
Delta3D: A Complete Open Source
Game and Simulation Engine
for Building Military Training Systems
Perry McDowell
Rudolph Darken
Joe Sullivan
Erik Johnson

MOVES Institute - Naval Postgraduate School
Monterey, CA 93943
[mcdowell, darken, rejohnso, jasullivan]@nps.edu

JDMS, Volume 3, Issue 3, July 2006 Pages 143–154
2006 The Society for Modeling and Simulation International

Delta3D, the open source game and simulation engine built for military training, is continuing to be improved to meet the
requirements of the military users. The most recent upgrades, available in versions 1.4 and later, include adding capability
for After Action Review, integration with SCORM-compliant learning management systems (LMS’s), and distributed
interactive simulation (DIS) networking. Additionally, more applications, created by both government users and civilian
companies, continue to be built using Delta3D and its expanding capabilities
 With these added features, Delta3D has become the engine of choice for several military simulations, including
programs of record. The developers and program managers of these programs were attracted by its advanced technical
features, its lack of proprietary vendor lock-in and licensing fees, and the ability to quickly produce sophisticated applications
using Delta3D.
 This paper discusses the current state of Delta3D version 1.4 and how developers and program managers can use
Delta3D to quickly and cheaply build complex training systems. It will also briefly touch upon the systems currently being
built using Delta3D and how some of these have been proven to work in a training environment. It will also discuss what
improvements to the engine will be added in the near future.

Keywords: Game engines, military simulation, game-based training, open source

1. Background

Managers needing visual simulations are caught in a
difficult situation. Choosing a modeling tool, image
generating system, or software upon which to base their
system should not be their primary worry. The only
thing they should really care about is how well their
final simulation meets its requirements. Unfortunately,
under the current simulation business model, this
is often a project manager’s biggest responsibility,
because these proprietary tools consume a huge
portion of the project’s budget. Too often, this leaves
very little funding left to devote to performing needs
analysis, building content, or performing verification,
validation, and analysis.

 These simulation systems are priced as if each
is filled with unique features, often times running
into the five or even six figures for each application
built. However, in reality, a review of most of these
simulations reveals that almost all of them have
essentially the same features; probably 90% of the
functionality each provides is basically the same,
with minor differences. The differences between all
of them essentially boils down to the most advanced
features each provides. However, many of these
advanced features are not needed for the vast majority
of simulations, especially those designed to run on
desktop systems.
 Worse, once these choices are made, projects
become locked into the proprietary technologies
chosen. Normally, managers do not get access to any
content or source code created by the contractor. Even

Volume 3, Number 3144 JDMS

McDowell, Darken, Sullivan, and Johnson

if they did, this content and code would do them little
good, because normally that code is written expressly
for a specific proprietary engine and cannot be used
on any other system. This means that when these
managers desire to create a follow-up simulation, they
are limited either to using the same developer used
for the initial simulation or to paying once again to
recreate all the content and code developed originally.
Unfortunately, this has rarely led to a lower cost
because the original contractor realized the dilemma
the manager was trapped in and adjusted bids for
follow-on work accordingly. As Doug Whatley, CEO of
Breakaway Games—a company that does quite a bit
of work building games for the DoD—said, “There’s
good revenue from owning the IP, but the other thing
about it is if they want to do a version 2, they have
to come back to you. It guarantees you downstream
revenue.” [1]
 There is another problem using these proprietary
systems: there was no way to modify the underlying
engine if it did not meet the current needs. Developers
can request a feature from the vendor, but such requests
rarely result in a modified product timely enough to be
useful to the current project. This requires significant
developer time and effort to build “work-arounds”
to overcome problems with proprietary tools. If the
developer had access to the tool’s source code, he could
easily modify the code to do what he required.
 Game designers must overcome similar problems
to the simulation manager. Before any development
begins, game designers have to choose a proprietary
game engine on which to build their games. The
licensing fees for these engines normally run from
$300,000 up to $1,000,000 for a single application. If
the application is successful and a follow-on built, the
designer must pay another licensing fee. Additionally,
just as in simulations, content is specialized to the
engine, so the game designer must either use the same
engine or rebuild all code and content, effectively
locking them into their original choice.
 The U.S. military has been faced with these problems
because it is the largest single user of simulations
in the world and is fast becoming a major player in
the use of games for training. As mentioned above,
most of these systems had close to 90% of the same
features. In short, they had become commodities.
Despite this, system builders are still charging as
though they provide a unique product, only available
from them. In order to overcome the shortcomings of
existing systems for building simulations and games,
the MOVES Institute has developed an open source
game and simulation engine to allow developers to
build systems without facing these difficulties.

2. Design Philosophy

In examining these problems, we came up with a
four-part philosophical credo upon which we based
building our game and simulation engine:

Keep everything open to avoid lock-ins and
increase flexibility.
Make it modular so we can swap anything out as
technologies mature at different rates.
Make it multi-genre since we never know what
type of application it will have to support next.
Build a community (or leverage an existing ones)
so the military doesn’t have to pay all the bills.

 The first of these, “Keep everything open to avoid
lock-ins and increase flexibility,” addresses two of
the problems in the current paradigm. By keeping
everything open, no vendor would be able to lock the
military into its technology. This would allow follow-
on applications to be bid on by multiple companies,
with the resulting competition reducing their costs.
Additionally, because the tools are open, developers
have access to the source code. This means that if the
tools don’t meet the developers’ requirements, the
developers can change the tools as needed for their
applications without waiting for a vendor to decide to
do so.
 The second of these tenets, “Make it modular so
we can swap anything out as technologies mature at
different rates,” will allow the engine to be state of
the art for a long period of time. Each of the various
elements of the game consists of either an open source
library or code developed in house. In either case, we
have kept the different modules as separate as possible.
Therefore, if one of the modules making up Delta3D
is surpassed by another open source project and is no
longer the “best of breed,” it is possible to replace that
module with the better one. This can continue with
only minor modifications to the Delta3D API, thus
allowing the engine to remain current significantly
longer than most existing game engines.
 The third principle, “Make it multi-genre since we
never know what type of application it will to have
to support next,” is designed to ensure that Delta3D
can meet whatever needs the military might have. Just
within one service, the Navy, the number of training
applications is immense. When he was the commander
of the Navy Education and Training Command (NETC)
in 2004, Vice Admiral Alfred Harms estimated that he
would need approximately 1,500 training games to
meet his requirements of performing all individual
training within the Navy. Therefore, there is not going
to be one genre of games that will be able to meet all
those requirements, which are just a small portion
of all those in the military. While traditionally game

1)

2)

3)

4)

Volume 3, Number 3 JDMS 145

Delta3D: A Complete Open source Game and Simulation Engine for Building Military Training Systems

engines have been built for a single genre, even a single
game, that model would not work for the military. By
having one engine that can meet all requirements it is
easy to standardize the production pipeline and reuse
content for multiple applications, thus reducing the
cost involved.
 The final part of the credo, “Build a community (or
leverage existing ones) so the military doesn’t have to
pay all the bills,” is another factor driving us toward
an open source solution. The power of open source
projects is that the energy of a huge development
team can be brought to bear upon problems without
actually employing such a large team. By building a
well-designed system that people are interested in
using for their own applications, they will also add
improvements to the original system. Over time, these
may add up to have significantly more value than the
original system. However, building such a community
takes a great deal of time. Leveraging existing open
source communities by incorporating current open
source projects with large developer bases into the
engine creates a built-in group of developers. The
advantages this accrues will be discussed more below.

3. Technical Issues and Our Approach

There are several technical issues involved in building
an open source game engine. The first is determining
how to build the engine. There are several options,
such as writing the entire code in-house, choosing
an existing open source engine and modifying it to
perform all required functionality, or taking several
existing open source projects, each of which performs
one or more functions needed in the engine, and
then hooking these unrelated modules together to
produce an engine. Writing the entire engine in-house
was rejected as impractical due to time and resource
restraints. Several open source game engines were
considered, but all had major problems with meeting
the requirements of our credo. We determined that
modifying each to meet our credo’s requirements
would require more work and yield an inferior final
product. Therefore, our approach to this problem is
to use the “best of breed” of previously existing open
source software as building blocks for our open source
game engine.
 This decision has produced many benefits. The first
is that we have been able to build a robust engine on a
small budget with limited resources. Delta3D itself is a
consistent API layer that integrates many existing open
source libraries. We proudly claim that we have written
approximately 4% (50,000 lines out of 1.2 million total
lines in all the libraries that make up Delta3D) of
the source code that comprises Delta3D—the rest is
existing open source projects. The second benefit is

that Delta3D constantly leverages existing open source
communities. Our engine is improved not only by
“direct” contributors (those who make contributions
to the code base of Delta3D), but it is also enhanced
by “indirect” contributors (those who contribute to the
code base of one of the component projects making
up Delta3D). This is a huge advantage, especially to
a project in its early stages. The third advantage is
that it allows us to maintain Delta3D as being made
of the “best of breed,” as discussed in the philosophy
discussion above. One final advantage is that most
open source projects are multi-platform, which means
that it was a simple matter to make Delta3D run on
multiple platforms. Delta3D has been tested and
runs on Windows and Linux. Additionally, it is likely
capable of running on operating systems similar to
Linux (such as Unix or MAC-OSX), but it has not been
tested on these.
 The next technical challenges are determining
exactly what features to add to the engine, and once this
has been done, determining whether an existing open
source project could be used to meet the requirement.
If multiple open source projects could be used to meet
the requirement, then we had to determine which was
the best choice to provide that functionality. In certain
circumstances, the required functionality does not exist
in an open source project and it has to be written from
scratch. We have tried to keep Delta3D extremely lean
and have begun by adding only those features that are
required for the majority of applications. As the use of
the engine expands, we (or hopefully, other developers
using Delta3D) will add functionality to the engine.
As for choosing which projects to use as the modules
of Delta3D, we had two criteria: a project’s technical
merits and its user support base. The rationale for
choosing projects upon their merits is obvious, and
considering a project’s base has allowed Delta3D to
gain many “indirect” developers. Additionally, projects
with large user bases are more likely to remain current
and state of the art than those with only a small base,
reducing the likelihood of needing to swap a module.
 The initial modules using open source projects,
along with the specific projects used for that module,
are shown in Figure 1.
 One other design issue we felt strongly about
and always kept as a factor in design decisions was
that Delta3D must be easy to use. We tried to make
everything as high level as possible, making it simple
for the designer to create objects, have them interact
with the other objects in the world, and display the
results. For example, it is possible to declare an object
that is transformable has physical properties (such as
appearance, mass, size, bounding box, animations,
etc.) and can be “linked” to other objects. After doing
so, designers no longer have to concern themselves

Volume 3, Number 3146 JDMS

McDowell, Darken, Sullivan, and Johnson

with all those low-level details. They make the object
do whatever they want it to, and the engine handles
any low-level interactions (positioning, rendering,
checking collisions, etc.) that occur. However, if
the designers so desire, they can always get to the
underlying code if they don’t like the way Delta3D
handles some of the interactions and they wish to
change them. Thus, Delta3D provides the best of both
worlds: a simple, easy-to-use API with the ability to
completely control all actions.
 Another area where we made things as easy as
possible for developers is the content creation pipeline.
We realize that content creators have their own favorite
tools, and we have not imposed any requirements upon
file formats that Delta3D will accept. Additionally, we
try to make it as easy as possible for content creators to
get their work into the engine. For example, we support
OSGExp, which is a plug-in for 3DS Studio Max so
that it can output files into OpenSceneGraph format.
OSGExp has support for geometry, materials, textures,
multi-textures, procedural textures, environment maps,
cameras, and animations, and has helpers for OSG
style levels of detail, billboards, switches, impostors,
occluders, node masks, and much more.
 Because Delta3D can import many different file
formats, the content creator has a wide variety of
tools to choose from. In most applications, a blend of
open source and commercial content creation tools are
used.

4. Description of Delta3D’s Libraries

4.1 Rendering

For rendering, Delta3D uses OpenSceneGraph (OSG).
OSG is an open source high-performance 3-D graphics
toolkit, used by application developers in fields such
as visual simulation, games, virtual reality, scientific
visualization, and modeling. It is written in Standard
C++ and uses OpenGL as its underlying rendering
API. It has gained a large following and continues to
grow; in a recent poll of visitors to the modsim.org

website, OSG was used by more than half of those who
responded, as shown in Figure 2 [2]. OSG supports
several graphics concepts that greatly improve
performance, such as view frustum culling, occlusion
culling, small feature culling, level of detail (LOD)
nodes, state sorting, vertex arrays, and display lists
as part of the core scene graph. It also supports other
methods to improve performance, such as customizing
the drawing process by implementing continuous level
of detail (CLOD) meshes atop of the scene graph [3].
Delta3D can use OSG to create realistic scenes with
high complexity in real time (> 30 FPS) as shown in
Figure 3, a screen shot of a demonstration application
built in Delta3D.

4.2 Physics

Physics in Delta3D is performed by the Open Dynamics
Engine (ODE) library. ODE is a high-performance
library for simulating rigid body dynamics. It is fully
featured, stable, mature, and platform independent

Figure 1. Delta3D’s underlying open source libraries

Figure 2. Breakdown of rendering software usage

Fig 2. Preferred Image Generation Tools
(MODSIM, 2005)

OSG Vega/Vega Prime Homegrown OpenGL
OpenGL Performer OpenGVS OpenSG
Tempest VTree SDK Other

Preferred Image Generation Tools (MODSIM, 2005)

Volume 3, Number 3 JDMS 147

Delta3D: A Complete Open source Game and Simulation Engine for Building Military Training Systems

with an easy to use C/C++ API. It is currently used
in several computer games, 3-D authoring tools, and
simulation tools. ODE can realistically model several
devices/physical phenomena, such as joints, springs,
damping devices (e.g., shock absorbers), friction,
gears, motors, and collisions. Very advanced rigid
body mechanics can be built out of these simulations,
providing exceptionally realistic behavior of objects in
the games world. ODE uses low-order integration and
constraint-based actuators to reduce the amount of
time tuning that a developer needs to use to create this
realistic behavior. It is particularly useful for simulating
vehicles, objects in virtual reality environments, and
virtual creatures. [4]

4.3 Audio

Delta3D’s audio is handled through the Open Audio
Library (OpenAL), which is a software interface to
the audio hardware. It resembles the OpenGL API
in coding style and conventions and uses a syntax
resembling that of OpenGL where applicable. The
interface consists of a number of functions that allow
a programmer to specify the objects and operations
in producing high-quality audio output, specifically
multichannel output of 3-D arrangements of sound
sources around a listener. Consequently, legacy audio
concepts such as panning and left/right channels
are not directly supported. OpenAL does include
extensions compatible with the IA-SIG 3D Level 1
and Level 2 rendering guidelines to handle sound-
source directivity and distance-related attenuation
and Doppler effects, as well as environmental
effects such as reflection, obstruction, transmission,
reverberation.
 To the programmer, OpenAL is a set of commands
that allow the specification of sound sources and a

listener in three dimensions, combined with commands
that control how these sound sources are rendered into
the output buffer. The effect of OpenAL commands is
not guaranteed to be immediate, as there are latencies
depending on the implementation, but normally such
a latency is not noticeable to the user.[5]

4.4 Character Animation

Delta3D uses the Character Animation Library 3D
(Cal3D) to animate characters. Cal3D is a skeletal-
based 3-D character animation library written in
C++. One nice feature of Cal3D is exporters, which
are plug-ins for most popular (both open source and
proprietary) 3-D modeling packages. Thus, artists can
use their preferred modeling tools to create characters,
animations, and textures, and then output them into
a format Cal3D can use to control the characters in
applications.
 The Cal3D C++ library loads exported files, build
characters, run animations, and access the data
necessary to render them with 3-D graphics. Cal3D can
perform animation blending, which allows multiple
animations to be executed at the same time with
Cal3D blending them together smoothly. This effect
allows characters to transition smoothly between
different animations, such as walking and running,
in any methods to get a wide variety of movement
characteristics.
 Cal3D provides an automatic level-of-detail control,
which improves performance without reducing fidelity
by reducing the number of a character’s polygons when
the character is distant. Also, it is possible to create
truly dynamic motion at runtime without the aid of
predefined animations. For instance, it is possible to
turn a character’s head as an object moves past him,
rotating the head directly to keep the avatar facing the
moving object [6].
 In addition to Cal3D, we also use another open
source library for character animation. ReplicantBody
is a character animation toolkit written in C++, built
upon Cal3D and OpenSceneGraph. ReplicantBody
is a simple interface for creating and controlling an
animated character. It makes a character’s movement in
the world correspond to that character’s feet and makes
the avatar follow the ground, making motion appear
much more realistic. It also improves the behavior
of a character by representing different animation
types as actions, and has a manager that keeps track
of running actions. This makes it simple to combine
actions, i.e., “walk” and “look at” makes a character
that continually looks at an object while walking.
ReplicantBody is integrated with OpenSceneGraph,
which allows it to take advantage of OpenSceneGraph
state sorting, greatly improving performance.[7]

Figure 3. Screenshot from Delta3D

Volume 3, Number 3148 JDMS

McDowell, Darken, Sullivan, and Johnson

4.5 Scripting

The scripting language is one of the most critical
factors in allowing advanced behaviors to be added
to a game with a minimum of C++ programming
on the developers’ part. For scripting, Delta3D uses
the Python scripting language, which is a portable,
interpreted, object-oriented programming language,
which has been in development since in 1990. The
language has an elegant but not oversimplified syntax,
with a small number of powerful high-level data types
built in. Developers can extend Python by adding new
modules implemented in a compiled language such
as C or C++. Such extension modules can define new
functions and variables as well as new object types.
Python includes classes, a full set of string operations,
automated memory management/ garbage collection,
and exception handling.
 A large number of extension modules have been
developed for Python. Some of these are part of the
standard library of tools, usable in any Python program
(e.g., the math library and regular expressions) and
are thus available to developers using Delta3D.
Additionally, Delta3D has full binding to connect
Python with the C++ code making up Delta3D, which
makes it easy for application developers to link their
Python and C++ code.[8]

4.6 Additional Functionality

Additionally, there were no open source projects
that meet requirements for the following features, so
sponsors funded their development either here at NPS
or at other companies:

Graphical level editor,
Advanced terrain/vegetation rendering methods,
Advanced environmental features,
Particle system editor,
Record and playback capability,
3-D model viewer.

 One of the most important items contained in
Delta3D is the level editor. The level editor, built by the
members of the Delta3D team at the BMH operation
of Allion Science and Technology, is an easy way for
developers to build advanced levels in a graphical
manner. The level editor can input all the model types
that OSG supports, and the developer can position
them in the world, make them move, insert triggers,
and incorporate game logic. Level editors such as
this are a key part of all professional game engines
and make it easy for both professionals and novices
to build advanced levels for Delta3D applications.

1)
2)
3)
4)
5)
6)

Figure 4. Delta3D level editor

Figure 5. High altitude view of GENETICS terrain and
features

Figure 6. Low altitude view of GENETICS terrain and
features

Volume 3, Number 3 JDMS 149

Delta3D: A Complete Open source Game and Simulation Engine for Building Military Training Systems

Figure 4 shows an image of the level editor in use.
 Delta3D can be used to render extremely realistic
terrains with several advantages over current terrain
models used in games and flight simulators. Delta3D
uses the Generating Enhanced Natural Environments
and Terrain for Interactive Combat Simulations
(GENETICS) terrain and vegetation engine, created by
William Wells, an Air Force Ph.D. student at MOVES.
Wells’s approach enhances the apparent quality of the
given set of terrain elevation data and surface imagery,
adds vegetation and man-made objects (such as
buildings) that are placed similarly to the arrangement
within the actual environment, and generates a
plausible synthetic terrain environment where data is
missing or incomplete. For further details on how this
is accomplished, see Wells and Darken [9].
 What this means is that Delta3D offers high-
performance rendering of large areas as necessary
for traditional jet flight simulators, where the user is
operating “high and fast,” but also offers the visual
cues necessary for flight simulators of aircraft, such
as helicopters, which operate closer to the ground,
i.e., “low and slow.” It is extremely rare for a single
engine to be able to provide the required performance
and fidelity to perform both tasks well. Figure 5 shows
GENETICS terrain from a high altitude, while Figure
6 shows a low altitude terrain, vegetation, and houses
placed by the engine.
 Another advanced feature of Delta3D is the way
we handle environmental features such as the sky,
clouds, etc. Once again following our requirement
to be as simple as possible, we have built Delta3D
to make use of environmental features as high level
as possible. Like many engines, Delta3D can use sky
boxes to give the atmosphere a realistic appearance.
However, developers are limited by the static texture
applied to the sky box; the user cannot change
weather conditions or time of day. Delta3D can go a
step beyond this. By using the sky dome, the built-
in ephemeris calculations, and high-level weather
controls, the developer can merely input a time and
weather conditions (clear, partially cloudy, overcast,
etc.) and Delta3D will procedurally generate the
clouds and position the sun to match.
 One other environmental feature included in
Delta3D is procedural clouds. One of the problems
with many 3-D games and simulations is that, although
their skies appear quite realistic upon first glance, after
watching them for some time the user begins to notice
that they are unreal, since they never move. To prevent
this, Delta3D has two forms of procedural clouds, 3-D
clouds and planar clouds, which change over time.
 An additional feature contained in Delta3D is a
particle system editor. This editor allows developers
to use graphical tools to change the properties of a

particle system and see the effects immediately in real
time. This greatly speeds the development process by
eliminating the need to run the application to see the
effects of changing a particle system’s properties.
 Two other features that Delta3D has that many
engines do not are a 3-D model viewer and the ability
to record and play back scenarios. The model viewer is
designed to allow developers to load a model quickly
and view it from all angles without having to write
an application to do this. The record and playback
capability arises out of Delta3D’s origins as an engine
for training and educational applications. This
capability allows both instructors and trainees to go
back to a particular moment in a scenario and discuss
what was occurring, what the trainee did, and what
actions should have been taken.

5. Applications Built Using Delta3D

Prior to the 1.0 release of Delta3D in September 2005,
there was already one training application built using
it, and several others in development.
 The first training application built atop Delta3D
is a perfect example of why we feel that Delta3D is
necessary to military training. In 2001–2002, David
Brannon and Mike Villandre, two Marine Corps
students at MOVES, built a trainer for forward
observers, those Marines who act as spotter and direct
artillery fire [10]. However, this trainer, the Forward
Observer Personal Computer Simulator (FOPCSIM),
was built atop a commercial development tool for
which the MOVES Institute had a development
license. However, in order for this application to be
shipped and run on PCs to train Marines in the Fleet,
runtime licenses would have to be procured for each
computer on which the Marines wanted to use it. The
cost of these licenses was determined to be too high
by the Marine Corps Program Manager for Training
Systems (PM-TRASYS), and the system was never
deployed to Marines in the Fleet.
 In 2004, two other Marine Corps students at
MOVES, J. P. McDonough and Mark Strom, decided
that the trainer Brannon and Villandre built in
2002 was too valuable to remain unused. They took
Brannon and Villandre’s code and modified it to run
on Delta3D. In addition to not having any licensing
fees, access to the engine’s source code allowed
McDonough and Strom to freely modify the engine
to meet their needs, something normally not possible
with proprietary solutions. Now, PMTRASYS has
made FOPCSIM a program of record and plans
to employ it as the trainer of choice for forward
observers in the Marine Corps. Additionally, the
other three services are planning to use it. Figure
7 contains a screen shot of the current version of

Volume 3, Number 3150 JDMS

McDowell, Darken, Sullivan, and Johnson

FOPCSIM [11]. This project will be covered further in
the section on evaluating performance improvements
using Delta3D.
 Another application built atop Delta3D at MOVES
is a shipboard firefighting application. This was built
as a proof of concept of Delta3D’s (then called P-51, its
development name) ability to serve as the engine of a
training application [12]. While never intended to be
used as an actual training application, this prototype
demonstrated several features that will be useful in
building actual training applications, such as recording
and playback, a grading system, and feedback to the
users as to their performance. A screen shot of the
firefighter system is shown in Figure 8.
 Another application built using Delta3D is a
simulation to train Forward Air Controllers (Airborne)
(FAC-A), titled Cleared Hot. In Cleared Hot, the user
is the non-flying pilot of an AH-1W helicopter on a
mission to direct close air support (CAS) in support of an
offensive in a desert theater. The user has to complete
all the required radio calls, control CAS aircraft, locate
the enemy targets, generate a nine-line message, and
many other aspects of the FAC-A’s job.
 Cleared Hot has been incorporated into the Office
of Naval Research’s Virtual Environments for Training
(VIRTE) program. It will be distributed for training to
Marine aviators in the future. A screen shot can be seen
in Figure 9.
 Besides those applications being built at the MOVES
Institute, companies are building applications using
Delta3D. Applied Visions, a company in New York, has
been awarded a Small Business Innovation Research
(SBIR) program to build a system to assist launch
planners in visualizing Tomahawk missiles flight
profiles. Multiple other companies have submitted
SBIRs that use Delta3D as the basis of games or
visualization systems.

5.1 Evaluation of Delta3D Training Systems

Given that the MOVES Institute built the highly
popular recruiting game America’s Army [13],
many people have come to associate MOVES with
games and therefore find it unsurprising that we
are currently building a game engine. However, at
the time America’s Army was a bit of an aberration
for MOVES—the Institute’s forte had always been
researching and evaluating training systems. In
fact, the genesis of Delta3D was the licensing costs
prohibiting the deployment of the original FOPCSIM
application. We realized that we, and many others,
required an open source engine upon which to
build game-based trainers to both measure their
training effectiveness and determine effective design
paradigms.

Figure 9. Cleared Hot

Figure 8. Delta3D shipboard firefighting prototype

Figure 7. FOPCSIM

Volume 3, Number 3 JDMS 151

Delta3D: A Complete Open source Game and Simulation Engine for Building Military Training Systems

 While many make extreme claims as to the ability of
games to teach people [14], there are others who remain
skeptical of these assertions. In order to research the
training effectiveness of a given game-base trainer,
McDonough and Strom took the FOPCSIM trainer
to The Basic School (TBS) in Quantico, Virginia, the
initial training for all newly commissioned second
lieutenants in the Marine Corps. At TBS, these new
Marines are trained in the wide variety of tasks in
which a Marine officer is required to be proficient as a
platoon commander. McDonough and Strom wanted
to determine whether FOPCSIM could replace the
current method of training lieutenants in controlling
indirect fire.
 Currently, lieutenants at TBS are trained in indirect
fire using both live and virtual means. However, due
to limitations on ammunition and range time, each
student is limited to only one live fire mission as
part of a team, making it impossible to ingrain the
skills via repetition. To overcome this, TBS uses two
other systems: the Training Set, Fire Observation
(TSFO) system and “lawn darts.” TSFO use 35 mm
slides to allow students to observe indirect fire, make
adjustments to the fall of shot, and see the effects of
their adjustments. “Lawn darts” are projectiles fired
from an 81 mm mortar; they allow the student to
see the entire range and observe the operation of the
team operating the mortar and the way in which they
respond to the student’s call to adjust fire.
 McDonough and Strom hypothesized that
lieutenants whose TSFO training was replaced with
FOPCSIM-based training would perform better than
those who trained using the current method. They
divided a TBS class into two groups: 166 of the students
were trained using the TSFO, while 61 received two
hours of supervised time on FOPCSIM and were
allowed to use it as much as desired during their off
hours. While the best measure of training effectiveness
for this experiment would have been having seasoned
instructors grade each student on their ability to
perform call for fire in the field, this was impractical
due to ammunition and range constraints. Instead, the
results of the portion of the Supporting Arms Exam
(SAE) dealing with call for fire were used to determine
each student’s ability.
 The results of the experiment are shown in Table 1.
They showed that the students trained using FOCPSIM
scored significantly better (p < .05) than those who
used the current training method, TSFO. Interestingly,
while approximately half of the students trained with
FOPCSIM took advantage of the opportunity to use it
outside of the two hours of observed class time, those
who used it more did not score better than those who
did not. In fact, the opposite is true; while both of the
groups using FOPCSIM scored better than the control

group, the group that did not use FOPCSIM outside
of class scored better than those who did (86.91 versus
83.84). McDonough and Strom attribute this to the fact
that those who felt they were having difficulty with the
subject were more likely to use it outside of class than
those who felt proficient after the two-hour class.

Table 1. Supporting Arms Exam results; over-all score (from
McDonough [10])

Group N Mean Standard
Deviation

Std.
Error
Mean

FOPCSIM 61 85.348 10.039 1.285

TSFO 166 82.096 9.967 0.773

 Another important result for this experiment is that
FOPCSIM acted as an outstanding predictor of failure
on the SAE. Figure 9 shows the correlation between
the students’ scores assigned by FOPCSIM’s scoring
system and passing the SAE. No student who scored
below 85 on FOPCSIM failed the SAE, while those who
scored below 85 had over a 20% failure rate (4 of 19).
This is extremely important, since instructors can use
the results of the students’ performance on FOPCSIM
to target those who are in danger of failing for extra
instruction prior to the exam in the hopes of bringing
them to a passing knowledge level. More information
on McDonough and Strom’s experiment can be found
in [10].
 McDonough and Strom’s experiment shows how
Delta3D can be used to build experimental training
systems, which can then be used to investigate the
ability of game-based systems to train personnel in
tasks. We feel that this is an extremely important
ability, and one that will likely be one of the most
important uses here at the MOVES Institute. In the
future, we plan to continue building such systems
and evaluating game-based training in a wide variety
of tasks. Additionally, we plan to use Delta3D to
investigate what features of game-based training
are most important in creating an effective training
application.

6. After Action Review and LMS Interaction

The United States military is in the process of changing
the way all training is done. One key component of this
transformation is the development of the integrated
learning environments (ILE’s). ILE uses multiple
methods of instructional delivery to meet the military’s
myriad training requirements, attempting to match the
best method to the combination of trainee and subject.
To tie the multiple methods together, the Advanced
Distributed Learning (ADL) initiative has mandated

Volume 3, Number 3152 JDMS

McDowell, Darken, Sullivan, and Johnson

that all training materials meet the guidelines
promulgated in the Sharable Content Object Reuse
Model (SCORM) for all learning materials to be used
within the ILE.
 However, SCORM has no guidelines to integrate the
power of interactive simulations into the ILE. NETC’s
Experimentation Lab, located at the NAVAIR Training
Systems Division in Orlando, Florida, is researching
the best methods to do this. One of the areas of
research is the tracking of learning objectives between
a learning management system (LMS) and a gaming/
simulation engine for reporting a user’s results using
the simulation to the LMS.
 As part of this research, NETC contracted with the
BMH and Engineering and Computer Simulations
(ECS) to develop technology and techniques that
would allow a Delta3D application to be packaged and
deployed for use within an LMS. An LMS typically
consists of server-based components that deliver
training content to students via web browsers, and
acts as a database providing centralized management
of the content as well as student information, such
as modules completed and performance data. This
project developed a stand-alone suite of tools for
packaging a game-based Delta3D application so that
it can be downloaded, installed, and launched from a
web server with or without support for an LMS.
 Additionally, ECS developed a method for the
simulation to report back to a SCORM-conformant
LMS in real time as the trainee meets performance
objectives. This allows the LMS to document the
trainee’s competence, or lack thereof, in certain areas.

7. Artificial Intelligence

Recently, several new improvements have been added
to Delta3D. The most significant of these is the addition

of an artificial intelligence (AI) framework to the engine.
It is based upon Jeff Orkin’s planning architecture
[15] used in the game F.E.A.R., which received rave
reviews for its AI. The planning system allows
programmers to define “plans” and let the computer
determine how to complete the plans. It allows the
programmer to create complex AI behavior without
having to generate an incredible number of states, as in
a traditional finite state machine. Additionally, as new
objects and behaviors are introduced into the game,
the programmer is not required to modify every state
and create new states as in a finite state machine. This
is a significant improvement over traditional game AI
and should allow building applications of increasing
scope and complexity in Delta3D.

8. Impact

Delta3D has the capacity to significantly change the
way that serious gaming and military simulations are
done. The current paradigm of the military paying
multiple times for the same commodity can finally
be ended. Additionally, the days when the initial
developer was the only contractor who could expand
or modify a system—and could charge whatever
exorbitant fee desired because the application was tied
to that contractor’s proprietary tools—are over. The
military will be able to pay whichever contractor can
provide the best value in upgrading and maintaining
training applications.
 Another area where Delta3D will make a huge
difference is the academic arena. For quite a while,
traditional computer graphics and virtual worlds
classes have needed a simple API for students to create
advanced applications for hands-on experience and
to experiment with new ways of doing things. With
the huge increase in interest in games as a career

Figure 10. Supporting arms exam score versus SimScore average (from McDonough [10])

Volume 3, Number 3 JDMS 153

Delta3D: A Complete Open source Game and Simulation Engine for Building Military Training Systems

and a business, many schools are beginning to offer
classes and degrees in gaming, and the need is even
more pressing there. While some of these are well
funded by industry, most have limited resources,
especially community colleges, where a large portion
of these programs are being created. Delta3D offers an
outstanding choice for academic institutions looking
for an API upon which to build class projects, theses,
and other such applications.
 Additionally, Delta3D makes a great platform
for anyone who wishes to build either a game or
simulation without a big budget, such as small
companies or people desiring to build a game as a
demo to help them get into the gaming industry.

9. References

[1] Sheffield, B. “Breaking the Waves: Doug Whatley and
BreakAway Games Get Serious.” Game Developer Mag
(February 2005): 25–26.

[2] MODSIM.org [Homepage on the Internet]. Updated March
15, 2005. Cited March 17, 2005. Available from: http://www.
modsim.org/devrim_extras/poll_piechart_scenegraph2005.
png

[3] OpenSceneGraph [Homepage on the Internet]. Cited March 17,
2005. Available from: http://www.openscenegraph.org/

[4] Open Dynamics Engine [Homepage on Internet]. Cited March
18, 2005. Available from: http://ode.org/

[5] Open Audio Library [Specifications Page on Internet]. Cited
March 18, 2005. Available from: http://www.openal.org/
oalspecs-specs/x44.html

[6] Character Animation Library 3D [FAQ Page on Internet]. Cited
March 18, 2005. Available from: http://cal3d.sourceforge.
net/docs/api/html/cal3dfaq.html

[7] ReplicantBody [Homepage on Internet]. Cited April 8,
2005. Available from: http://www.vrlab.umu.se/research/
replicantbody/#doc

[8] Python Software Foundation [Introduction Page on Internet].
Cited March 18, 2005. Available from: http://www.python.
org/doc/Introduction.html

[9] Wells W. D., and C. J. Darken. “Generating Enhanced Natural
Environments and Terrain for Interactive Combat
Simulations (GENETICS).” In Image 2005: Proceedings of the
IMAGE Conference. Tempe, AZ, The IMAGE Society, 2005.

[10] Brannon, D., and M. Villandre. “The Forward Observer
Personal Computer Simulator (FOPCSIM).” Master’s thesis.
Monterey, CA, Naval Postgraduate School, 2002.

[11] McDonough, J., and M. Strom. “The Forward Observer
Personal Computer Simulator 2 (FOPCSIM)2.” Master’s
thesis. Monterey, CA, Naval Postgraduate School, 2005.

[12] McDowell, P. L., and R. P. Darken. “Using Open Source Game
Engines to Build Compelling Training Simulations.” In
Proceedings of Interservice/ Industry Training, Simulation and
Education Conference. Orlando, FL, 2004. Arlington, VA:
National Training Systems Association, 2004.

[13] Zyda, M., A. Mayberry, J. McCree, and M. Davis. “From
Viz-Sim to VR to Games: How We Built a Hit Game-based
Simulation.” In Organizational Simulation: From Modeling &
Simulation to Games & Entertainment. edited by W. Rouse, and
K. Boff, 25–32. New York: Wiley, 2004.

[14] Prensky, M. Digital Game Based Learning. New York: McGraw-
Hill, 2001.

[15] Orkin, J. “Three States and a Plan.” In Proceedings of Game
Developers’ Conference (GDC) 2006. San Jose, CA: CMP Media,
2006.

Acknowledgements

We would like to thank our sponsors, the NETC
Learning Strategies Division, the Joint Force Command
Joint Warfighting Center for funding to incorporate
Delta3D into the Joint National Training Capability,
and the Naval Modeling and Simulation Office.

Volume 3, Number 3154 JDMS

McDowell, Darken, Sullivan, and Johnson

Author Biographies

Perry McDowell is a former Naval Nuclear Power Surface
Warfare Officer. He has been on the faculty of the Naval
Postgraduate School since 2000, where he teaches computer
science, does research in virtual environments and training
for the Modeling, Virtual Environments, and Simulations
(MOVES) Institute, and serves as Executive Director for
the Delta3D Open Source Game and Simulation Engine. He
is currently conducting research for his Ph.D. He graduated
with a B.S. in naval architecture from the U.S. Naval
Academy in 1988, and an M.S. in computer science (with
honors) from the Naval Postgraduate School in 1995.

Rudolph Darken is an Associate Professor of Computer
Science and the Director of the Modeling, Virtual
Environments, and Simulation (MOVES) Institute at the
Naval Postgraduate School in Monterey, California. He
also directs the Laboratory for Simulation and Training and
modeling and simulation efforts for the Center for Homeland
Defense and Security. His research has been primarily
focused on human factors and training using virtual
environments and computer gaming media with emphasis
on navigation and wayfinding in large-scale virtual worlds.
He is a Senior Editor of PRESENCE Journal, the MIT
Press journal of teleoperators and virtual environments.
He received his B.S. in computer science engineering from
the University of Illinois at Chicago in 1990 and his M.S.
and D.Sc. degrees in computer science from The George
Washington University in 1993 and 1995, respectively.

Erik Johnson has been Lead Engineer for the Human
Performance Engineering and Game-Based Simulation
group Research Associate at the Modeling, Virtual
Environments, and Simulations (MOVES) Institute since
2001. Previously, he was a key software engineer for Boeing
Helicopters in Mesa, Arizona, where he helped design and
develop real-time graphical simulations for future rotorcraft
designs. Mr. Johnson is one of the primary founders of the
Delta3D Open Source Game and Simulation Engine and
is actively managing the engineering efforts. He graduated
from the Embry-Riddle Aeronautical University in 1995
with a B.S. in aviation computer science.

Commander Joseph Sullivan is an SH-60F pilot who
has performed several sea tours assigned to both squadrons
and ships. His is currently an instructor at the Naval
Postgraduate School in the Department of Computer Science
and a member of the Modeling, Virtual Environments, and
Simulations (MOVES) Institute. CDR Sullivan graduated
from Catholic University of America in 1986 with a B.S. in
computer science and from the Naval Postgraduate School
with a M.S. in computer science. He is currently pursuing a
Ph.D. in modeling and simulation.

