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1 Introduction

The wasan, or Japanese traditional mathematics, was flourishing in Japan during the Edo
period (1603 – 1867), on the basis of the Chinese traditional mathematics stemmed from the
Nine Chapters on the Mathematical Art (Jiuzhang Suanshu) [9], which dated back at least
to the first century, the Han Dynasty.

One of the greatest Japanese mathematicians of this epoch was Takebe Katahiro (1664
– 1739). He studied the Introduction to Mathematics (Sangaku Keimô/Suanxue Qimeng)
written by Zhu Shijie in 1299 in China and published the Great [accomplished colloquial]
Commentary on the Introduction to Mathematics (Sangaku Keimô Genkai Taisei) in 1690,
thus establishing the algebraic foundation for the wasan.

In this article, we have omitted the Japanese and Chinese script, translating the name
of all Japanese and Chinese books into English. (we follow [9] for the English name of a
Chinese mathematics book.) We cite mostly articles and monographs in western languages.
The Bibliography of Ogawa [7] contains almost all treatises on Japanese mathematics written
in European languages. As general references for the history of Chinese mathematics, we
refer the reader to Martzloff [5] and Li-Du [4].

A Japanese version of this article will be published from RIMS, Kyoto University.

2 Zhu Shijie and his two books

Zhu Shijie is a mathematician of the Yuan Dynasty (1206–1368). He published two books,
the Introduction to Mathematics in 1299 and the Precious Mirror of the Four Elements
(Siyuan Yujian) in 1303.

The last chapter of the Introduction to Mathematics is devoted to the “procedure of
celestial element” (tengen jutsu/tianyuanshu), on which we shall discuss later in this note.
This is a way to handle polynomials and algebraic equations of one variable with integer co-
efficients, while the Precious Mirror developed a method to handle certain kinds of algebraic
equations of four variables. Therefore, the latter book is usually evaluated higher than the
former in the history of Chinese Mathematics. Both books disappeared in China during the
Ming Dynasty (1368–1644).

Because the Introduction to Mathematics is a systematic treatise of mathematics starting
with the four rules of arithmetic, it was chosen as an important textbook for mathematics
students in the Korean Yi Dynasty (1392 – 1910). The book was first reprinted during the
reign of King Se-djong (1419–1450). This Korean reprint was imported to Japan in the late
16th century, possibly during the Japanese military expeditions to Korea, 1592-1598. (see
Martzloff [5].)

3 Books on Things Small and Large

In the Edo period (1603 – 1867) Japan was secluded from the world. The wasan was
investigated in the island almost independently of foreign influences. Of course, the main
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source of the Japanese mathematics was Chinese, but there is some speculation that there
might be a Western influence through Christian missionaries.

The Portuguese drifted to Tanegashima island in 1543. Then F. Xavier, a Jesuit mission-
ary, arrived in Kagoshima in 1549. In 1580’s Jesuits were authorized to organize a “collegio”
in Azuchi, capital of Japan of the time, for a few years, where mathematics was one of
courses. In 1622, Môri Shigeyoshi published the Book on Division (Warizan sho). The
preface of this book contained a distorted story of biblical subjects but the contents is the
traditional mathematics of every day life. In 1627, Yoshida Mitsuyoshi, a disciple of Môri,
published the Book on Things Small and Large (Jinkôki), more than 300 versions of which
were repeatedly reproduced during the Edo period. The main source of this best-seller
on merchant mathematics was the Systematic Treatise on Arithmetic (Suanfa Tongzong)
written by Cheng Dawei (1533 – 1606) in 1592.

4 Seki Takakazu and Takebe Katahiro

Seki Takakazu (1642? – 1708) is considered to be one of founders of the wasan. He studied
Chinese mathematics reading the Yang Hui’s Methods of Mathematics (Yang Hui Suanfa)
of Yang Hui, a Chinese mathematician of Southern Song in the late 13th century, and Zhu
Shije’s Introduction to Mathematics. In 1974, Seki’s existent 27 mathematical works were
compiled in [1] with explanations in Japanese as well as in English. During his life time Seki
had only one publication, the Mathematical Methods for Exploring Subtle Points (Hatsubi
Sanpô) in 1674.

Seki calculated the circular constant π = 3.141592... with twelve digits accuracy. This
is one of his remarkable results on the “circular principle” (enri), i.e., the study on the
circle. (See the Concise Collection of Mathematical Methods (Katsuyô Sanpô) [1].) Seki also
discovered, among others, the theory of resolvent and determinants. (See the Methods for
Solving Concealed Problems (Kai Fukudai no Hô) [1].)

Takebe Katahiro, one of Seki’s disciples, entered Seki’s school in 1676 when he was 13
years old. His first monograph, the Mathematical Methods for Clarifying Slight Signs (Kenki
Sanpô) was published in 1683. Then he published in 1685 the Colloquial Commentary on
[Operations in] the Exploring Subtle Points (Hatsubi Sanpô Endan Genkai), and in 1690 the
Great Commentary on the Introduction to Mathematics. Takebe completed all these three
monographs in his twenties.

In Takebe’s Clarifying Slight Signs, as well as in Seki’s Exploring Subtle Points, a final
solution to each problem was given in a form of algebraic equation of one variable, which
was written in Chinese, without any explanation how to derive the equation.

In the Colloquial Commentary on the Exploring Subtle Points Takebe explained how the
equations are derived by means of the “method of side writing” (bôsho hô), which general-
izes “procedure of celestial element”, and in the Great Commentary on the Introduction to
Mathematics, Takebe explained the “procedure of celestial element” as the “counting board
algebra” in the same way as Seki Takakazu did in the Methods for Solving the Hidden Prob-
lems. Through these monographs, Takebe showed the “method of side writing” is a method
to handle polynomials with several unknowns and applied them to various kinds of problems.
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He collaborated with his master in many mathematical researches and in editing the Great
Accomplished Classic of Calculation (Taisei Sankei). In his thirties and forties, Takebe was
busy as a government officer but he resumed his mathematics in his fifties and wrote, in 1722,
the Mathematical Treatise on the Technique of Linkage (Tetsujutsu Sankei) and the Fukyû’s
Technique of Linkage (Fukyû Tetsujutsu) on the “Technique of Linkage” (tetsujutsu/zhuishu).
In these books, Takebe described, among others, his calculation of the circular constant π

with more than forty digits accuracy and three formulas to represent the length of the arc
when the sagitta (the length of the arrow) is given. One of the formulas coincides with the
Taylor expansion of the square of the inverse trigonometric function (arcsin x)2. We can say
that with these results he could compete with his European contemporaries (For the details,
see Morimoto [6]). For lives of Seki and Takebe and their mathematics, see Horiuchi [3].

5 The Great Commentary on the Introduction to

Mathematics

While the Introduction to Mathematics consists of four volumes, Summary, Upper volume,
Middle volume, and Lower volume with total 137 sheets, Takebe’s Great Commentary con-
sists of seven volumes; Summary, Upper first, Upper second, Middle first, Middle second,
Lower first, and Lower second volumes with total 219 sheets. In the Great Commentary,
Takebe’s annotation is printed with half-sized characters, Takebe’s Great Commentary is
more than two times of the original book. (Note that one sheet consists of two pages.)

Introduction to Math. Great Commentary
Preface 2 sheets 2 sheets
Table of Contents 1 sheets 1 sheets
Summary 7 sheets 13 sheets
Upper Volume 35 sheets 54 sheets
Middle Volume 44 sheets 62 sheets
Lower Volume 48 sheets 87 sheets
Total 137 sheets 219 sheets

The Japanese name of the Great Commentary is the Genkai Taisei, where Genkai means
the colloquial explanation and Taisei the great accomplished book. In Japan, the Chinese
classics used to be read literally word by word, but Takebe tried to annotate the original text
in colloquial Japanese. Note that the Japanese in Takebe’s commentary was written using
kata-kana and Chinese characters. This means Takebe’s readers were supposed to belong to
the “warrior” (samurai) class, while the Book on Things Small and Large was written using
hira-kana and Chinese characters and widely used in private primary schools (terakoya) for
the merchant class.

The last chapter of the Introduction to Mathematics is named Chapter for Extracting the
Root (Kaihô Sekisa Mon/Kaifang Shisuo Men) is composed of 34 problems. The first seven
problems deal with the “procedure for extracting the root” (kaihô jutsu/kaifangshu) and the
other 27 problems concern with the “procedure of celestial element”.

-4-



SRR#GS-0305

In order to explain the Takebe’s understanding of the “procedure of celestial element”, we
are going to explain the counting tools of the wasan, i.e., the counting-rods and the counting
board.

6 Counting-rods

The wasan is in the stream of Chinese traditional mathematics, where the numbers are,
basically, natural numbers represented decimally using counting-rods. There are two ways
to represent numbers; in the orders of 1, 100, 104, etc. the counting-rods are placed vertically
on the counting board, while in the order of 10, 103, 105, etc., they are placed horizontally.

1 2 3 4 5 6 7 8 9

Order of 1, 100, 104, · · ·

Order of 10, 103, 105, · · ·

There are two kinds of counting-rods, red and black. The red rods represent positive
numbers and the black rods negative numbers. If one has to write numbers on paper with
black ink, negative numbers are written with oblique line.

1 2 3 4 5 6 7 8 9

Negative numbers H H H H H H H H H

If there is no counting-rods on the counting board, it means the digit is 0. On the
paper, the empty digit is represented by the sign hDFor exampleC h represents
310268D

The notion of positive and negative numbers had been clearly established. But their
operation was complicated and required some techniques because the numbers were closely
related with counting tools like counting board, counting-rods, or abacus.

For example, the addition of integers was called “if same, add; if different, subtract”
(dôka igen/tongjia yijian). This means that if two numbers are represented by the rods of
the same color, we add and that if two numbers are of different color, we subtract. As in
the case of abacus, the addition and the subtraction of natural numbers were fundamental
operation; the notion of addition of integers were secondary operation and thus required
some explanation.

Similarly, the subtraction of integers were called “if same, subtract; if different, add”
(dôgen ika/tongjian yijia).

This rule had been known, since the Nine Chapters on the Mathematical Art, as the sign
(seifu/zhengfu) rule (see p.404, [9]) and was repeated by Zhu Shijie in the Introduction to
Mathematics. Takebe recognized its importance and, in Summary of the Great Commentary,
he stated the rule of addition and subtraction of positive and negative numbers and zero
with great care.
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7 Counting Board

The counting board looks like the following: The rows of the counting board are named, from
top to bottom, Quotient (shô/sheng), Reality (jitsu/shi), Square (hô/feng), Side (ren/lien),
and Corner (gû/yu).

103 102 10 1 10−1 10−2 10−3

Quotient
Reality
Square

Side
Corner

The counting board was used in many kinds of calculation, the most important of which
was the extraction of root.

For example, an algebraic equation of order 3 with numerical coefficients

a0 + a1x + a2x
2 + a3x

3 = 0 (1)

was represented on the counting board in the wasan. The constant term a0 was placed in
the Reality row, a1 in the Square row, a2 in the Side row, and a3 in the Corner row; that
is, the algebraic equation (1) was represented by the configuration of counting-rods on the
counting board:









a0

a1

a2

a3









(2)

Problem No. 1 in Chapter for Extracting the Root of the Introduction to Mathematics
reads as follows: (A part of this chapter was translated into English by A. Yamaguchi [10].)

There is a square shaped area of 4096 bu [squared]. (bu is a unit for length.)
Question: how much is one side? Answer: 64 bu.

The “equation to be extracted” (kaihô no shiki/kaifangshi)

4096− x2 = 0 (3)

was represented on the counting board with counting-rods as follows:

103 102 10 1 10−1 10−2 10−3

Quotient

Red rods Reality
Square

Black rods Side
Corner

An equation of any order could be solved numerically by the “procedure for extracting
the root”.
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We regard the Reality row A0, the Square row A1, the Side row A2, and the Corner row
A3 as memories in a computer and the coefficients of (1) a0, a1, a2, and a3 as values of A0,
A1, A2, and A3. If we place a value q in the Quotient row Q, then the calculation is done
on the counting board as follows: (we use here the BASIC-like language)

A2 = A2 + A3 ×Q

A1 = A1 + A2 ×Q

A0 = A0 + A1 ×Q

A2 = A2 + A3 ×Q

A1 = A1 + A2 ×Q

A2 = A2 + A3 ×Q

Let us denote by a′
0
, a′

1
, a′

2
, and a′

3
the values of A0, A1, A2 and A3 after these operations.

Then we have

a0 + a1x + a2x
2 + a3x

3 = a′
0
+ a′

1
(x− q) + a′

2
(x− q)2 + a′

3
(x− q)3.

Further, if we add q′ to q in Q, then the values a′′
0
, a′′

1
, a′′

2
, and a′′

3
in

a0 + a1x + a2x
2 + a3x

3 = a′′
0
+ a′′

1
(x− q − q′) + a′′

2
(x− q − q′)2 + a′′

3
(x− q − q′)3.

can be calculated from a′
0
, a′

1
, a′

2
, and a′

3
by the same program. If we can make the value

in the Reality row empty, i.e., zero, after several operations, the value q + q ′ + · · · in the
Quotient row becomes a root of the equation. Usually, the root is sought in this way, digit
by digit from the top digit. This is the principle of the “procedure for extracting the root”.
This principle was well known in Chinese traditional mathematics since the age of the Nine
Chapters on the Mathematical Art. In Summary of the Introduction to Mathematics Zhu
Shijie stated succinctly this “procedure for extracting the root” saying

“Place the product in the Reality row and operate in Square, Side, Corner rows
adding if same and subtracting if different.”

Zhu Shijie explained also this procedure in Chapter for Extracting the Root and Takebe,
in the Great Commentary, commented further how to manipulate counting-rods in the “pro-
cedure for extracting the root”.

8 Counting Board Algebra

The “procedure of celestial element” can be said, in today’s terminology, a method to rep-
resent a polynomial

a0 + a1x + a2x
2 + a3x

3 (4)
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by a configuration of the counting board









a0

a1

a2

a3









. Because, in the “procedure for extracting

the root”, the same configuration represents the algebraic equation (1), it was difficult,
psychologically, to admit this ambiguity of the meaning of an configuration. For example,
making the Reality row empty and placing one rod in the Square row, we form the following
configuration:

[

h
]

. (5)

In the “procedure for extracting the root”, the configuration (5) represents the equation
x = 0 but in the “procedure of celestial element” the same configuration (5) represent a
virtual number x. To make the configuration (5) on the counting board was called “to place
the celestial element unit” in the wasan.

Let us examine how the argument goes in the procedure of celestial element. Problem
No. 8 in Chapter for Extracting the Root of the Introduction to Mathematics reads as follows:

There is a rectangular rice field of area 8 mu 5 fen 5 li [squared]. Given: the sum
of the length and width is 92 bu. Question: how much is the length and width
respectively? Answer: width 38 bu, length 54 bu.

Because 1 mu is equal to 240 bu [squared], 8 mu 5 fen 5 li = 8.55 × 240 = 2052 bu
[squared].

Zhu wrote as follows:

Method of Solving: Place the celestial element unit

[

h
]

as the width. Take

this and subtract from the given sum, and let this be the length. Multiply this

with the width, and we get the area:







h

H






. Move this aside to the left. Take

the area and convert the unit from mu to bu. This we subtract from the area

and we obtain the algebraic equation







h H

H






. Extracting the root from

this, we obtain the width. Taking the given sum and subtracting the width, we
obtain the length. End of Problem.

Zhu’s method can be translated into today’s terminology almost literally as follows: Let
x be the width. Then 92− x is the length and

x(92− x) = 92x− x2

is the area. As the area is equal to the given 2052, we obtain the equation

x(92− x)− 2052 = 0.
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Solving this equation, we find the width.
Takebe interpreted Zhu’s method as follows: Place the celestial element unit and consider

the configuration

[

h
]

as the virtual width. Subtracting this configuration from the sum

92, we obtain the configuration

[

H

]

, which is considered as the virtual length.

Here Takebe inserted a long explanation on addition of configurations on the counting
board. In today’s terminology this amounts to the addition of column vectors.

Now multiplying the two configurations, the virtual width and the virtual length, we

obtain the configuration







h

H






, which is considered as the virtual area. Canceling the

virtual area with the true area 2052, we find the “equation to be extracted”







h H

H






.

Extracting the root from this equation by the “procedure for extracting the root”, we find
the width.

Takebe recognized the configuration of counting-rods on the counting board as the vir-
tual number (kari no sû) and formulated the three rules of arithmetic, i.e., addition, self-
multiplication, and mutual multiplication. As we mentioned earlier, the addition was defined
as vector addition. The rule of powers was formulated as follows:

Method of self-multiplication and mutual multiplication

If the configuration with 2 rows

[

Reality

Square

]

is to be multiplied by itself, the

Reality multiplied by itself is placed in the Reality, the doubled product of the
Reality and the Square is placed in the Square, and the Square multiplied by
itself is placed in the row below, thus we obtain the configuration with 3 rows.

For example, if we multiply

[ ]

by itself, we obtain












.

If the configuration with 3 rows







Reality

Square

Side






is to be multiplied by itself, the

Reality multiplied by itself is placed in the Reality, the doubled product of the
Reality and the Square is placed in the next row, the doubled product of the
Reality and the Side, added by the squared Square, is placed in the third row,
the doubled product of the Square and the Side is placed in the fourth row, and

the squared Side is placed in the fifth row. For example, if we multiply







H






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by itself, we obtain















H















.

In today’s terminology, the method of self-multiplication described above can be stated
as follows:

(7 + 2x)2 = 49 + 28x + 4x2,

(−2 + 3x + x2)2 = 4− 12x + 5x2 + 6x3 + x4,

or more generally

(a + bx + cx2)2 = a2 + 2abx + (2ac + b2)x2 + 2bcx3c2x4.

Takebe also stated the rule of mutual multiplication of configurations and gave the following
examples (in today’s terminology)

(−7 + 2x)(3 + x) = −21− x + 2x2,

(1− 6x + 2x2)(2− 3x + x2) = 2− 15x + 23x2
− 12x3 + 2x4.

Thus, Takebe knew that the configurations on the counting board could be regarded as
“virtual numbers” and could be operated addition, self-multiplication and mutual multipli-
cation in the same way as “true numbers”. In today’s terminology, Takebe recognized that
the “procedure of celestial element” was a way of manipulating polynomials. In this sense,
I would like to say that the configurations on the counting board form the “counting board
algebra”, which is canonically isomorphic to the ring of polynomials of one variable with
numerical coefficients.

Seki wrote the Methods for Solving Hidden Problems (Kai Indai no Hô) around 1683 and
developed the “counting board algebra” in a systematic way. A traditional Chinese book on
mathematics followed the style of the Nine Chapters on the Mathematical Art and looked
like a problem book. But in the Methods for Solving Hidden Problems Seki stated the rule
of operations on configurations without introducing any problem. Horiuchi [2] argues that
this book was a separating point of the wasan from the tradition of Chinese mathematics.

9 Method of side writing

Seki introduced the “method of side writing” in the Methods for Solving Visible Problems
(Kai Kendai no Hô) and then combined it with the “procedure of celestial element” in the
Methods for Solving Concealed Problems (see [1]). The “method of side writing” can be
considered as a generalization of the “procedure of celestial element” and allowed Seki and
Takebe to obtain the “equation to be extracted” even if the data were not given numerically.
Note that the Seki’s Trilogy, i.e., the Methods for Solving Visible Problems, the Methods for
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Solving Hidden Problems, and the Methods for Solving Concealed Problems, was completed
around 1685 as manuscripts but was being kept secretly in Seki’s school. It was Takebe who
first published results relying on the “method of side writing”.

If we state Problem No. 8 above in a manner of Takebe’s Clarifying Slight Signs, it reads
as follows:

There is a rectangular rice field of given area A. The sum of the length and width
is given to be B. Question: how much is the length and width respectively?

In the “method of side writing”, we place the celestial element unit

[

h
]

and consider

it as the virtual width, and let the configuration

[

A
H

]

be the virtual length, and the con-

figuration







h

A
H






the virtual area. Then the “equation to be extracted” can be represented

as







HB

A
H






.

In Clarifying Slight Signs many problems were given in this form and the final equa-
tions were described in Chinese. But in the Colloquial Commentary on the Exploring Subtle
Points, Takebe showed how the equations were derived with the “method of side writing”.
In this way, in the wasan polynomials with polynomial coefficients could be manipulated
easily although the notation was cumbersome. Because of this, in the Meiji period Japanese
abandoned the wasan and could switch to the western mathematics with almost no difficul-
ties.

K. Sato concluded his article [8] stating “While Tengenjutsu experienced a rigorous
change in Japan, we have another question whether this technique became the counter part
of “algebra” or not. Straightforwardly, the anser is negative”. But as we explained above,
Seki and Takebe recognized the configurations on the counting board can be calculated as
true numbers, and thus form an algebra. As the “counting board algebra” is canonically
isomorphic to the algebra of polynomials of one unknown with numerical coefficients, they
can be identified naturally.
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