responsible
for streaming the video to peers. From the system’s point
of view, this improves the overall performance in two
ways: 1) the streaming capacity is steadily amplified with
the deployment of the servers; 2) the servers can be placed
strategically, thus the content is closer to the users.

We placed a dedicated log server in the system. Each
user reports its activities to the log server including events
and internal status periodically. The users and the log
server communicate with each other using the HTTP
protocol. The log server stores the reports received from
peers into a log file. Each log entry in the log file is a
normal HTTP request URL string referred as a log string.
The information from a peer is compacted into several
parameter parts of the URL string and reported to the

log server. The URL string contains various number of
data blocks, which are formed in “name=value” pairs and
separated by “&”. Reports from peers can be divided into
two classes. The first class is activity report, which indi-
cates the peer activities such as join and leave. Activity
reports are sent out immediately when the corresponding
activities take place. The second class is status report,
which indicates the internal state of peers sent out every
5 minutes periodically. There are three types of status
reports:

• A QoS report records the perceived quality of ser-
vice, for example, the percentage of video data
missing at the playback deadline;

• A traffic report records the amount of video content
downloaded and uploaded;

• A partner report records partner activities. Since the
nodes might change partners frequently, we use a
compact report that records a series of activities to
reduce log server’s load.

B. Conceptual Overlay

There is a need to classify user connection types in
order to determine the uploading capacity distribution.
This is primarily based on the local information such
as the IP address and partnership status, thus errors can
occur. Based on their IP addresses, we can classify the
users into private or public users. By checking whether
they are successful in establishing TCP connections or
not, we can further classify users into the following four
types:

• Direct-connect: peers have public addresses with
both incoming and outgoing partners;

• UPnP: peers have private addresses with both incom-
ing and outgoing partners. In real systems, peers can
be aware of UPnP devices in the network since they
will explicitly acquire public IP addresses from the
devices;

• NAT: peers have private addresses with only outgo-
ing partners;

• Firewall: peers have public addresses with only
outgoing partners.

Consider a peer A with its partner B. Peer B is an
incoming partner if B initiatively establishes partnership
with A. On the other hand, B is an outgoing partner if
the partnership establishment of A is initialized by itself.
If peer A with a private IP address has only outgoing
partner for a relatively long period of time, it can be
categorized as NAT user. However, once a NAT or firewall
user established a partnership with another node, it can
still upload video to other node whenever it is capable
of doing so. In other words, a NAT or firewall user can
become the parent for another node.

We plot the users according to their categories and the
upload contributions in Fig. 3. Observed from the figure
we can see uneven contributions from peer nodes in the
P2P streaming system. Specifically, 30% or so peer nodes
in the overlay, i.e., nodes under UPnP and direct-connect,



(a)

(b)

Fig. 3. (a) User type distribution; (b) User upload bytes contribution
distribution.

contribute more than 80% of the upload bandwidth. This
is consistent from the results obtained in [23].
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Fig. 4. Conceptual view of live video streaming overlay

It is usually difficult to capture the exact snapshot of
the overlay topology in a real system. Based on the above
observations, we conjecture a conceptual overlay in Fig. 4.
Node O is the source node, peers {A,B,C,D} are direct-
connect/UPnP nodes and others are nodes behind NAT
and firewall. The overlay is illustrated as a mesh structure,
but generally resembles a tree-like topology with a few
random links between selected peers (this will be further
explained). Each link represents one or more sub-stream
transmission. We next discuss peer classification and the
basic property of the overlay topology.

1) Peer Classification: Some of direct-connect/UPnP
peers often stay in the overlay for long time and have
relatively large amount of upload bandwidth. Children
of a direct-connect/UPnP peers can obtain sufficient up-
load bandwidth for sub-stream transmissions, thus can be
fairly stable. As we will describe later, there are usually
less chances for peer competition among the children
belonging to a direct-connect/UPnP peers. The degree of
a direct-connect/UPnP peers often reaches the maximum
allowed by the system. Peers {A,B,C,D} are such
direct-connect/UPnP peers in Fig. 4.

Some of NAT or firewall users also tend to stay in

the overlay for long time but have only limited upload
bandwidth. The contribution to the overlay is restricted
and its children suffer from peer competitions. However,
they could stay close to the source. Peer {a} is one of
such peers.

The remaining peers are those that usually stay in the
system for a short period of time, often with very little
upload capacity. Most of them are NAT/firewall peers.
They are often positioned far from the source and have
to re-select parent relatively often. Peers {b, c, d} are such
peers in the figure.

2) Overlay Structure: There are several interesting
properties in the conceptual view of the overlay in Fig.
4.
• Large amount of peers tends to clog under direct-

connect/UPnP peers;
• Connections among NAT/Firewall peers (we refer as

random links), i.e. b and c in the figure, are relatively
rare.

We next explain the rationale behind these properties.
The overlay of the streaming system is subject to change,
i.e., peer adaptations occur from time to time. A peer node
tends to be stable under two conditions. First, the parent
node can provide sufficient upload bandwidth and it itself
is stable. Second, according to Eq. (6), the larger sub-
stream degree of the parent, the less probability that the
children will lose when competition happens; in another
word, if a node subscribes to a NAT/Firewall parent,
whose sub-stream degree is often relatively small, the
node tends to be more vulnerable. Usually even if a
peer selects a NAT/Firewall peers as the parent at the
beginning, as it suffers from insufficient upload bandwidth
and is frequently subject to peer adaptation, eventually it
can convert to a direct-connect/UPnP peers for its parent.

The stability of a direct-connect/UPnP peers also ex-
plains why peers tend to clog under direct-connect/UPnP
peers. For example, if a peer select a NAT/Firewall peers
as the parent, like {A, a} in Fig. 4, such subscription can
be easily broken due to the insufficient upload bandwidth
from node a. The peer will eventually be stabilized under
some direct-connect/UPnP peers. If the system runs long
enough, most of peers will likely become children of
direct-connect/UPnP peers.

A natural conclusion can be drawn from this overlay
structure is that the video quality perceived by nodes
heavily depends on that perceived by direct-connect/UPnP
peers. The existence of direct-connect/UPnP peers in the
P2P streaming system is not only critical for overlay
stability, but also helps to reduce the latency. As dis-
cussed earlier (see Eq. (3)), the catch-up process can be
significantly speeded up with the selection of a direct-
connect/UPnP peers as a parent node. Another implication
is that the source needs to be placed in a node with suffi-
cient upload capacity; otherwise frequent peer adaptations
can occur that make the overall system unstable.

C. Session Level Performance
The session captures a user activity when a user joins

the system until it leaves the system. In each session, a



Fig. 5. (a) The evolution of the number of users in the system in a whole day; (b) The evolution of the number of users in the system from 18:00
to 23:59

client (user) reports up to four events to the Log server:

• Join event: This event is reported when the client
joins the system and connects to the Booting Server.

• Start subscription event: This event is reported as
soon as the client establishes partnership relations
with other clients and starts receiving (video) data
from its parent node(s).

• Media player ready event: This event is reported
when the client receives sufficient data to start play-
ing.

• Leave event: This event is reported when the user
leaves the system.

For each pair of join/leave event, a session is counted.
The session duration is the time between join and leave
events. For a normal session, the sequences of reported
events include: (1) join event, (2) start subscription event,
(3) media player ready event, and (4) leave event, as
defined earlier. The media player ready time is the time
between join and media player ready events; the start
subscription time is the time between join and start
subscription events.

Fig. 5a shows the number of sessions (concurrent users)
in the system in a particular day, and Fig. 5b plot the
number of sessions in the system between 18:00-24:00.
These illustrate user behavior in a typical weekday and
at the peak hours in the evening. The sudden drop in the
number of users around 22:00 is caused by the ending of
some programs. This also shows that the system can scale
well with the current setting as the number of nodes in
the system can quickly ramp up to 40, 000.

Fig. 6 plots the distribution of the start subscription
time and media player ready time. There are two obser-
vations from this result: (1) many users could successfully
find a capable parent and receive sufficient video content
to start playing the video within a short period of time; (2)
on the other hand, this exhibits heavy-tailed distribution,
which indicates that there are also a large number of
users that fail to find a capable parent, and thus can

Fig. 6. The comparison between start subscription time, media player
ready time and their difference

not obtain the video program in time. Fig. 6 also plots
the cumulative distribution of the difference between the
media player ready event and the start subscription event,
which essentially indicates the amount of time that a user
needs to wait for its buffer to be fulfilled. The results
confirms with the real experiences from users that on
average a user needs to wait 10-20 seconds before it can
start playing the video program.

Fig. 7 shows the media player ready time distribution
under four different time periods: (i) 01:00 to 13:29, (ii)
13:30 to 17:29, (iii) 17:30 to 20:29, and period (iv) 20:30
to 23:59. Observed from the figure, we can clearly see
that the media ready time is considerably longer during
period (iii) when the join rate is higher.

The rationale behind the above observations is how the
overlay is constructed and maintained in the Coolstream-
ing. Specifically, each peer maintains a partial view of the
overlay through the mCache. The update of the mCache
entries is achieved by randomly replacing entries when
new partnership is established. Older peers or less active



Fig. 7. Distribution of media player ready time under four different
time periods

peers will thus be removed from the mCache gradually.
However, during flash crowds, the mCache might be filled
with too many newly joined peers, which often cannot
provide stable video streams. Under such a replication
algorithm, it takes longer time for a newly joined peer to
obtain video stream.

Possible improvement can be done by designing a more
effective mCache replication algorithm that enables the
mCache to converge to more stable peers rather than
newly joined peers. Peers will then have more chances
to establish stable partnership for retrieving the video
content.

D. Quality of Service

In this subsection, we examine the main QoS related
measurements. Continuity index is defined as the number
of blocks that arrive before playback deadlines over the
total number of blocks [3]. Fig. 8 plots the average
continuity index against time for different types of users in
the system during peak hours. This basically captures the
video playback quality for normal sessions. There are sev-
eral observations from this figure. First, all type of users
experience very high continuity index (consistently over
98%). In other words, there is nearly no disruption once
a user is starting viewing a video program, confirmed by
the real user experiences. The decrease of the continuity
index after 22:30 is due to the program ending, as users
start to leave the system.

Perhaps the most interesting observation is that the con-
tinuity index of direct-connected users is slightly lower
than that of NAT or firewall users. We believe this could
be caused by the churn effect. Observed from Fig. 5b
that there is a large number of users joining and leaving
the system, during which the small percentage of the
direct-connected users are swamped by a large number
of partnership establishments and stream requests.

This will congest the direct-connected users, it will
take tlose to one of the children to give up due to the
sub-stream lagging. The nodes can still receive blocks
from those temporary parents during the time interval

Fig. 8. Average continuity index against time with different user
connection types

t↓. On the other hand, the catch-up processes of users
behind NATs or firewalls are often too slow and they will
simply depart and re-enter the overlay during peer churns,
resulting (i) the low continuity indices of NAT or firewall
users could not be reported to the log server due to their
departures and the 5−minute granularity of state report;
(ii) re-entering nodes are treated as newly joined nodes
and experience catch up processes before the media player
ready events. The long response time and zero continuity
index during the catch-up process will not be reflected
to the performance measurement, since continuity indices
are only reported by state reports. Consequently, the
average continuity indices of NAT or firewall users can be
higher than (but unrealistic) than average continuity index
of direct-connect users. However, this does not seem to
pose serious problems, as the difference of the continuity
index is marginal.

E. Scalability

Scalability is generally considered as one of the in-
herent characteristics in a P2P system. This is made
possibly by each participating peer’s actively contribut-
ing resources. In a macro-view of such a system, it
is generally believed that more participants increase the
likelihood for each peer node to retrieve the content from
one another. However, a closer examination reveals that
this is not always the case given that each newly joined
participant demands certain level of service and also
competes for available yet finite resources. In BitTorrent-
like file sharing applications, the integrity of a file is
the only metric of relevance. It is not surprising to see
that some time it takes hours even days for a user
to successfully download a file. We believe that this
tolerance in time plays an important role in the scalable
property of BitTorrent-like applications. From the model
in [22], the download time of users perceived also depends
heavily on the number of seeds within the system. It is
common in BitTorrent-like applications that peers stay in
the system even after the completion of download, thus
act as seeds for others.

P2P live video streaming applications possess signifi-



Fig. 9. (a) The average continuity index against system size; (b) The average continuity index against join rate

Fig. 10. (a) The distribution of session duration; (b) The distribution of re-try sessions

cant difference in service requirement and user behavior.
The quality of service is driven by the stream continuity
and timing requirement, which essentially invalidate the
trade-off of the delay for the scale exhibited in P2P
file applications. As discussed earlier, the existence of
direct-connect and UPnP peers play an important role
in supporting large number of peers in a P2P streaming
system. This was also investigated in [23] that pointed
out that there exists a critical value in the ratio of the
number of high upload contribution peers and the number
of opposite peers in the system.

Fig. 9a and 9b plot the average continuity index against
system size and join rate in a particular day. This shows
that the system achieves excellent scalability as observed
from both figures, in which large number of users can
be accommodated by the system under different system
size and burst arrivals (often referred as flash crowd); at
the same time, the continuity index in the system can
maintain at very high level (around 97%).

The above discussion, however, can be misleading,
since this only counts for normal sessions, i.e., the ses-

sions that have successfully started video program. Fig.
10a plots the distribution of the session duration. On
one hand, the heavy-tailed distribution indicates that once
the user can successfully obtain the video stream, they
are fairly stable and remain in the system throughout
the entire program duration. On the other hand, this
also shows that there are a significant number of short
sessions (less than 1 minute). This implies that many
users initiate joining multiple times before successfully
obtaining the video program. This is consistent with the
results obtained earlier [3], [20] that in such a system with
a random partnership algorithm and high percentage of
nodes behind NAT or firewall, it often takes longer time
for a peer to locate capable streaming partner(s). This
behavior is better illustrated in Fig. 10b, which shows
the number of re-trials for all users. This indicates that
20% of the users have tried 1 or 2 times in order to
obtain successful video session. This demonstrates that
flash crowd has significant impact on the initial joining
in a P2P streaming system.

Analyzing the scalability in a P2P streaming system



is complex which requires further examination. The ar-
gument is that the simple notion of the scalability only
refers to the number of users that a system accommodates;
this, however, is inadequate in a P2P streaming system as
this fails to capture the timing requirement mandated by
applications. Generally speaking, we believe that there are
three factors that influence the scale of a P2P streaming
system, system capacity, latency and overlay stability.
The system capacity not only refers to the aggregate
upload bandwidth in the system, but also reflects the
number of peers that can be supported. Latency influences
the stream continuity and overlay stability relates to the
service disruption.

VI. CONCLUSION

In this paper, we closely examined the design princi-
ples, system dynamics and performance in Coolstream-
ing system. This demonstrated practically that a simple
random peer selection algorithm coupled with multiple
sub-stream transmission technique has the potential to
scale. We believe that a working system is essential in
understanding the fundamental design trade-off in P2P
streaming systems. By leveraging a set of real traces
obtained from live event broadcasts, we studied the work-
load, system dynamics and performance measurement in
a P2P live streaming system. We showed 1) there is highly
unbalanced distribution in term of uploading contribu-
tions from peer nodes, which we believe has significant
implications on the resource provisioning in the system;
2) the results indicated that the overlay topology can
lead to convergence with the self-evolving property from
each participating peer; 3) the sub-stream and diversity
of content delivery can minimize the disruption of video
playback.

While the results from this study are encouraging, there
are several open issues that need further examinations.
First, the data set does not allow us to derive the peer-wise
performance, which we believe it is of great relevance in
understanding the self-stabilizing property of the system.
Second, it is important to analyze the resource distribution
and bottleneck in the system. Third, optimizations can be
explored in content delivery and buffer management for
performance enhancement.
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