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A Costas  array is an n X n array of dots and blanks with exactly 
one  dot  in each row and column,  and  with  distinct vector dif- 
ferences between  all pairs of dots. As a  frequencyhop  pattern for 
radar or sonar, a Costas  array  has  an optimum  ambiguity  function, 
since any translation  of  the array parallel to  the  coordinate axes 
produces at most one  out-of-phase  coincidence. 

We  conjecture  that  n X n Costas  arrays exist for every positive 
integer  n.  Using various constructions due  to 1.  Welch,  A. Lempel, 
and  the authors, Costas  arrays  are shown to exist when  n = p - I ,  
n = q - 2, n = q - 3, and sometimes when  n = q - 4 and n = q 
- 5, where  p is a prime number, and .q is  any power  of a prime 
number. 

All  known Costas  array constructions are listed for 271  values of n 
up  to 360. The first eight gaps in this table occur at n = 
32,33,43,48,49,53,54,63. (The examples for n = 79 and n = 31 
were  obtained by augmenting Welch’s construction.) 

l e t  C(n)  denote  the  total  number  of  n X n Costas  arrays.  Costas 
calculated  C(n) for n 5 72. Recently, John Robbins found C(13) = 
72828. We  exhibit  all  the arrays for n 5 8.  From Welch’s construc- 
tion,  C(n) 2 2n for infinitely many n. 

Some Costas arrays can  be  sheared into  “honeycomb arrays.” All 
known honeycomb arrays  are exhibited,  corresponding to n = 
I ,  3, 7, 9, 15,21,27, 45. 

Ten unsolved problems are listed. 

1. INTRODUCTION 

Radar  and  sonar  signals are used to determine both the 
distance (also  called range) of a target from the observer, 
and  the velocity (also called range rate) at which the  target 
is either  approaching  or  receding  from the observer.  The 
range is  proportional to the round-trip delay time (or time 
shift) of the signal,  and the velocity is proportional to the 
doppler (or frequency shift) of  the signal. 

In a frequency-hopping radar  or  sonar  system,  the signal 
consists  of  one  or  more  frequencies being chosen from a 
set { f,, f 2 ; .  -, f , }  of  available  frequencies,  for  transmission 
at  each of a set { t,, t,; . ., t,} of  consecutive time intervals. 
For modeling purposes, it is reasonable to consider the 
situation in which m = n, and  where a different one of n 
equally spaced  frequencies { f,, f2; .  ., f,,} is transmitted  dur- 
ing each of the n equal duration  time intervals 
{ t , ,   t2;. ., t,,}. Such a signal is conveniently represented  by 
an n X n permutation matrix A ,  where  the n rows  corre- 
spond to the n frequencies,  the n columns  correspond to 
the n time intervals,  and  the  entry a;, equals 1 i f  and only if 
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frequency f; is transmitted in time interval t,. (Otherwise, 

When  this signal is reflected from  the target  and  received 
back  by the observer, it is shifted in both time and 
frequency,  and from the  amounts  of  these  shifts, both range 
and velocity are determined. The  observer  determines the 
amounts  of  these  shifts  by  comparing all shifts (in both time 
and  frequency)  of a replica  of  the  transmitted signal with 
the  actual  received  signal,  and noting for which combina- 
tion of time shift and  frequency shift the  coincidence is  
greatest.  This  may  be thought of as counting the  number  of 
coincidences between I s  in the  matrix A = (a , j )  with I s  in 
a shifted version A* of A ,  in which all entries  have  been 
shifted r units to the right ( r  is negative i f  there is a shift to 
the left), and s units  upward ( s  is negative if the  shift is  
downward). 

The number of such  coincidences, C(r, s), is the (unnor- 
malized) autocorrelation between A and A*, and  clearly 
satisfies the following conditions: 

a;, = 0.) 

C(0,O) = n 

C(r ,  s) = 0, if Irl 2 n or if Is1 2 n. 

0 6 C( r ,  s) < n except when r = s = 0. 

(This  conforms to the assumption  that  the  signal is 0 out- 
side  the  intervals f, 6 f d f,, and t, 6 t 6 t,. If  the se- 
quence  of  frequencies is to be  repeated periodically in 
time, a singly periodic correlation function can  be defined 
accordingly. In this  context, periodicity in frequency  does 
not appear to be a useful notion.) 

In the real world, the returning signal is always  noisy.  The 
two-dimensional autocorrelation function C(r, s), called  the 
ambiguity function in the  radar  and  sonar literature,  should 
be thought of as the total “coincidence” between  the 
actual returning noisy  signal  and the shift of  the  ideal 
transmitted signal by r units in time and s units in frequency. 
It is useful to think of the signal  matrix A = (a,,) as a 
two-dimensional template  of n2 cells, which is opaque  at 
the n2 - n cells where aj j  = 0, and  transparent  at the n 
cells where a;, = 1. The total signal  energy behind these n 
windows is summed (via a double integral in time and 
frequency) to give the value of C(r,  s) when  the  template is  
shifted r units on the time axis and s units on the  frequency 
axis. 

Among  the 2’ matrices of Os and I s  of order n, there  are 
only n! permutation matrices,  and  some of these are better 
than others as signal  patterns  for  radar  and  sonar. For 
example,  the n X n identity matrix I, can  be shifted  one 
unit up and  one unit left, and will then produce n - 1 

~18-9219/84/0900-1143W1.00 4% IEEE 

PROCEEDINGS O F  THE IEEE, VOL.  7 2 ,  NO. 9, SEPTEMBER 19% 1143 



coincidences with the  original  matrix. For  large  values of n 
and a noisy  environment,  the  signal  pattern I,, would be 
almost  guaranteed to produce  spurious  targets,  shifted an 
equal  number  of  units in  both time  and  frequency  from  the 
real  target. 

At a  minimum,  there is a shift  of A = ( a j j )  which will 
make  any of the n I s  land on any of  the n - 1 remaining 
Is ,  so we know that 

min max C( r ,  s) 2 1 
all ”codes” ( r , s )# (O ,O)  

where C(r, s) is the ideal ambiguity function of  the  permu- 
tation matrix  itself.  This led J. P. Costas [I]  to look for  those 
n X n permutation  matrices  for which 

as the best  possible  case. By computer-aided search,  he 
found examples of such  matrices  for all n 6 12, but was 
unable to  find an  example  for n = 13, and  was tempted to 
conclude  that these  patterns  “die out” beyond n = 12. 

In subsequent  papers ([2],  [3]), permutation  matrices which 
satisfy (1) have  been  called  either constellations or Costas 
arrays. They  are now known to exist  for all n d 31 and  for 
arbitrarily  large  values of n related to the  occurrence  of 
prime numbers  and  prime  powers. It is conjectured  that 
these  arrays  exist  for all positive  integers n. In [16], M. J ,  

Sites defined these  same  arrays, which he  called  “F-matrices 
with thumbtack  ambiguity  functions.”  However, Costas  had 
described  these  arrays still earlier, in an originally  classified 
report [I 71. 

In this  paper, a survey of  all  that is currently known about 
Costas  arrays is presented. In addition to earlier systematic 
algebraic  methods  of  construction  by  Welch 121, Lempel [2], 
and Golomb [3], new algebraic  constructions  by Golomb 
and  by  Taylor  are  described,  along with a sporadic  method 
of Taylor which succeeds in  filling  in some of  the gaps (eg, 
at n = 19, the first case  where no systematic construction is 
known). 

It is convenient to represent the n X n permutation ma- 
trix  corresponding to a Costas  array, A = (ali), on an n x n 
grid, with a dot  in the middle of  cell ( i ,  j )  if and  only if 
a l j  = 1. The  Costas condition then says that  the ( n 2  - n)/2 
lines  connecting  pairs  of  distinct  dots are all different as 
vectors; that is, no  two of these  lines  are  equal in  both 
length and  slope. 

In [3], Golomb advanced  four  conjectures  concerning 
primitive roots in finite fields.  Two of these,  Conjectures A 
and D, have direct  bearing on the success of  certain  meth- 
ods  for  constructing Costas  arrays. 0. Moreno [4] has re- 
cently  proved  Conjecture D for  all  fields  of  characteristic 2; 
and as observed by A. Odlyzko,  the  methods of M. Szalay 
[SI, and J. Johnson 191, can be  extended to show  that 
Conjecture  A  holds with at  most a finite number  of  excep- 
tions.  Conjecture A is stated in Section Il-C of  this  paper, 
and  Conjecture D in Section Ill-F. 

Costas  arrays which satisfy  additional  constraints, in- 
volving,  either  single  or  double  periodicity, or  symmetry,  or 
additional  separation  requirements on the I s  in the  permu- 
tation matrix,  are  also  considered in this  paper.  A  lower 
bound on the cross correlation  between any two Costas 
arrays of order n is obtained. This  has  obvious applicability 
to the case of multiple signals in the same environment. 
Finally, it should be mentioned that  frequency-hop  patterns 
such as the  ones  considered  here  are  also  useful in spread- 
spectrum  communication systems,  where the  objective may 

be to achieve  either  jamming  resistance,  or low probability 
of intercept (LPI), or  frequency  diversity  for a selectively 
fading  channel. 

1 1 .  SYSTEMATIC METHODS OF CONSTRUCTION 

The finite  field with 9 elements,  denoted GF(9), exists 
when and only when 9 is a  power  of a prime.  Detailed 
proofs (in order  of  increasing  complexity)  that  the  Welch, 
Lempel,  and Golomb construction  methods  produce Costas 
arrays, are contained in [3]. These proofs  depend on the 
arithmetic  of finite fields,  and  particularly on  two properties 
of all primitive elements in finite fields. 

The  element a in GF(q) is called primitive if the 
successive  powers of a (i.e., a’,  a*,  a3; . ., aq-’ = I )  run 
through  all  the  nonzero  elements  of CF(q). For primitive a 
the two essential  facts  are as follows. 

1)  For  every nonzero  element x in CF(q) there is an 
integer i such  that a’ = x .  
2) a’ = ak in GF(q) if and only if i = k(mod 9 - 1). 

Equivalently,  corresponding to each  nonzero x belonging 
to GF(q), there is the uniquely  determined  “logarithm  of x 
to the base a,” which looks like an  ordinary whole number, 
and  belongs to the cyclic  group  of  integers with respect to 
addition modulo 9 - 1. That is, if a‘ = x ,  then log, x = i .  

The only information needed to construct a Costas  array 
by  any of these  methods is a ”log table”  for GF(q), consist- 
ing of a list  of  ordered  pairs of the form ( x ,  log,x) = (aj , j ) ,  
for j running through 0,1,2; . - ,q  - 2, and  corresponding 
a’ taking on all  the field values  except 0. 

A. The Welch  Construction 

For  every prime p > 2, the  Welch  construction  yields an 
n X Costas  array W, with n = p - 1,  and a Costas  array 
W, with n = p - 2 .  For certain  primes, it also  yields a 
Costas  array W, with n = p - 3. 

This construction  requires a log table  for CF(p) where p 
is an odd prime,  and  the base a is a primitive element of 
GF(p). (For prime p, GF(p) is simply the field of  integers 
modulo p.) 

W,: ( n  = p - 1) The n x n matrix  plots the log. That 
is ,  with columns  numbered j = 
0,1,2; . ., p - 2, and  rows  numbered 
i = 1 , 2 ; . . , p - I ,  we put a dot in 
position ( i ,  j )  if and only i f  i = a’. 

W,: ( n  = p - 2) This is obtained from W, by deleting 
the dot at (l,O), along with the top 
row and left column. 

W,: ( n  = p - 3) This  works only  when 2 is primitive 
in  CF(p). Using a = 2, W, has dots at 
both (1,O) and (2,l). W, is the  result 
of deleting these two dots,  along with 
the two  top rows,  and the two left 
columns. 

Fig. 1 illustrates W, with n = 42. Removing  the top row and 
left column from the  figure  illustrates W, with n = 41. 

B. The  Lempel Construction 

This  uses a log table for GF(q) where 9 can be  any 
power f l  of any prime p, and  the  “logarithmic base“ a is a 
primitive element of CF(9). 
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Fig. 1. W, with p = 43, n = 42. 

Fig. 2. 
(4 

L ,  with q = 27, n = 25. (b) A log table for CF(27). 
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Fig. 3. T4 with q = 59, n = 55. 

L,: ( n  = q - 2 )  

L,: ( n  = q - 3 )  

The n x n matrix has columns num- 
bered j = 1 , 2 ; - . , q  - 2 and  rows i =  
1 , 2 ; . . , q -  2. We put a dot in posi- 
tion ( i ,  j )  if and only if a’ + ai = 1. 
This works only when 2 is primitive in 
GF(q), where q is an odd prime.  Using 
a = 2-l  = 1 will mean  that a’ + a’ = 
1, and  hence  that  the  dot at position 
(1 , l )  can  be deleted from I ,  along 
with the  entire top  row and left col- 
umn. 

Fig. 2 illustrates L ,  with n = 2 5 ,  that is with q = 27. 

Taylor  Variant to the Lempel Construction: 

T1: ( n  = q - 4) This  works only when the primitive a 
in  GF(q) satisfies a’ + a’ = 1. Then 

the  dots at (1,2) and (2,1) can both be 
deleted  simultaneously  from L,, along 
with the two top rows  and  the two 
left columns. 

Fig. 3 shows  an  example of T1 with n = 5 5 ,  corresponding 
to q = 59. 

Note: When q = # with p prime and k > 1, GF(q) is 
not the ring  of integers modulo q. Rather, it can  be repre- 
sented as a k-dimensional  vector space  over CF(p). 

C. Golomb Construction 

This construction uses two log tables  for GF(q), where 
the two bases a and B are both  primitive elements in 
GF(q), and q can  be  any power of any prime. 
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Fig. 4. C, with 9 E 27, n = 24. 

G,: ( n  = 9 - 2) The n X n matrix has columns num- 
bered J = 1,2;-.,q - 2, and  rows i 
= 1,2;-.,9- 2.  We put a dot in 
position ( i , J )  if and only i f  a‘ + 8’ 
= 1. 

G,: ( n  = 9 - 3) If a’ + 8’ = 1 (that is, a + /3 = I), 
then there is  a dot at position (1,l) 
which can  be deleted  from G,, along 
with the top  row and left column. 
Conjecture A (see (31) asserts that it is 
always  possible to  find  primitive a 
and /3 in GF(q) with a + /3 = 1. 

Fig. 4 illustrates G, with n = 24, that is with 9 = 27. 

G1: ( n  = 9 - 4) This  works only when 9 = 2k, and 
a + /3 = 1, in the field GF(q). Here 
the basic arithmetic is modulo 2, so 
that a’ + 8’ = 1 implies a2  + 8’ = 1. 
Then  the  dots at (1,l) and (2,2) can 
both be deleted  from G,, along with 
the two top rows  and  the two left 
columns. 

Fig. 5 illustrates G, with n = 28, 9 = 32. 

Golomb Variant: 

G: ( n  = 9 - 4) This works only when the primitive 
elements a and /3 satisfy a’ + 8’ = 1 
and a’ + p-’ = 1 in GF(9). Since -1 
= 9 - 2 in the  arithmetic of the loga- 
rithms  (exponents),  there will be a 
deletable dot at (2 ,9 - 2) after delet- 
ing the dot at (I,?) from G2. 

G:: ( n  = 9 - 5) This construction always follows q. 
When a + 8 = 1 and a’ + 8-l = 1, 
then necessarily  also a-’ + B2 = 1 in 

(a) 
Fig. 5. (a) G, with 9 = 32, n = 28. (b) A log table for CF(32) 
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Fig. 7. To with q = 47 = n. 
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Fig. 8. Sporadic  corner dot added, p = 19 = n. Fig. 9. Corner dot added to W,, p = 31 = n 
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Fig. 10 
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Fig. 10 

111. COSTAS ARRAYS WITH SPECIAL PROPERTIES 

A. Periodic  Constructions 

Repeating  the 2 X 2 Costas  array in both directions  over 
the  entire  plane gives a doubly periodic  checkerboard pat- 
tern  with a Costas  array in every 2 X 2 window. For  any 
n > 2, however,  there does not exist a doubly  periodic 
pattern with a Costas  array in every n X n window. (A proof 
of this  result is given in [Ill.) The  nearest approximation to 
such a pattern is given  by  the  extended  Welch  construction, 
as follows. 

Let p be  an odd prime, with  primitive  root a. Put a dot in 
position ( i , j )  iff i = aj(modp). The resulting infinite in- 
teger  matrix  of  dots  and  blanks has the  property  that in 
every p X p window there are p dots with  no repeated 
vector  difference. (Each p X p window fails to be a Costas 
array  by  having  one  empty row and  one row  with  two dots.) 

Singly  periodic  patterns, ( p  - 1) X 00, exist which have a 
Costas  array in every ( p  - 1) X ( p  - 1) window, where  the 
windows are only left-right shifted. The only  known exam- 
ples are those  arising  from  the  extended  Welch  construc- 
tion, but the  possibility  of  other examples  has not been 
entirely  ruled  out. 

B. Nonattacking Queens 

For n > 1 we  have found  no example of a Costas  array 
consisting  of  nonattacking  Queens. It would even  be inter- 
esting to  find a Costas  array for n > 10 having only one 
occurrence of a Queen  attack.  (Another  sort  of near  miss is 
shown in Fig. 11.) 

Fig. 11. Nine nonattacking  Queens on a 10 X 10 board. 

If an application  could be satisfied with “semi-Queens,” 
then we  already  have  an infinite supply  from  the  Lempel 
construction. A “semi-Queen” would attack  its row and 
column  but  only the  diagonal  parallel to the  main  diagonal. 
Symmetry prohibits two dots in any line parallel to but  off 
of the  main  diagonal, because reflection  would repeat  their 
difference  vector. In the  Lempel construction with 9 any 
power of an odd prime,  there will be  exactly  one solution 
to 01’ + ax = 1, for each primitive a, and  hence  exactly  one 
dot  on the  main  diagonal. With q a power of  two, there 
will be no  solution to ax + ax = 1, and  hence no  dot  on 
the  main  diagonal. 

It may  be useful to note  that we  can  describe  exactly 
which Queen  attacks  do  occur in the  Lempel construction. 
Each dot at ( i , j )  attacks  the dot at ( j ,  i), and  no  others.  This 
is illustrated in Fig. 12 with GF(33). 

Fig. 12. Queen attack in Lempel  construction. 

C.  Shearing 

Distinctness  of  differences will be  preserved  by  any non- 
singular  linear  transformation,  such as multiplying by a 
complex  number, or applying  the  matrix 

to shear the  integer  lattice. There are a few Costas  arrays 
which shear by 

[A -:I 
into other Costas  arrays.  Fig. 13 shows  the  Lempel  construc- 
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Fig. 13. An example of shearing 

tion for GF(11) with a = - 3  sheared into what  appears to 
be a 90° rotation  of itself. 

To be  shearable  by 

[A -:I 
into another Costas  array, the array  needs to have  one dot 
in each of n consecutive  lines  parallel to the  main  diagonal, 
since  these  lines will become  columns  after  shearing. Rows 
remain  rows,  and  columns  become  lines at right angles to 
the  main  diagonal, so that  the  figure could be  sheared  again 
by 

to produce yet  another  Costas  array.  The  array  of Fig. 13 
goes through a cycle  of  four different patterns, as do all but 
one of the known shearable  arrays for n > 1. "But  one" 
refers to the array of Fig.  14 which, sheared  alternately  by 

[:, -:I 
(horizontal) and 

(vertical), goes through a remarkable  cycle  of  twelve  pat- 
terns.  Except for n = 2, all n for which shearable  arrays  are 
known correspond  exactly to the n for  which  honeycomb 
arrays  are known, as described in the  next  section. 

D. Honeycomb Arrays (Nonattacking Bee-Rooks) 

Shear-compression  by 

[3f 1 
will convert  the square grid (Gaussian  integers) into the 
triangular grid (Eisenstein  integers),  or  square cells into 
hexagonal  cells.  When it happens on an n X n board  that n 
nonattacking  semi-Queens  occupy n consecutive  lines 
parallel to the  main  diagonal,  then  we can delete  the 
unoccupied  diagonal  lines and  apply  shear-compression to 
convert  the  board into a "honeycomb array" with n lines 
parallel to each of the  three  pairs  of  opposite sides.  The 
semi-Queens get converted into n nonattacking  "bee- 
Rooks."  The pattern  of Fig.  13  becomes a honeycomb array 
with nonattacking bee-Rooks, as illustrated in Fig. 15. 

On the  honeycomb  board  having n parallel  lines we  have 
a quick  proof that  the  maximum  number of nonattacking 

Fig. 14. A cycle of twelve by shearing. 
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Fig. 15. Shear compression. 

bee-Rooks is n. If there  were  more  than n bee-Rooks on 
the  board, then at  least one line would contain at  least two 
bee-Rooks  attacking each other. 

The number  of  empty  cells  attacked  by a bee-Rook  placed 
in the middle  of the  board is larger  than the  number 
attacked  by  one  near the  edge.  This  happens  because in the 
conversion  from square to honeycomb  we  deleted some 
diagonal  lines. Now  on the  honeycomb  board some ele- 
mentary counting problems  become nontrivial. 

Let  us define a “bee-Duke”  on the  board with hexagonal 
cells as a piece which can  move to any  one  of  the six 
adjacent  cells.  [This is the  natural  analog to the  Duke 
defined in [14]. (The “Duke” also  appears in Winning Ways, 
and in R.  A.  Epstein‘s Theory of Games and  Statistical 
Logic.)] The distance between two cells in the  hexagonal 
Lee metric is then  defined as the  minimum  number  of 
bee-Duke moves  needed to go from  one cell to the  other. 
In terms  of  this  metric a “Lee-sphere  of  radius r” consists  of 
a center cell together with all the cells at distance 6 r from 
the  center. For all the known honeycomb arrays, with n 
nonattacking  bee-Rooks on a board  having n lines  parallel 
to each  of  the  three  pairs of opposite sides,  the  honeycomb 
board is in fact a Lee sphere, but we  have not  proved  that 
this must  always  be  the  case. 

Computing six or  seven  terms  and looking in Neil Sloane’s 
Handbook of lnteger Sequences [I51 has led us from 
honeycomb arrays to some old questions which are not 
well-known today. 

The  CUBAN PRIMES of  Cunningham [I31 show up when 
we  simply  count  the  number of cells on a honeycomb 
board  when it is a Lee sphere  of  radius r. The number is 
always a difference  of two consecutive cubes, ( r  + I)’ - r3 ,  
and often prime:  whether infinitely often or not is an old 
question, still unanswered. 

The  ZERO SUM ARRAYS of  Bennett  and  Potts [I21 arrive 
at the  problem of counting the  number N(r)  of configura- 
tions of n = 2r  + 1 nonattacking  bee-Rooks on a honey- 
comb  board which is a Lee sphere of radius r. On a square 

n X n board with n nonattacking Rooks the  corresponding 
number of configurations would be  simply n!, but  on the 
honeycomb  board it is not so simple. With the  aid  of a 
computer  they found answers up  to r = 7, as tabulated 
below. Let q ( r )  be  the  number  of  configurations  inequiva- 
lent under  the  dihedral  group of symmetries of the hexa- 
gon. 

r 0 1 2 3  4  5  6 7 

N ( r )  1 2 6  28 244 2544 35600 65%32 
q ( r )  1 1 1 5 29 224 3012 55200 

Counting honeycomb arrays  presents a new problem 
with the  requirement  that all differences be distinct among 
2 r  + 1 nonattacking  bee-Rooks on a honeycomb  board of 
radius r. 

Let H(r)  =the total number of honeycomb arrays of 
radius r. 

Let h(r)  = the  number of honeycomb arrays of radius r 
inequivalent  under  the  dihedral  group of sym- 
metries  of  the  hexagon. 

The following table  exhibits  the full extent  of  our knowl- 
edge  about H( r )  and h( r).  

r O 1 2 3 4 5  6 7 

H( r )  1 2 0 8 4 ? ? > 2  
h ( r )  1  1 0 2 2 ? ? > 1  

r .8 9 10 11 12  13 ... 22 

H(r)  ? ? > 2  ? ? > 2  ? ’ . . ?  3 2  
h ( r )  ? ? > 1 ? ? ,I ? . . .?  2 1  

The first six honeycomb arrays are pictured in Fig. 16. The 
only ones known for  radii 7,10, and 13 are pictured in Figs. 
17-19, respectively. The  example with radius 22 is used in 
Section II to illustrate  the To construction  for  the  prime 
number 47 (Fig. 7) .  

v 

Fig. 16. The first six honeycomb arrays. 
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Fig. 17. Honeycomb array with r = 7.  

Fig. 18. Honeycomb array with r = 10. 

Fig. 19. Honeycomb array with r = 13. 

E. Nonattacking Kings 

Another special property is that every pair of dots  be 
separated by a  distance 3 in 
theory. This  makes the Costas 
nonattacking chess  Kings.  There 
n 6 8, shown in Fig. 20. 

. .  . 

Rl 
I. ' 

i , *  I 

the  Lee'metric of coding 
array a configuration of 
are only five  of  these  for 

Fig. 20. Costas  arrays with nonattacking Kings for n 6 8. 
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In the Costas  arrays derived  from  the  Welch  construction 
(for p 2 7) at least one  pair of attacking Kings will always 
appear, as a consequence of the following fact  about odd 
prime fields: For  any primitive  root a in Cf(p) there exists 
exactly  one j such that a’+’ - a’ = 1 

To obtain a Costas  array of nonattacking Kings  by  sys- 
tematic construction we  can  use the ‘IT, variant,”  that is, a 
Lempel-type  construction  where some primitive a in Gf(q) 
satisfies a’ + a’ = 1. With no  Queen  attack  parallel to the 
main  diagonal in any Lempel-type array, as mentioned in 
Section 111-8, a fortiori there will be  no King  attack in the T4 
variant  after  removing  the  rows  and  columns containing 
(I, 2) and (2,l). 

f .  Symmetric Arrays 

In all examples of the Lempel  type, a‘ + ai = 1 implies 
that both ( i , j )  and (j, i )  are dots in the array, whence  these 
arrays  are  always symmetric. The reduced arrays with 9 - 3 
in the L,  case or 9 - 4 in the T, case are  also symmetric, 
since  the dot or  pair of dots  deleted  were  from (l,l), or, 
respectively,  from both (1,2) and (2,l) simultaneously. 

The Golomb-type constructions  give  symmetric arrays in 
every case where 9 = pZk is an  even power  of a prime. If a 
is any primitive root,  then a$ = /3 will also  be a primitive 
root,  and i f  a‘ + 8’ = 1 it follows that (a’ + a$’)$ = a$‘ + 
ai = 8‘ + a’ = 1. A dot goes at ( i , j )  iff a dot goes at ( j ,  i), 
so the array is symmetric.  One  of these is illustrated in Fig. 
21. In Conjecture D  of (31, Golomb conjectured  that Cf(pZk) 
can  always  be  generated  over Gf($)  by finding a primitive 
quadratic  of  trace 1, f (x )  = x 2  - x + g, over Gf($). The 
roots a and /3 of f (x )  will then be primitive in CF(pZk) 
with a + 8 = 1, and a/? = g will be primitive in Cf(pk). 

&I 

Fig. 22. Symmetric with main  diagonal empty. 

Iv. C(n) AND C ( n ) :  THE NUMBER OF COSTAS ARRAYS 

Let C(n) =the total number of nX n Costas  arrays. 

Let c(n) = the  number of n X n Costas  arrays inequivalent 
under  the  dihedral  group of symmetries of the 
square. 

We  can  prove that  the limit superior (limsup)  of C(n)  is 
infinite because the  Welch  construction guarantees& C( n) 2 
2n when n + 1 is an odd  prime. 

On the  other hand,  we  have no actual  proof  that C(32) is 
not zero,  or  that C(n) is not zero infinitely often. That is, 
we  cannot  show 

Iim  inf C( n )  > 0. 

The exact values of C(Q, C(8), C(9), and C(l0) were  first 
brought to our attention by  Richard  Games  and Michael 
Chao, who  found them by  computer in the  summer of 1983 
at the Mitre Corp. All values  of C(n) for n Q 12 were first 
found by John P.  Costas of the  General Electric Company. 
The currently known values  of C(n) and c(n)  are as fol- 
lows. The  values of c(n) for 9 G n Q 13 and  of C(l3) were 
found in May, 1984, by John Robbins. 

n-rm 

n l 1 2 3   4 5  6  7  8  9 10 11 1 2  13 

c(n )  
1 2  4  12 40 116  200 444 760  2160  4368  7852  12828 C(n)  
1  1 1 2  6 17 30 60 100  277 555 590 1616 

1 1 0.66 0.5 0.33  0.16  0.039  0.011 0.002 O.ooo6 O.ooo11  0.000016  0.000002 
n! 

I 

(See the  Theorem in Appendix I ,  p. 1161.) In [4], Moreno has 
proved  this  conjecture  when p = 2, for all values  of k .  

An  even  more  special n X n Costas  array is one which is 
symmetric  and has the  main  diagonal  empty. Of course n 
must  be  even.  These  are given  systematically  by L ,  when 9 
is a power of 2, and  by L ,  when 2 is a primitive  root of an 
odd prime p. In Fig. 22, the exhibit of all such  arrays for 
n G 8 includes  one 8 x 8 example which is not given  by 
any known systematic  symmetric  construction. It is not 
known whether any of these  special  arrays exist for n = 12. 

fig. a. S mmetric Colomb type. Example of G2 when 9 = 

p2h and 2 = 8. 

The  value C(7) = 200 corrects an error in [2]. 
It is worth  noting  how rapidly C(n)/n! is approaching 

zero,  since it represents  the probability that a randomly 
chosen n X n permutation matrix will be a Costas  array. If 
the growth rate C(n + 1) G 3 . C(n) persists, it will make 
this probability less than IO-’’ when n = 32. 

Up to n = 8 the  pictures in Fig. 23 exhibit one  representa- 
tive of each of the c( n) equivalence classes. (Two arrays are 
equivalent  under  the  dihedral  group  of  the square if one 
can  be  transformed into the  other  by  any combination  of 
rigid rotations and reflections.) 

v. UNSOLVED PROBLEMS 

Is C(n) asymptotic to some well-behaved function of n? 
In the following list of conjectures,  proof or disproof of any 
of those  marked OPEN would constitute  significant  prog- 
ress on this  question. (Of these,  we  believe question 5 may 
be  the easiest to settle.) 

-1. C(n) 2 1 is true  for infinitely many n. 
PROVED  TRUE 

0. C(n) 2 1 is true  for all n 2 N, for some positive 
integer N. OPEN 
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i 1  7 

p i  
'e 

lb 
e 

e e '0 . e . 
n d  13 ru1 4 n d  IS 

Fig. 23. Pictures of the Costas  arrays from 1 X 1 to 8 X 8. 
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c.d I 

C.d. 13 

c.d. 19 

c.d. 2 e.d. 3 

C.d. 21 

e.& * 

cud. IO c.d. I /  c.d. IC 

c.d.2+ 

*cd 25 

ncd 31 ~ rcd 32 3 5  

Fig. 23 (continued). 
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1. C(n) > 1 for all n 2 1. OPEN 
2. C(n)  is monotonic increasing. OPEN 
3. limsup C(n) = 03. That is, C(n) has  an infinite 

PROVED  TRUE 
4. C( n) /n!  is monotonic decreasing. OPEN 
5. C(n) /n !+  0 as n + 03. OPEN 
6. C(n) /n!  goes monotonically to 0 as n + 03. 

OPEN 
7. C(n) / c (n )  -, 8 as n 4 w .  OPEN 

subsequence, which is unbounded  above. 

The  next  three are simply  existence  questions. 

8. Do any other  singly periodic Costas arrays exist 
besides  the  ones  given  by  the Welch construction? 
(The  conjectured answer to question 8 might have 
been YES before it turned out  to be NO for n d 16, 
and NO for all odd n.) 

9. Do honeycomb arrays exist for infinitely many n? 
10. Do any n X n Costas  arrays  exist (for n > 1) which 

are configurations  of  nonattacking  Queens? 

For question 9 we conjecture YES, and  for  question IO, 
NOT SO SURE. Computer search by John Robbins has 
found that  the  answer  for  question 10 is NO for 11 < n 6 17. 

APPENDIX I 
SOME BASIC  POLYNOMIAL ALGEBRA OVER FINITE  FIELDS 

Lemma 7 (Fermat's "Little" Theorem) 

For  every element a E CF(q), as = a in CF(9). 
Proof: 
i) 09 = 0. 
ii) The nonzero  elements  of GF(q) form a group  of  order 

q - 1 under multiplication. Hence qq-' = I for all a # 0 in 

Thus aq = a for all a E CF(q). W 
GF( 9). 

Lemma 2 

Let f ( x )  = a o x n  + a,x"-' + + + a , - l x  + a, 
be a polynomial  over CF(q). (That is, ai E GF(q) for i = 
0,1,2,. . . , n.) Then { f (   x l / q ) } q  = f (   x ) .  

Proof: If there is a field CF(q) of q elements,  then 
q = p' for some prime p and  some positive  integer k, and 
the  additive  structure  of GF(q) is that  of  k-dimensional 
vectors modulo p. It is easily shown  that  the binomial 
coefficient ( 7 )  satisfies ( 7 )  = qmodp) for all r ,  1 6 r 6 
- 1. Hence,  over CF( q), (u + v ) ~  = uq + vq. 

Then f ( x ) q  = ( a O x " ) q  + ( a l x n - ' ) q  + ( a Z x n - 2 ) q  
+ . - a  + ( a n - l x ) q  + (a,)q = f ( x q )  over CF(q), where  we 
have  used a? = ai from Lemma 1. From f ( x ) q  = f ( x q ) ,  the 
result  immediately follows. W 

Lemma 3 

Let f ( x )  = ( x  - a ) ( x  - 8 )  be the  factorization in CF(q2) 
of the  quadratic polynomial f ( x )  = x' + A x  + B which is 
irreducible over GF(9). Then a = 8 9  and j3 = aq. 

Proof: By  Lemma 2, f ( x q )  = f ( x ) q  = ( x  - U ) ~ ( X  - 8)q 

- f i g ) ,  and  the  roots aq,Bq of f ( x )  must  be  the same (in 
some order) as a,P. But if a4 = a (and j?q = 8 )  then a (as 
well as 8 )  is a root  of x4  - x = 0, which, as an equation of 

= ( x 4  - u~) (x '  - 8'). Thus f (  X) = f (X' / ' )q = ( X  - .')(X 

degree q, has  at  most q roots in GF(q2). By  Lemma 1, all q 
elements  of GF(q) are roots  of xq - x = 0, so that a (and 
8) are already in GF(q), and f ( x )  would factor  over CF(q) 
into linear  factors ( x  - a )  and ( x  - /3), contradicting the 
hypothesis  that f ( x )  is irreducible over CF(9). Hence aq = 
f l  and 8 9  = a. W 

Theorem 

If f ( x )  = x' - x + g is an irreducible  polynomial over 
GF(9) whose  roots  are primitive elements  of GF(q2), then 
g is a primitive element of CF(q). 

Proof: Write f ( x )  = ( x  - a)(x - 8 )  with a,B E GF(q2). 
By  Lemma 3, /3 = aq. Then g = ab = aq+'. Let r be  the 
smallest  positive  exponent such that g' = 1. If r < q - 1, 
then r ( q  + 1) < (9  - l)(q + 1) = q2 - 1, and  we  have 1 = 
g' = a'(q+l), contradicting the  assumption  that a is a prirni- 
tive element  of GF( 9'). W 

Corollary 

The roots  of f ( x )  = x' - x - 1 over CF(9) fail to be 
primitive elements of GF(q2) unless either q = 2 or q = 3. 

Proof:  If f ( x )  is reducible over GF(q), its  roots are in 
GF(q), and  cannot be primitive in GF(q2). If f ( x )  is i rre 
ducible over CF(q), then the Theorem applies,  and -1 
must  be a primitive element of GF(q). Since (-I), = 1, we 
find q - 1 6 2, so that q 6 3. Thus Gf(2) and GF(3) are the 
only candidates. It turns out that f ( x )  = x' - x - 1 is primi- 
tive over GF(2) and  over GF(3). W 

Exercises 

1) Let f ( x )  = ( x  - a , ) ( x  - a,) ( x  - a, )  be  the  factor- 
ization, in GF(qk), of  the  polynomial f ( x )  which is irreduci- 
ble  of degree k over CF(9). Then  the  set of roots, 
{al,a,,a~,~~~,a,},isthesamesetas{al,a~,a~2,~~~,al 

2) Suppose f ( x )  = ( x  - a , ) ( x  - a,) . * .  ( x  - ak) is an 
irreducible polynomial of  degree k over CF(q). Show that 
all the  roots a l , a , ; . . , a k  have the same primitivity t, as 
elements  of GF(qk). That is, a; = 1 for i = 1,2;. . , k ,  while 
a; # 1 for 1 6 s < t. Moreover, t is an integer  factor  of 
qk - 1, and is not an integer  factor  of qm - 1, for any 
m E {1,2;.-,k - I}. 

q k - ?  

1. 

APPENDIX It 
ALGEBRAIC EXCLUSIONS AND TERMINAL CASES 

A .  Conditions  which Prevent Adding a Corner Dot  to a 
Golomb  Construction 

Adding a dot at (0,O) or (0, q - 1) or ( q  - 1,0) or ( q  - 
l , q  - 1) is prevented i f  and only if the G, constructions 
contain dots  at (a ,  b), ( x ,  y ) ,  and ( a  + x ,  b + y ) .  In this case, 
a dot cannot be added in the same quadrant as the mid- 
point between (a ,  b) and ( x ,  y ) .  

When ad + B b  = 1 and ax + by  = 1, we  have ad+" + 
B b + y  + aaj?Y + axfib = 0 and + B b - y  = 0. 

Let k be the  number  (coprime to q - 1) such that /3 = a,. 
Then  we  have = which holds if and 
only if ( 9  - 1)/2 = (kb - a )  - ( k y  - x ) .  
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These conditions give us the following tests: 

TEST(0,O): A dot cannot be added at (0,O) if 
and only if there  exist  dots (x ,  y) 
and (a ,b)  in G2 such that: 

1) ( 9  - 1)/2 = (kb  - a )  - ( k y  - 
x) 

2 ) a + x < q - l  
3 ) b + y < q - l .  

TEST(O,9 - 1): A dot cannot  be  added  at (0, q - 1) 
if and only if there  exist  dots (x, y) 
and (a ,  b) in G2 such that: 

1) ( 9  - 1)/2 = (kb - a )  - ( k y  - 
x) 

2 ) a + x < q - l  
3 ) b + y > q - I .  

TEST(q - 1,O): A dot cannot be  added  at (9  - 1,0) 
if and  onyy if there  exist  dots (x, y) 
and (a ,b )  in G2 such that: 

1) (4  - I)/2 = (kb  - a)  - ( k y  - 
x )  

2 ) a + x > q - l  
3 ) b + y < q - l .  

TEST(q - l , q  - 1): A dot cannot be added at (q  - l , q  
- 1) if and only if there  exist  dots 
( x ,  y) and (a ,  b) in G, such that: 

I )   (9  - I)/2 = (kb  - a)  - ( k y -  

2 ) a + x > q - l  
x )  

3 ) b + y > q - 1 .  

B.l) T, never works  for q = 2& > 4. 
Proof: Whenever ai + / 3 j  = 1, the simplified  binomial 

theorem  over GF(2&) tells us that a’’ + B2’ = 1. Having 
dots at ( i ,  j) and (2i, 2j) prevents  adding a corner dot in the 
quadrant  that  contains ( i ,  j). For n = 6 all the G, construc- 
tions have dots in all four  quadrants  by  inspection. For 
n = 2m > 6, having  dots in all quadrants is a property of all 
n X n Costas  arrays, as a consequence of the  fact  that  for 
m > 3 any two m X m Costas  arrays  must  have a difference 
in common. (This  fact is proved in [Ill.) I 

B.2) To never works when 9 = 3k. 
Proof: There will be a dot at the exact center  of  the 

(q  - 2) X (q - 2) array  because a(q-’)l2 = /3 (q- ’ ) / ’  = -1, 
and in GF(3 ‘), (- 1) + (-  1) = 1. Therefore,  we  cannot  add 
dots at both (0,O) and (q - 1,  q - I), nor  at both (0, q - 1) 
and (q - 1,O). I 

8.3) To never works when 9 = 1 (mod6). 
Proof: Let  us write q = 6m + 1, and let a and /3 be 

primitive in CF(9). We  have a3m = B3“ = a-3m = /3-3m = 
-1, while am f -1 # 8”. We  see that am,a-m,/3m,/3-m 
are all primitive sixth  roots of unity;  that is, roots of x2 - x 
+ 1 = 0. Therefore,  either am + 8“ = 1 and a-“‘ + /3-” = 
1, or else am + /3-“ = 1 and a-m + 8” = 1. (The two 
distinct primitive sixth  roots  of unity sum to 1.) In either 
case, we  cannot  add  dots  at both (0,O) and (q - 1,9 - I), 
nor at both (0,q - 1) and (9  - 1,O). I 

Corollary to B.3) 

The proof  of 8.3) shows that  the Gz construction will not 
yield a honeycomb  array  when 9 l(mod 6). 

6.4) A G2 construction will never contain two diagonally 
opposite corner  dots, if 9 > 7. 

Proof: If a’ + /3’ = 1 and a-’ + /3-’ = 1, then a-1 + 
1/(1 - a )  = 1, and a’ - a + 1 = 0. If a’ + y-l = 1 and 
a-’ + y’ = 1 we  can  take /3= y- l  and  again  we find 
a’ - a + 1 = 0. Thus in either case a is a root  of a6 - 1 = 0. 
With a primitive in GF(q) and a6 = 1 we conclude  that 
GF( q) has at most 7 elements. I 

8.5)  If a G2 construction over GF(q) has dots at (1,3), 
(3,1),  and (2, - I ) ,  then 9 = 8. 

Proof: Starting with a3 + /3 = 1 and a’ + /3-’ = 1, we 
have /3. /3-’ = 1 = (1 - a2Xl - a3) = 1 - a’ - u3 + a’, 
Thus a3 = a + 1, whence a + /3 = 0. Now using a + / I3  = 
1, u3 + /3 = 1, and a = -/3 we  deduce  that -1 = 1, which 
means that q = 2& and a = 8. When a is primitive in 
GF(q) = GF(29, a3 = a + 1 implies  that a’ = 1, and q = 8. 

B.6) If a G2 construction has dots at ( I ,   I ) ,  (2,3), and (3,2), 
over GF(q), then q = 5. 

Proof: With a + /3 = 1 and a’ + p3 = 1, we  have (1 - 
/3)2 + b3 = 1 = 1 - 28 + 8’ + b3, and  therefore b2 + /3 - 
2 = 0 = ( B  - 1XB + 2). Since /3 is primitive, /3 # 1, so that 
/3 = - 2  and a = 3. At  this point we  have  also  gained  the 
information that q must  be prime, because one  of  its 
primitive roots is an integer. 

Now using a3 + 8’ = 1 we find that a = -2  and /3 = 3, 
so - 2  = 3. Thus 5 = 0 in CF(q), and  we conclude  that 
9 = 5. I 

8.7) If a G2 construction has dots at (7,2), (2,3),  and (3, I )  
over CF(q), then q = 5. 

Proof: With a + 8’ = 1 and a’ + f i 3  = 1 we  have f 1 3  

- /3’ = a - a’and /3’ = 1 - a. Then b2(/3 - 1) = a(1 - a )  
= a/?’, and therefore j? - 1 = a. This tells us that a’ = - I ,  
so a4 = 1, and  hence q = 5. I 

13.8)  For q > 9, T1 never works unless q is a prime whose 
last digit is 1 or 9. 

Proof: Suppose q = d; with k b 2, and  suppose a’ + a 
= 1 where a is primitive in GF(pk). Under  these conditions 
ap # a. 

Using  the simplified  binomial theorem,  we  have ( a 2  + 
a)P = Ip = 1 = (ap)2 + ap. Thus a and ap are the two roots 
of the  quadratic x2 + x - 1 = (x - a)(x - aP) = x’ - ( a  + 
@)x + a’’+’. We conclude  that aP+l = -1. 

In the  special case p = 2 this can only  happen  when 
k = 2, so that q = 4. 

For  an odd prime p, aP+’ = -1 implies  that ( d ;  - 1)/2 
= p + 1, which is only possible  when k = 2 and p = 3, that 
is, when 9 = 9. 

For q > 9 we know that T1 cannot  work with k 2 2 
because a cannot then be primitive. We  shall see that in 
some prime  fields, T4 is prevented  by  the  nonexistence 
of a. 

The quadratic  formula  tells us that  for  prime p > 2, 
x’ + x - 1 = 0 has a solution 

X =  
-1 kd3- 

2 
in CF(p) if and only if y2 = 5 has a solution y in GF(p). 
According to the Law of Quadratic  Reciprocity, 5 is a 
quadratic  residue of p > 2 if and only if p is a quadratic 
residue of 5. Thus  except for p = 5, solutions to y2 = 5 exist 
in GF(p) if and only if p = l(mod5) or p qmod5); that 
is, the last digit of p is either 1 or 9. I 
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Comment 

Checking  whether T1 works is made  easier by B.8). When 
p is a prime  ending in 1 or 9 we will  find y in GF(p) such 
that y2 = 5 by looking in the log table.  Then let a = (I,+ 
y ) / 2  and y = (-1 - y ) / 2  so that a2 + a = 1 and y 2  + y = 
1. To see if T4 works it remains only to check  whether  one 
or both of a and y is primitive. 

B.9) q -and work if and only if T4 works and q = 
I (mod 4). 

Proof: G; and C’$ work if and only i f  there exist 
primitive elements a,B in GF(q) such that a + B = 1 and 
a2 + 8-l = I. 

Given such a,B we  deduce  that 8-’8 = (1 - a2)(l - a)  
= 1 - a2 - a + a3 =I, and  hence  that a2 = a  + 1, a = 
-/3-’, and a-’ + a-’ = 1. The primitivity of a-’ tells us 
that T1 works. The primitivity of both B-’ and -/3-’ tells 
us that q = l(mod4). 

Conversely,  assuming T4 works  and q l(mod4), we 
have primitive y such  that y 2  + y = 1. Also, y- ’  primitive 
and q = l(mod4) implies  that - y  is primitive. Thus taking 
a = - y  and /3 = y-I we  have primitive a,B such  that 
a’ + /3-’ = 1 and a + /3 = 1. 
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