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A special  class of permutation matrices is considered. It is shown 
that these  matrices  may  be  beneficially  used to determine the 
frequency-time pattern of a uniform pulse train.  Proper  choice of 
burst  waveform  parameters is shown to result  in a detection wave 
form  having  range and Doppler resolution  properties  consistent 
with the  overall  signal  duration  and bandwidth. The  range- 
Doppler sidelobe  peaks  are well-controlled so that  the  ideal 
“thumbtack“ ambiguity  function  behavior is closely  approximated 
by the synthesis procedure  presented. 

I. INTRODUCTION 

This  paper  considers the  coherent  processing of detec- 
tion waveforms having the form of frequency-hopped uni- 
form pulse  trains. It is shown that if the parameters  of the 
pulse train are properly chosen, the range  and Doppler 
responses will be unambiguous,  and will be consistent with 
the overall  burst duration and bandwidth, respectively. 
It is further demonstrated  that very well-behaved range- 
Doppler sidelobes will be obtained if the  frequency  sched- 
ule or “firing order” is derived. from a class of permutation 
matrices  having  special  properties. 

It might be of some  interest to note that the basic 
concept  demonstrated here  came from an application area 
in which  full coherent  processing was found to be inap- 
propriate. In a discussion of this prior work with  Dr. P. E. 
Green, Jr. of IBM, it was  suggested that an extension of 
scope to include the fully coherent signal  processor might 
prove  useful.  This  paper is the direct result  of Dr. Green’s 
comments. 

1 1 .  A SPECIAL CLASS OF PERMUTATION MATRICES 

In a study  of  long-range  active  sonar  systems it was found 
that time-varying multipath  “medium effects” could seri- 
ously limit the  performance  of high TW product; fully 
coherent systems [I]. The medium-spreading  effects are not 
unlike those encountered by  Price  and  Green [2] in radio 
astronomy work. The medium spread  factors  encountered 
in the sonar case suggested  use of a hybrid coherent/non- 
coherent technique. Simple CW  pulses  are transmitted in 
the  available time-frequency space.  The  receiver  employs a 
bank of filters whose outputs are individually detected. A 
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delay-and-add matrix is then used  for  the  generation of 
echo amplitude versus  range outputs for a set of  assumed 
target-Doppler values.  The filter bank  provides  the  coher- 
ent processing, while the  detectors and the delay-and-add 
matrix perform a noncoherent addition  function in the 
hybrid receiver/processor. 

The problem of  choosing  the frequency-hopping pattern 
for the burst is influenced by several  factors: Under  peak- 
power  limitations energy  per pulse will be  maximized if 
only one  pulse is transmitted at  any one time. Energy  per 
pulse is a key  parameter of the detection process  under 
noise-limited conditions. Under  reverberation (clutter)- 
limited  conditions a self-jamming situation exists so that 
independent “looks” at the  target are  needed to enhance 
detection performance. In the important zero-Doppler 
situation, for example, a second  pulse  placed in a frequency 
channel will be wasted  since the doubling of the echo 
energy is negated  by a doubling  of the background (re- 
verberation)  level.  Hence only one  pulse should appear in 
each frequency  channel  of  the  transmit  burst i f  perfor- 
mance in reverberation (clutter) is to be optimized. 

Having established  the  one  pulse per time period and 
one  pulse  per  frequency  channel  rule,  there still remains 
the problem  of the  range-Doppler ambiguity in selecting 
firing order.  The classic frequency staircase or quantized FM 
(QFM) pattern, for example, is a very poor choice from an 
ambiguity standpoint. In an N X N frequency-time array 
there are N! patterns that satisfy the “one-and-one” condi- 
tion; how does  one  select “good“ patterns? 

We invoke first the narrow-band assumption which  im- 
plies that target Doppler will shift all echoes  by the same 
amount. [This is definitely  not  valid in most  sonar appli- 
cations, but the  patterns which result  using  the narrowband 
assumption perform surprisingly well under  the  actual 
(broad-band) operating conditions.] The ambiguity problem 
arises from the  fact  that the receiver  operates as a two- 
dimensional coincidence detector. For  example, when N 
pulses  arrive  having the frequency and time positions of  the 
transmit pattern (zero-Doppler target),  these N pulses  are 
detected, delayed,  and combined to give  an N-value re- 
sponse out of  the zero-Doppler processor.  Consider now 
that a second  (moving)  target is also  present. A frequency- 
shifted echo pattern from this target will result. If this 
second frequency-shifted pattern has K coincidences with 
the zero-Doppler pattern for some relative time shift, the 
zero-Doppler processor will give a K-value  response to this 
echo. The  value K may not be made  zero for all time and 
frequency shifts but can it be constrained to  unit  level? 
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The problem can now be  very  simply  stated: Place N 
ones in an otherwise null N by N matrix  such  that  each row 
contains a single  one as does  each column. Make the 
placement  such that for all possible x-y shift combinations 
of  the resulting (permutation)  matrix  relative to itself, at 
most  one  pair of ones will coincide. 

In spite of the geometric simplicity of the problem state- 
ment,  early efforts toward a solution either failed or  gave 
very limited results. A few mathematicians  were  contacted 
with absolutely no results.  A  computer  program which  did a 
random  search for ideal  patterns failed miserably until the 
threshold was  raised  above the ideal  level. The  program 
then gave  some useful  patterns which satisfied  the  en- 
gineering needs of the moment.  However,  questions con- 
cerning the ideal  patterns  remained  largely  unanswered. 

It was realized  early on that an alternate  statement of the 
problem  could be made:  Order the complete set of integers 
from 1 to N such  that the difference triangle  formed from 
the ordered  sequence  shall  have no repeated  terms in any 
row. That is, form  the first row by taking differences be- 
tween adjacent  numbers. All differences in this row must 
be unique. Form the second row by taking differences 
between next-adjacent  terms.  This row must  also  be  free of 
repeated  values,  and so forth. A  simple  example of this 
process is shown in Table 1 for N = 10. In the table, L 

TaMe 1 Difference  Triangle  for N = 10 

-;--4 8 5 10 9 7 3 6 1 
L 

1 
2 

2 4 - 3  5 -1 - 2  -4  3 -5 
6 1 2 4 - 3  -6  -1 - 2  
3 6 1 2 - 7  - 3  -6  

7 3 -5 1 -9 
5 -1 - 2  - 4  
1 2 - 7  
4 - 3  

a 5 -I  - 2  -4  -a  

-1 

represents the order of the difference, {e,,,} the  ordered 
integer set. 

Using the difference triangle  method,  ideal  sequences 
were found for all N up  to 12. N = 13, however,  always 
remained beyond my  pencil-and-paper grasp. Realization 
that the problem  could be  stated in terms of the ordered 
integer set convinced  me that this was a problem of antiqu- 
ity.  With this in mind, Professor Solomon-W. Golomb was 
contacted, a short  summary of  the problem  and work to 
date was given,  and  references  concerning  sequences  hav- 
ing the stated property were  requested. 

Golomb’s prompt reply was notable for two main  rea- 
sons:  First,  he  stated  that no reference could be  given as 
this was apparently a new problem.  Secondly,  he offered 
me a series of conjectures  that  have  proven quite accurate. 
Golomb believed that solutions  existed for all N, that the 
number  of solutions would grow  very rapidly with N, and 
that the density of solutions would become  very  small as N 
became  large.  Notable  progress has  since  been  made by 
Golomb, Taylor,  Welch,  and  Lempel. Some of their results 
may be found in a recent [3] and a pending [4] publication. 

All  known systematic  constructions  for  these arrays in- 
volve the use of primitive elements of finite fields.  A  very 
elegant  and  simple construction method is given in a theo- 
rem  by L. R. Welch [4]: 

”Let g be a primitive  root  modulo the prime p. Then the 
( p  - 1) X ( p  - 1) permutation  matrix with a i j  = 1 iff j = g’ 
(mod p),  1 Q i Q p - 1, 1 Q j i p - 1 is a Costas  array.” 

The difference triangle  example of Table 1 made  use of 
Welch’s  theorem for p = 11, g = 2. Note that 2 raised to 
succeeding  powers (modulo 11) will yield the ordered in- 
teger  set shown in the  example.  Armed with the new 
knowledge that the density of solutions is small  (relative to 
the number of possible  permutation  matrices, N!), the writer 
developed  computer  programs which do an ordered, ex- 
haustive  search for these  arrays.  These  programs  have pro- 
duced  solutions  for N = 19 for which there are no  known 
algebraic  constructions.  Also  the  programs have shown  that 
the number of solutions for N = 3,4;..,12 are: 4, 12, 40, 
116, 200, 444, 760,  2160, 4368, and 7852, respectively. 

Unfortunately the fastest algorithm available  becomes 
useless for N values much  above 20. At  one time there was 
no  known construction for N = 24. A  computer search for 
this N was started  many  months  ago which has  yet to 
finish. Several hundred VAX’ 11/780 processor  hours  are 
estimated to have  been  expended to date on a weekends- 
only,  slow-queue, lowest priority basis. In the meantime an 
algebraic construction for N = 24 has been  discovered  and 
the VAX’  search  has been  abandoned. 

In the sections which follow  two arrays  based on Welch’s 
theorem will be  used.  A “Welch-IO‘ based on p = 11, 
g = 2 has firing order: 

2 , 4 , 8 , 5 , 1 0 , 9 , 7 , 3 , 6 , 1  
and a “Welch-30” based on p = 31, g = 3 has firing order: 

3,9,27,19,26,16,17,   20,29,  25 
13 ,8 ,24 ,  IO, x), 28, 22 ,4 ,12 ,5  
15 ,14 ,11 ,2 ,6 ,18 ,23 ,   7 ,   21 , l .  

These  arrays  are used because  they  are  very  easy to 
calculate.  There is no reason to believe  that  other  construc- 
tions due to Taylor,  Lempel,  Golomb,  or  the  computer- 
derived sequences  generated  by  the  writer’s  algorithms 
would produce significantly different results  for the applica- 
tions which  follow. 

Reviewers of this  paper  have supplied additional refer- 
ences to related work and  some of this  material deserves 
special  mention.  Cooper  and Yates in a 1966 publication [8] 
disclose the equivalent of the Welch  procedure in terms of 
a ”power  residue  sequence  analysis,” in their search for 
optimum frequency-’hopping  patterns. In their application 
frequency  shifts  were not a factor  and no consideration is 
given to the two-axis shift properties of these  patterns. In a 
similar  pursuit,  Merserau  and Seay [9] use procedures  based 
on Reed-Solomon  codes  and  they provide a pattern exam- 
ple which, in our  nomenclature, would be a “Welch-22” 
based on p = 23, g = 5. 

The 1969 doctoral  thesis  of M. J .  Sites [IO] covers  some 
very  similar  ground to that of the  writer’s  earlier  report [I]. 
However, Sites  goes on  to discuss in great  detail optimum 
patterns  and  he  correctly  indicates  that  there are 116 of 
these  for the six-pulse case.  This was done  by  examining  all 
6! permutation  matrices  and eliminating those  that failed an 
appropriate test. The  author’s 1965 publication-approved 
report discusses  the  subpulse  concept in some detail from a 
performance  standpoint.  Purposely omitted were  all refer- 
ences to ideal  patterns.  This  was done  for  what  were  then 

“VAX is a trademark of the Digital Equipment Corporation. 

COSTAS: DETECTION WAVEFORMS WITH NEARLY IDEAL RANGE-DOPPLER PROPERTIES 997 



perceived to be  reasonable competitive and national secur- 
ity considerations.  Ideal pattern discussions  were  relegated, 
in the  main, to internal, classified  General  Electric docu- 
ments of 1962-1964  vintage. 

111 .  ANALYSIS OF A SPECIAL CLASS OF BURST WAVEFORMS 

It is useful to formalize the difference triangle property 
associated with this special class of  permutation matrices. 
Let the sequence of ordered  integers be  represented by 

( 8 , )  = 8 o , 8 , , 8 * , e ~ 3 , . . . , 8 N - , .  (1 ) 

The Lth  row  of the difference triangle will contain terms 

hL,k58k+L-8k, L = 1 , 2 , * . . , N - 2  

k=0,1,2;*.,N-I - L (2) 

and for every L 

AL,r # A L , s ,  for r #  s. (3) 

A fairly general treatment of pulse  trains is given  by 
Rihaczek [SI. We treat  here a special  case in which  N-unit 
envelope CW  pulses of  duration T appear contiguously to 
form a burst of overall length NT. The frequency of each 
pulse will be given  by 

f, = 7 0, 

where  the 8, are taken from (1). (In the analysis which 
follows 8, - 1 is actually assumed so that 0 Q 8, Q N - 1. 
This unit  shift from the Welch theorem  results is trivial  but 
convenient.) Note that the time-bandwidth  product  of the 
resulting waveform is approximately  equal to N2. 

The  pulse train p ( t )  will be given by  (complex  envelope 
representation) 

N-1 

d t )  = c d t -  (5 ) 
n=O 

where 

pn( t )  = e+j2rf"* , O Q ~ Q T  } (6) 
Pf l ( t )  = 0,  elsewhere. 

The del,ay-Doppler ambiguity function is defined as 

X(., . )  =$/-mmp*(u)p(u - T)e+jZW'"du (7) 

where ,E is the total energy of p ( t ) .  For the example at 
hand, E = NT/2 so that 

J ( ( T , Y )  = &/-:p*(u)p(u - T)e+j2*"du. (8) 

It is easily proven that 

I X ( T , Y ) l Q  1 = IX(0,O)l (9) 

IX(--T! -1)l = I X ( T , Y ) l  (1 0)  

and 

and 

For computational purposes  advantage  was taken of (IO) 
so that only nonnegative values of T are required.  The 
relationship 

~ = k T + 6 ,  0 6 6 9  T, k-0,1,2;*.,N-1 (12) 

was  used in conjunction with (6)  and  (8) to  obtain 
N-1-k  N-2-k 

X ( T t Y ) =  c A +  c 8 (1 3) 
r-0 r-0 

where 

A = - [  ( T -  6) sin#( T -  6) 
N T  # ( T - 6 )  

Xexp { jn[P(2kT + 2rT + T + 6) - 2fr6]} (14) 

where 

p t; - f k + r +  Y 

Xexp{jn[y(2kT+ 2rT+  2 T +  6) - 2fr6]} (16) 

and 

7 A fr- fk+,+, + (1 7) 

The subscripted  frequency values conform to (4). 
The  above  approach provided a computational conveni- 

ence for producing the quantitative data shown in the 
figures which  follow. A different development of (8) will 
now be undertaken which better demonstrates  physical 
principles. Define the cross-correlation function 

@,, , , , (T,Y)  = A -/ 1 .  p,*(u)p,,,(u - T)e+j2s'udu (18) 
T -m 

which  with (6) yields 

Xexp[- jra(T+ T )  - j2sf,,,~], 

171 Q T, zero  elsewhere  (19) 

a =  f,- fm-v .  (20) 

The autocorrelation function @,, is obtained from (20) 
setting  m = n to  obtain 

xexp[jrv( T + T )  - j~nf,,~], 

171 d T, zero  elsewhere. (21) 

Using (S), (6),  and  (8) 

N-1 
X p,,,(u - T - mT)e+jzwrUdu * (22) 

Changing summation and integration orders  and grouping 
summations into  like and unlike subscript  categories, one 
obtains 

m=O 
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sum 
- N-I 

1 m-0 
m# n 1 

(23) 
Note especially that 

&,,,(s, V )  = $,, , , (s ,v) = 0, for 171 2 T. (24) 

The magnitude  of X(T,Y) represents  the  magnitude  of 
the coherent processor  response to a pulse train arriving 
with delay T and frequency or Doppler shift v. We would 
like a zero  response  everywhere  except  for 7 = 0, Y = 0. 
Equation (11) shows that this is not possible. If the  main 
peak  of 1x1 is narrow in  both T and v for  good resolution 
properties, the volume of 1x1’ under  the  main peak will be 
small. The bulk  of the volume in such cases will then fall in 
the “pedestal” or “sidelobe” region of  the ambiguity func- 
tion. Waveform  choice to  minimize the  deleterious  effects 
of the  pedestal is an important facet  of detection system 
design. The criteria vary with the application at hand [2], [6], 
[7]. In this work we  shall  try to keep  the  peak  sidelobe 
values confined. 

It  will  now be shown  that  the  central peak of (23) is 
associated with the $nn sum while the sidelobe responses 
may  be  associated, in the  main, with the +,,,,, sum. 

Consider  first  the T = 0 axis. Note  from (24) that all I$~,,, 

terms  are  zero  here.  Then 

1 N-’ 

N n=O 
X(O,V) = - e+jZnnV@ n n  (0, v). (25) 

Using (21) and  the identity 
N-1 

ejar  ej(N-W/2- sin Na/2 
r-0 sin a/2 

one  obtains  the exact  result 

x(0 ,  Y )  = 
sin N a u T  

Nav T 

which shows  that the Doppler resolution of the N-pulse 
burst is identical  to that of a CW  pulse  of duration NT. 

It is convenient to define a normalized frequency  variable 
y, where 

y k  vT. 

Since the  frequency  channel  spacing is 1 / T ,  
a measure of frequency in units of channel 
tion (27) may then be written as 

x (0,  y ) = . sin n Ny 
TNY 

The first zero of x will occur at y =  *I/N, 

(28) 
y is in essence 
spacing.  Equa- 

(29) 

The half-base- 
line width of the  main lobe, 1 / N ,  may  be considered a 
measure  of  system frequency resolution. 

The behavior of X ( T ,  v) of (23) along the range axis 
( v  = 0) is complicated by  the fact that  the +nrn (second) 
summation does contribute  to this main axis response,  even 
though it is only the +nn (first) summation  that is desired 
here. Let x’ be that part of (23) which excludes  the  second 

Use of (21) yields 

171 < T, zero elsewhere. (31) 

Now fn is given  by (4) in terms of the  ordered  integer set 
( O n }  as per (1). Note, however, that in (31) a sum  over N 
terms is involved, the order in which the fn values  appear is 
immaterial. If we decrement each On by 1 then  the value 
n/T may  be  used for fn in (31). This  yields 

Use of  the identity (26) gives 

171 < T, zero elsewhere. (33) 

The autocorrelation terms  of (23) produce a range axis 
magnitude response  that  has a unit peak  value at T = 0 and 
would also  peak  again at T = T were it not for  the (T  - ~ T D  
factor.’ For the larger N values the sin Nz/(Nsinz) ratio 
behaves  very much like the  sin Nz/Nz form of (27). It is 
convenient to define a normalized delay  variable as 

. A I  
T ’  

Then (33) becomes 

x’(x,O) = (1 - Ix()e- jn(N-1)x sinaNx 
Nsinax’ 

(34) 

1x1 1 ,  zero elsewhere. (35) 

For  1x1 > l (1~1  > T )  like-frequency pulses no longer  overlap 
in the convolution integral of ( 7 )  and x’ has  zero  value 
here.  The s-axis response beyond 171 = T is entirely due to 
cross-product terms c$~,,, of (23), and, in a sense,  these line 
regions  become  part of the  pedestal  or  sidelobe  regions. 

An  examination now begins  of  the $,,,,, cross-product 
terms  of (23) which are responsible for the  pedestal of the 
ambiguity surface.  Equations (19) and (20) show  that  the 
$,,,,, terms will peak to unit value when 

and 

Because of central-point symmetry of the x 
positive delay  values  need  be considered. 
( n  - m) of (36) will be 1 to N - 1. So that 

(36) 

function, only 
The  range  of 

’The combination of a uniform pulse  envelope  and  a  frequency 
spacing  equal to the  reciprocal of pulse duration has  very  special 
merit in terms of central  peak  sidelobe  behavior. See especially Figs. 
6, 7, 11, 12, and 13 of Section IV. These  resutts  require us to take 
respectful  exception to Rehaczek‘s [Il l  statement: “To obtain a 
single  central  spike of full height, neither the  frequency  shifts  nor 
the positions of  the  signal  segments in time can be  integer multi- 
ples of some  basic  step.” 

COSTAS: DETECTION  WAVEFORMS  WITH NEARLY IDEAL  RANGE-DOPPLER PROPERTIES 999 



T ~ =  LT, L = 1 , 2 ; . - , ( N - I ) .   ( 3 7 )  

For  any fixed L value, n exceeds m by this amount. Then 
from (36) 

where 8 ,  A are defined in (1) and (2). 
It has been  shown  previously in (3) that the set 

contains no repeated  terms  for a fixed L .  Thus  at the fixed 
delay x = L ,  each sidelobe term peaking on this line will do 
so at its own unique frequency as given  by (38). Since this 
logic holds for any  and all delay  values L ,  it may  be  seen 
that all @,,,,, peaks involve only one term of the  second sum 
of (23). The $I,,,,, peaks will be  spaced  by  integral  values in 
both x and  y. 

While these  peaks do not coalesce, their density  of distri- 
bution is not  uniform. There  are  exactly N - L peaks  at 
delay T = f LT. At unit delay  there are N - 1 peaks  and  at 
delay T = (N - 1) T there is but one  peak.  An equivalent 
argument  may  be  made by  reversing  delay  and  frequency 
roles.  At  frequency v = f L/T  there are  exactly N - L peaks 
over  the complete T span for this  frequency. Thus the area 
near the origin tends to be  rather  busy so that  the tech- 
nique is almost a counter example of Green’s  Theorem [6], 
[7l, as indicated in the next  paragraph.  (Green conjectured 
on the maximum  amount of area  near the  main lobe that 
could be kept completely free of sidelobe  volume.) 

Each $,,,,, peak  has a region of influence  which is con- 
strained  absolutely to a span 2T units wide in the  delay 
direction. This 7 cutoff results from the limited pulse  dura- 
tion T. The region of influence in the  frequency direction  of 
each $I,,,,, is not similarly constrained. The behavior of each 
sidelobe peak is essentially  that of $,,,,, of (21) with 7 , v  

measured from peak  center.  The behavior in frequency is of 
the sinz/z form. Thus  each  peak  has a “channel” of in- 
fluence of width 2T in delay.  This influence decays to zero 
at the channel  delay  boundaries  and  drops off as sinz/z in 
the  frequency direction. These  channels  of influence ex- 
plain why the v axis (T = 0) is completely clear of  pedestal 
(cross-product)  effects  and  why the T axis (v  = 0) is never 
free from these  terms. 

The overlapping of the $I,,,,, sidelobe terms  produces 
reinforcement and cancellation effects which are quite 
complex because of the amplitude and  phase relationships 
involved. However, certain locations in the pedestal region 
will have predictable values. Along any  delay ridge line 
T = 7p as per (36) the  delay  argument  of +,,, of (23) will be 
zero.  We  may now use (19) to  obtain 

Now let 
r 

v,= *-  
where r is any integer. The  angle f i  of the sinfi/fi  function 
of (39) becomes  [see  also (4)] 

T (40) 

Clearly (39) will then be  zero for all f i  # 0 and will be unity 

only for /3 = 0. So with the normalization implied by (23) it 
may  be  stated that in the  sidelobe  region,  for all integer 
coordinate pairs  of  the normalized delay ( x )  and  frequency 
(y), the 1x1 function will either be zero  or 1 / N .  

There is an orthogonality effect at work here between 
@”,,, terms belonging  to a delay  channel. Each @,,,,, center 
occurs  at the zeros  of all other @,,,,, tails in that channel. 
Thus the sidelobe values  are constrained at a set of points 
to be either 1/N or  zero in value.  Even though the sidelobe 
values  are “anchored” at N( N - 1) points,  the  actual  peak 
values in the pedestal  exceed I / N .  The  area under these 
peaks  appears to be quite small.  This situation will be 
demonstrated in the presentation of numerical  data which 
follows. 

IV. NUMERICAL RESULTS 

The building  block  of the burst  waveforms  considered 
here is the  simple CW pulse.  The ambiguity surface  for a 
CW  pulse  may  be obtained by setting N = 1 in (23) and 
using (21) to obtain 

where x is normalized delay ( 7 / T )  and y is normalized 
frequency (vT). At  zero Doppler ( y  = 0), a cut along the 
delay axis would show a triangle of  unit height at x = 0 and 
a two-unit base extending from x = -1 to x = +I. At zero 
delay ( x  = 0), a binny/nd behavior would result. A “3-D” 
view of this surface is shown in Fig. 1. The “viewer” is 
positioned  out  on the + x  axis and is looking  toward the 
origin. Successive frequency  “cuts” at different delay  values 
are calculated and plotted  with successive y offsets.  The 
plotter pen is lifted when a previous cut surface  obscures 
view, thus creating a “3-D” effect. (The writer is indebted 
to  Dr. L. W.  Bauer for this  very  useful  software.)  The  vertical 
scale on the right pertains to the first cut  (which is every- 
where zero in this case). The vertical scale for the last cut 
starts  at the tic mark  above the word “DELAY” on the left 
vertical axis and  extends to the top line  of the  chart box. 
These plots are useful in presenting an overall picture  of the 
detection process.  For  precise quantitative work 1x1 versus x 
or y  plots will be employed. 

Fig. 2 shows a portion of  the ambiguity surface  for a 
IO-pulse QFM  burst in which each  successive  pulse  has a 
1 / T  hertz frequency  offset from the  previous  pulse. The 
classic FM ridge is clearly in evidence and contains most of 
the volume under  the surface. Note that the range  and 
Doppler resolution’of the ridge changes with delay.  At  large 
delays only a few pulses  are effectively combined so that 
the resulting  time-bandwidth product of the process is 
low.  More pulses  become involved as x approaches  zero 
and the ridge shows a corresponding narrowing in x and  y. 
Fig. 3 presents a somewhat different perspective of the 
same  surface. 

Fig. 4 shows the ambiguity surface for a IO-pulse code 
derived from Welch’s theorem using p = 11 and g = 2. 
Since the volume under  the 1x1’ surface  must  equal unity, a 
change from QFM to the Welch pattern spreads the FM 
ridge volume out over the pedestal  region.  The difference 
triangle of Table 1 predicts a sidelobe at delay x = 9 and 
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NORnALIZED FREPUENCY 

Fig. 1. Ambiguity surface for a  single CW pulse. 

frequency y = -1. This  peak  may be clearly  seen  near the seen in Fig. 4 but the peaks  at 1 and 2 coalesce and are not 
front of '  Fig. 4. At  delay 8, peaks  at y = -3 and +4 are obvious. As the delay gets  smaller  more  peaks  exist  per 
predicted and are  clearly  visible. At delay 7, peaks  at y = - 7, delay-axis cut and  overlap  effects mask the basic form  of 
1 and 2 are indicated by Table 1. The  peak at -7  may be the  individual peaks. 
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Fig. 2. Ambiguity surface for a  10-pulse QFM burst. 
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Fig. 3. Ambiguity surface  for a IO-pulse QFM burst. 

Fig. 5 shows  the  same  data as Fig. 4 without the succes- displayed.  The  tendency for sidelobe spiking above the 
sive raxis offsets  used to emphasize the "3-D" effect. As a 1 / N  level  due to +",,, term  overlaps  near the origin is 
result, all constant-delay  frequency plots are referenced to evident in this  figure. 
the baseplane  and  pedestal  peaking  effects  are  accurately The Doppler axis  response  for x = 0 is shown in Fig. 6. As 

Fig. 4. Ambiguity surface  for the Welch-IO  code ( p  = 11, g = 2). 
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Fig. 5. Welch-IO 

Fig. 6. Frequency axis response for x = 0 for  the  Welch-IO burst. 

was predicted  from (29) and  associated  discussion, a sinz/z x = 0 to x = 1 the  sin Nz/(Nsinz)  functional as described 
behavior is seen here with the  zero of  the main lobe in the discussion of (35) is operative  along with spillover 
occurring at y = 0.1 = 1/N. Note that this behavior con- from the  pedestal +,,,,, terms.  Beyond x = 1, the $,,,, terms 
tinues without  end in the ydimension. vanish  and only  the $,,m pedestal  terms of (23) are opera- 

Fig. 7 shows  the  delay axis response  for  y = 0. From tive. Since no $,,,,, peaks  occur on the x axis, the response 
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fig. 7. Delay axis response for y = 0 for the  Welch-IO  pulse  train. 

fig. 8. Pedestal region near the highest  peak  for  the  Welch-10  pulse  train. 

will be  zero on this axis for all integral values of x as was neighborhood of this peak is shown in Fig. 8. It appears that 
discussed following (41).  Fig. 7 corroborates this conclusion. random  phasing of the +",,, sidelobes  can  produce  isolated 

times  the  (normalized) +",,, term peak  value.  The  general The Welch-30  code for p = 31, g = 3 is considered  next. 
The  worst sidelobe peak  was  measured as 0.21 which 2.1 peaks of the  order of 6 dB  over  the 1/N value. 
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Fig. 9. Welch-30  pulse  code  evaluated  at  integer x ,  y values  only. 

It was shown  earlier  that i f  x , y  are restricted to integer 
values, the pedestal region will be either zero  or 1 / N  
depending on the nonexistence  or  existence of a +,,,,, peak 
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at the x ,  y coordinate. Fig. 9 shows a 3-D plot restricted to 
integer x and y values.  The  sidelobe  peaks as well as the 
main  peak for this  code are clearly  displayed  by  this plot- 

- -. . - __ 

Fig. IO. Welch-30  ambiguity  surface,  zero-offset  presentation, 
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fig. 11. Frequency axis response  for x = 0 for  the  Welch-30  pulse  train. 

Fig. 12. Delay axis response  for y = 0 for  the  Welch-30  pulse  train. 

ting artifice.  Triangles indicate isolated  peaks while the with Fig. 5 would indicate that pedestal  peak  levels do vary 
flat-topped sections indicate two or  more  frequency-  inversely with N with 2/N representing a fair  estimate of 
adjacent  peaks.  The  increasing  density of peaks with reduc- the largest  pedestal  peak.  There  does not appear to be  any 
tion  of delay is quite evident  from  this  figure. theoretical bar to the use of arbitrarily  large N values. 

Fig. 10 is a zero-offset 3-D plot  of the  Welch-30  ambigu-  Fig. 11 shows the Doppler axis cut for the 30-pulse  code. 
ity surface which shows  peaks in true perspective.  Pedestal As expected, a sinz/z frequency  behavior is evidenced 
spiking above 1/N near the origin is evident. Comparison with the first  zero at y = 1/30.  Fig. 12 shows the delay axis 
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Fig. 13. Complete  delay axis response for the  Welch-30  code at y = 0. 

I 

Fig. 14. Frequency  cut at x = 25 for the  Welch-30 burst. 

cut  out to x = 1. The first  zero  here is at x = 1/30 as 
expected.  The  complete positive delay region for y = 0 is 
shown in Fig.  13.  The main  peak is obscured by the choice 
of the x-axis  scale.  The  sidelobes  are  very well behaved, 
with relatively few sharp  excursions  above the 1 / N  value. 

Fig. 14 is a frequency cut taken at a delay of x = 25. The 
25th row of the difference triangle  for  this  Welch-30 se- 
quence  predicts  sidelobe  peaks  at y = - 25, - 20, 2,14,  and 

15. These locations are clearly  confirmed  by Fig.  14. Note 
that the isolated qnm terms  have  exactly the peak  value 1 / N  
while the two peaks  at y = 14, 15 create  mutual inter- 
ference  effects which result in a small  spike which exceeds 
the 1 / N  value. 

Fig. 15 shows a frequency cut taken  closer to the main 
peak,  at x = 5.  The mutual  interference  effects from groups 
of frequency-adjacent Cp,, peaks  are  clearly  evident  near 
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Fig. 15. frequency  cut at x = 5 for the  Welch-30  burst. 

Fig. 16. Frequency cut at x = 1.4 for the  Welch-30 sequence 

the center  of this plot. The highest peak found for this y = 4, 6, and 7 and no +",,, peak  at y = 5 .  In spite of the 
waveform was  at  delay x = 1.4 and  had a value of 0.078.  Fig.  gap  at y = 5 ,  the main-lobe regions of the peaks  at 4 and 6 
16 shows a frequency cut at this delay with the peak in are highly  distorted  indicating significant overlap  effects 
question showing near y = 3. from the many (27) +,,,,, peaks which fall at this delay.  The 

The ambiguity surface taken  for a region near this peak is  rapid undulations of this surface  are to be compared with 
shown in Fig. 17. At  the front of this plot is a frequency cut equivalent data  taken  for  the  Welch-IO  burst in Fig.  8. Note 
taken at  delay x = 3. Note that  there are +,, peaks  at  also the lower level of the Fig. 17 data as compared to Fig. 
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fig. 17. Ambiguity surface in a pedestal region of high activity, Welch-30  burst. 

REFERENCES 8. Increasing the pulse count from 10 to 30 has increased 
range  and Doppler  resolution by 3 to 1 and  has lowered the 
sidelobe height by about  the same ratio. 

v. SUMMARY  AND  CONCLUSIONS 

When  the frequency-time pattern of a pulse train corre- 
sponds to one of the patterns of the special permutation 
matrices  described,  the  basic  pedestal  components are de- 
nied  location coincidences throughout the  sidelobe  region, 
therby minimizing the peak noncentral response.  Specifica- 
tion of  the  frequency-channel  spacing to be equal to the 
reciprocal of the pulse length prevents  ambiguities  along 
the delay axis so that  the resulting central  peak  provides 
good resolution  in  both delay  and  frequency. 

The  peak pedestal  level varies from 1 / N  away from  the 
origin  to 2 / N  near the  central  peak.  This method of  wave- 
form design  can be extended to arbitrarily large time-band- 
width ( N2)  products. 

Further refinement of this basic technique might involve 
weighting over  the  pulse train for both transmit and re- 
ceive. Modification  of the individual pulse  envelope  and 
phase  characteristics could also  be considered for creation 
of more suitable ambiguity surfaces. None of these  varia- 
tions were  addressed  here.  Such  extensions of the tech- 
niques  for sidelobe modification must  be  done carefully so 
that the integrity  of the  main response is maintained. 
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