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1 Introduction

Nonstandard analysis is the branch of mathematics concerned with construct-
ing a number system that includes infinitesimals. These are numbers smaller
than any real number yet still greater than zero. Although nonstandard
analysis was developed in 1966 by Abraham Robinson, it is based off of Got-
tfried Wilhelm Leibniz’s construction of the calculus, created some 300 years
earlier. Nonstandard analysis differs from the standard approach to analy-
sis in its use of infinitesimals. Infinitesimals in nonstandard analysis replace
epsilon-delta technique in standard analysis; a method many would argue is
far less intuitive than the nonstandard use of infinitesimals.

While Robinson may have been the first to arithmetically combine in-
finitesimals with the real numbers and rigorously define the rules that govern
this new number system, he certainly was not the first to use infinitesimals.
The basic idea of an infinitesimal dates back to antiquity to a period when
the Greeks were afraid of the infinite. This was the period in Greek history
shortly after Zeno presented his paradoxes which shook geometers until they
banned the use of infinity in mathematics. It was during this time when
infinitesimals gained firm ground in mathematics.

Archimedes incorporated infinitesimals into his “method of compression”
which would later be formalized by Leibniz into his infinitesimal calculus.
However, since neither Leibniz nor his followers could rigorously define the
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rules that govern the infinitesimals used in his construction of the Calcu-
lus, Leibniz’s construction lost support to Newton’s calculus of limits, which
became the foundation for the modern epsilon-delta approach to analysis.
However, many students find the epsilon-delta approach to be counter intu-
itive and hard to follow. It was this sentiment which allowed the infinitesi-
mal calculus to persist through out centuries of attack by people like George
Bishop Berkely, who criticized them for being “neither finite quantities, nor
quantities infinitely small, nor yet nothing.” Who mocking asked “May we
not call them the ghosts of departed quantities?” (Hurd & Loeb 1985).

The Calculus of Leibniz is by no means the same as Robinson’s non-
standard analysis. While nonstandard analysis is motivated by infinitesimal
calculus, it differs mostly in Robinson’s rigorous construction of a number
system containing infinitesimals. Leibniz believed that the infinitesimals in
his calculus could be considered to be well founded fictions. That is, they
could be used to arrive at the correct answer, but would disappear once they
were no longer needed. Robinson only disagreed with Leibniz’s claim that
his use of infinitesimals were well founded, however Robinson agreed that
they were fictions of the mind. The fact that Robinson did not believe in
infinitesimals is not surprising, as Robinson considered himself a formalist,
who believed that infinity is theoretically meaningless but should be used in
mathematics as though that was not the case.

Robinson’s approach to nonstandard analysis employs heavy use of logic
and model theory in order to rigorously define what Leibniz failed to. Robin-
son’s approach to nonstandard analysis is only one of two approaches to non-
standard analysis. The other, which is beyond the scope of this paper, was
developed by Edward Nelson about ten years after Robinson developed what
is now called classical nonstandard analysis. Nelson’s approach avoids the
model theoretic approach that Robinson uses and follows a more axiomatic
formulation.

In order to truly understand a difference between classical nonstandard
analysis and the standard epsilon-delta approach, we will construct the non-
standard reals and show some basic results of nonstandard analysis in order
to prove the familiar Intermediate Value Theorem using both approaches.
This will allow the reader an idea of the differences between the standard
and nonstandard approach to analysis and by way of the nonstandard ap-
proach, show the reader that “the widely held belief that one cannot get
something for nothing is a superstition” (Nelson).
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2 History

Infinitesimals have been used since the time of antiquity to approximate the
area of geometric shapes. The ancient Greeks incorporated infinitesimals in
the “method of exhaustion” in which they inscribed n-sided polygons, Pn,
into a circle “exhausting” the area. This method was devised by Eudoxus to
provide an alternative to taking “a vague and unexplained limit” of the area
of Pn as n → ∞. The methodology of the method of exhaustion is easily
explained by the ancient Greek “horror of the infinite” (Edwards 1979).

The Greek “horror of the infinite” transcends mathematics and evidenced
itself, long before it appeared in mathematics, in Greek mythology, as seen
in the stories of Tantalus, Sisyphus, and Prometheus.

Tantalus, the mortal son of Zeus, attempted to trick the gods and expose
the ease in which they are tricked. However, he was caught and as punish-
ment was forever to reside in Hades by the arch-sinner pool; a pool with
water that would drain into the ground whenever Tantalus knelt to drink
from it. Above this pool there was a fruit tree which, whenever Tantalus
attempted to take the fruit, the wind would blow the fruit out of reach. Tan-
talus was to be forever thirsty by a pool of water and forever hungry by a
tree of fruit. Sisyphus and Prometheus, like Tantalus, were also punished
by the gods each to be tormented forever. Sisyphus was punished by being
forced forever attempt to complete a task which he could never accomplish.
He was forced to push a boulder up a hill, but every time he reached the top
of the hill, the rock would come tumbling back down, forcing him to start
over. Prometheus, on the other hand, was bound to a rock while an eagle
ate his liver, only to have his liver grow back the next day to again be eaten
(Hamilton 1969).

The mathematical horror infiniti arose from the greek mathematical
philosopher Zeno. At the time of Zeno, the popular Pythagorean idea was
that a line is made up of beads, and time is made up of a series of discrete
moments. Zeno pointed out the absurdities of “infinite divisibility” of space
and time by his famous paradox involving Achilles and a tortoise (Decarli).

The paradox took Achilles, the fastest runner in Greece, and put him in a
race against a tortoise who was given a head start; because of this head start,
Achilles could never catch the tortoise. This, as Zeno said, was because by
the time Achilles had reached the spot where the tortoise was, the tortoise
had moved forward by a small amount, making it impossible for Achilles to
catch it (Decarli).
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This, along with Zeno’s three other paradoxes, is related to the appli-
cation of infinite processes to geometry. Because the Greek geometers were
unable to answer the paradoxes, they banished the concept of infinity from
the mathematics and made the “horror of the infinite” part of the Greek
mathematical tradition (Decarli).

This insistence on absolute rigor and the rejection of infinite numbers
prevented Greek mathematicians from developing a theory of limits. The
theory that would later replace their reducto ad absurdum proofs, such as
the method of exhaustion, in the Calculus (Edwards).

The method of exhaustion was then used by Archimedes to develop the
“method of compression”, in which Archimedes both inscribed and circum-
scribed n-sided polygons in circles. After developing this method, Archimedes
applied it to find the volume of conoids (a paraboloid or hyperboloid of rev-
olution) and spheroids (a ellipsoid of revolution), which had not been done
before. He did this by inscribing the shape of revolution in a sphere then
slicing the sphere into n equally thin pieces then both inscribing and circum-
scribing these sphere-slices into the shape of revolution. Archimedes may
have been the first to find the volume of shapes of revolution, but he lacked
a generalized algorithm for the calculation of areas and volumes (Edwards).

Some 1800 years later, Gottfried Wilhelm Leibniz and Isaac Newton each
developed a generalized algorithm for determining the area and volume of
shapes, and simultaneously yet independently developed the Calculus. While
they each developed the Calculus, the two versions were wildly different.
Leibniz’ version involved infinitesimals which are smaller in absolute value
than any ordinary real number, but according to him, still obey the laws
of arithmetic (Hurd & Loeb). Newton’s calculus involved the fluxion, as
opposed to the infinitesimal, which he saw as a rate of change (Edwards).

Leibniz found inspiration for his Calculus as well as his famous “characteristic
triangle” from Pascal’s work. Pascal had proposed a challenge to find the
area and centroid of an arbitrary segment of cycloid and to find the volumes
and centroids of various solids of revolution. Although many mathematicians
of the day proposed solutions, Pascal wasn’t satisfied with any of the solu-
tions, so he proposed his own. This solution involved a right triangle E1E2K
with hypotenuse E1E2 tangent to the circle at a point D. He noticed that
E1E2K and ADI were similar (Figure 1). Therefore, AD

E1E2
= DI

E2K
.

Leibniz noticed that Pascal’s infinitesimal triangle could be constructed
on an arbitrary curve forming the similar triangles in figure 2.

While Leibniz could not formally construct infinitesimals into the real
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Figure 1: Pascal’s similar triangles constructed to find the arclength of a
circle (Edwards)

Figure 2: Leibniz’s characteristic triangle, based off of Pascal’s similar tri-
angles, but used to find the slope of a line tangent to any arbitrary curve
(Edwards).
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number system, he stressed that proper application of his rules for calculat-
ing and manipulating differentials would invariably lead to correct results,
despite the fact that uncertainty remained about the precise meaning of the
infinitesimals that appeared in his calculations. Leibniz said that regardless
of whether or not infinitesimals actually exist, they can serve as well founded
“fictions useful to abbreviate and speak universally” (Edwards).

In late 1665, Newton attacked the problem of finding a line tangent to a
curve. He did this by combining the velocity components of a moving point
in a coordinate system. This provided the motivation for Newton’s method
of fluxions. Newton regarded a function as the intersection of two moving
lines, one vertical and one horizontal, both varying with respect to time.
The motion of a moving point on the function is the sum of the vertical
component ẏ and the horizontal component ẋ. The slope of the tangent line
at any given point is ẏ

ẋ
(Edwards).

Newton defines ẋ and ẏ to be fluxions, which are rates of change with
respect to time. However, Newton does not define “the fluxional speeds;”
instead, he regards speed as “intuitively apparent on physical grounds” (Ed-
wards 1979). In modern terms, the fluxions ẋ and ẏ are simply the derivatives
of x and y with respect to time, ẋ = dx

dt
, ẏ = dy

dt
. The ratio of these derivatives,

ẏ
ẋ

= dy
dx

, is the slope of the tangent line (figure 3).

Figure 3: Newton’s method for finding a line tangent to a curve. ẋ and ẏ are
fluxions and their sum is the line tangent to the curve f(x, y) = 0

During their concurrent discoveries of the Calculus, Newton and Leibniz
corresponded by letter. Newton rejected Leibniz’s idea of an infinitesimal on
the grounds that Leibniz had taken crucial suggestions from Newton during
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their correspondence. Newton viewed Leibniz’s construction of the Calculus
as, at best, a plagiarized version of his own construction (Edwards).

Leibniz’s construction of the calculus was based on the classical atomist
view which asserted that all objects in the universe were composed of very
small indestructible building blocks. This view was shared by the Greek
mathematicians who developed the idea of infinitesimals at the time of an-
tiquity. Leibniz’s construction of infinitesimals, which he described as “a
grain of sand with respect to the earth, or the earth with respect to the
distance between two fixed stars” (Meli 1993) embodies his atomist stance
that infinitesimals are smaller than any real number, but greater than zero,
making them the smallest indivisible part.

Newton on the other hand followed Descartes and the leading philosophy
of the time, that matter is a continuum and that “in the division of the
parts of matter there is really an endless series” (Nikulin 2002). Newton’s
construction of fluxions, like Leibniz’s construction of infinitesimals, mirrors
his philosophy on matter. This is evident in the way he views the fluxion as
“an ultimate ratio of evanescent quantities” (Edwards).

Accusations of plagiarism and inconsistencies between Newton’s version
and Leibinz’s version of the rules that govern differentials along with the
feud that erupted over the construction of the Calculus resulted in attacks
on infinitesimal calculus. When no one could arithmetically combine finite
and infinite numbers, support for Leibniz’ version of the Calculus declined
and eventually the infinitesimal calculus was replaced by the Calculus of
limits (Edwards).

Despite being criticized for lacking a formal proof, infinitesimals managed
to persist for centuries as a tool to explain limits. This is arguably because
infinitesimals are more intuitive and make more sense than limits. Many
mathematicians argue that especially in teaching calculus, infinitesimals are
easier for students to comprehend than limits.

In the 1960’s, some 300 years after Leibniz first constructed infinitesimal
calculus, Abraham Robinson rigorously constructed a number system that
combined infinitesimals, infinite numbers and finite numbers. This number
system is called the nonstandard reals and is the basis for the field of non-
standard analysis.
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3 Basic Construction

Constructing the nonstandard reals requires taking the real numbers and
adjoining to it infinitesimals. The complication of this merger of finite and
infinitesimal numbers lies in trying to construct rules about adjoining these
two classes of numbers in order to ensure that everything that can be done in
the standard reals, can also be done in the nonstandard reals. In order to do
this, a new equivalence relation must be introduced, one which relies on the
use of an ultrafilter. So before continuing on to construct the nonstandard
reals, we must first develop the notion of an ultrafilter.

The real number system is a complete, linearly ordered fieldR = (R,+, ·, <
). We will define the nonstandard reals, *R to also be a linearly ordered field,
denoted by *R = (*R, +, ·, <) that contains an isomorphic copy of the stan-
dard reals, but is strictly larger. This construction requires an introduced
equivalence relation which employs the use of a free ultrafilter. Otherwise,
we have that the product of two nonzero numbers can be zero.

3.1 Ultrafilter

The notion of an ultrafilter is necessary to introduce the equivalence relation
(≡) which we use to define the nonstandard reals.

Definition: Let I be a nonempty set. A filter F on the set I is a
nonempty collection F ⊂ P(I) of subsets of I on which the following three
things hold:

F1: F does not contain the empty set,

F2: If A,B ∈ F , then A ∩B ∈ F , and

F3: If A ∈ F and A ⊆ B ⊆ I, then B ∈ F

A filter is called an ultrafilter U if for each subset A of I, either A ∈ U
or its complement A′ = I \ A ∈ U , but not both

A free ultrafilter in N is a collection U ⊂ P(N) such that A, a finite subset
of N implies that N \ A ∈ U . That is, a free ultrafilter U does not contain
any finite sets A.

The Ultrafilter Axiom If F is a filter on I, then there is an ultrafilter
U on I which contains F .
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We let R̂ denote the set of all sequences of real numbers of the form r =
〈r1, r2, . . .〉 denoted by 〈ri〉. We define addition and multiplication between
r = 〈ri〉∞i=1 and s = 〈si〉∞i=1 to be:

r ⊕ s = 〈ri + si〉i
r � s = 〈ri · si〉i .

We then use this and the definition of a filter to define an equivalence
relation ≡ on R̂ which is dependent on a free ultrafilter, U . Given r = 〈ri〉i
and s = 〈si〉i both in R̂ then r ≡ s if and only if {i ∈ N | ri = si} is an
element of U . We then say 〈ri〉i = 〈si〉i almost everywhere.

This equivalence relation distinguishes between two sequences that have
the same limit as n → ∞. That is 〈1, 1

2
, 1

4
, 1

8
, . . .〉 6≡ 〈0, 0, 0, . . .〉. This type

of sequence 〈1, 1
2
, 1

4
, 1

8
, . . .〉 will later help to define infinitesimals. This equiv-

alence relation also helps in eliminating the problem of the product of two
nonzero numbers equaling zero. That is 〈0, 0, 1, 1, 0, 0, . . .〉�〈1, 1, 0, 0, 1, 1, . . .〉 =
〈0, 0, 0, 0, . . .〉, but one of these, depending on the particular ultrafilter used
to define ≡, is equivalent to 〈0, 0, 0, 0, . . .〉.

Definition Fix a free ultrafilter. We define *R to be the set of all equiv-
alence classes of R̂ introduced by ≡. We denote equivalence class that con-
tains a particular sequence ŝ = 〈si〉∞i=1 by [s] or s. Thus, if r ≡ s in R̂, then
r = [r] = [s] = s.

3.2 Nonstandard Reals

We call elements of ∗R nonstandard or hyperreal numbers. We have that *R
is a commutative ring with zero 0 = [〈0, 0, 0, . . .〉] and unit 1 = [〈1, 1, . . .〉].
We also have that the sum of two positive elements is positive, the product
of two positive elements is positive, and a given number r, is either positive
or -r is positive. Thus we have that *R an ordered field. The notion of
absolute value in the nonstandard reals is the obvious extension of the notion
of absolute value in the standard reals.

Definition If r ∈ R, we define ∗(r) = *r, where *r = [〈r, r, . . .〉] ∈ R.

Definition If A ⊂ R then (A)∗ is the set of all elements *a, where a ∈ A.

Naturally, (R)∗ is the set of all standard numbers in ∗R.
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In order to show that ∗R contains numbers other than standard numbers,
we assume that U is a free ultrafilter. Consider ω = [〈1, 2, 4, 8, . . .〉]. This
number cannot equal any standard number *r = [〈r, r, r, . . .〉], for the set
{i ∈ N | r = i}. Thus, ∗R ⊃ (R)∗ and ω is called an infinite number.

Similarly, if we look at ω−1 = [〈1, 1
2
, 1

4
, 1

8
, . . .〉] /∈ (R)∗ and we call ω−1 an

infinitesimal.

3.3 Infinitesimals and unbounded numbers

Numbers in ∗R can either be standard or nonstandard. A number is consid-
ered standard if it is in both R and in ∗R. A number is considered nonstan-
dard if it is in ∗R, but not in R.

Definition Standard or nonstandard numbers in ∗R can be infinite, finite,
or infinitesimal.

A number is considered to be infinite if its absolute value is greater than
all standard natural numbers; finite if its absolute value is smaller than some
standard natural number; infinitesimal if it is greater than zero but smaller
than every positive standard real number.

Given the definition of a finite, infinite, and infinitesimal number, we can
then define near and finitely close, which allows us to relate nonstandard
real numbers to standard real numbers. We will use the definitions of near
and finitely close to define a map from the nonstandard reals to the standard
part of each nonstandard number.

Definition Given x, y ∈ ∗R, say that x and y are near if x − y is
infinitesimal. We write this as x ' y and x 6' y if x and y are not near.
We define the monad 1, m(x) of x to be the set of points that are near x.
Therefore, the set of infinitesimal are denoted by m(0).

Definition Again given x, y ∈ ∗R, we say that x and y are finitely close
if [x− y] is finite. We write x ∼ y if x and y are finitely close and x 6∼ y if x
and y are not finitely close. We define the galaxy of x to be the set of points
that are finitely close to x. The set of finite numbers is denoted by G(0).

1Monad, from Greek µováç meaning the source or one without division was, according
to the Pythagoreans the term for God.
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3.4 Standard-part map

For a finite ρ in the nonstandard reals, we define the standard-part map of ρ
to be the unique number r, in the standard reals, such that r is near ρ. This
defines a map std : G(0) → R from the finite numbers in the nonstandard
reals to the reals; this map is called the standard part map.

It should be noted that each finite ρ is near a unique real number since,
if z is near a and z is near b, then a and b are near, but a− b is real therefore
the standard part map is well defined.

Theorem The map std is an order-preserving homomorphism of G(0)
onto R:
i. std(x± y) = std(x)± std(y)
ii. std(xy) = std(x)std(y)

iii. std(x
y
) = std(x)

std(y)
, given that std(y) is not zero, equivalently given that y is

not infinitesimal and is in the galaxy of 0.
iv. std(x) ≤ std(y) if x ≤ y

4 Transfer Principle for Simple Sentences

“Without mathematical logic, mathematicians tried in vain for 300 years to
construct hyperreals. With it, Robinson was able to surmount the difficul-
ties with astonishing ease” (Henle and Kleinberg 1979). Thus, in order to
construct nonstandard analysis we must first start with a basic introduction
to logic.

4.1 Basic Logic

The symbols ∧ and →, are interpreted as “and” and “implies”. A symbol
s, a relational symbol P , or a function symbol f is called the name of s for
each s ∈ S, each relation P ∈ S or function f ∈ S.

Definition Terms are defined inductively as follows:
i. Each constant and variable symbol is a term
ii. If f is the name of a function of n variables and τ 1, . . . , τn are terms, then
f(τ 1, . . . , τn) is a term. A term containing no variables is a constant term.

Definition given any structure L, A Simple Sentence is a string of sym-
bols in LL which takes either of the following forms:
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A. Atomic Sentences. Such sentences are of the form P 〈τ 1, . . . , τn〉, where P
is the name of an n-ary relation and the τ i(i = 1, . . . , n) are constant terms.
B. Compound Sentences. Such sentences are of the form:

(∀x1) · · · (∀xn)
[ k∧

i=1

P i〈τ̂i〉 →
l∧

j=1

Q
j
〈σ̂j〉

]
where

∧n
i=1 Si denotes S1,∧ · · · ∧, Sn, τ̂i and σ̂j are ni-tuples and nj-tuples

of terms involving no other variables than x1, . . . , xn, ni and nj.

Definition A constant term is interpretable in L if either:
i. it is a constant symbol s naming an element s ∈ S, in which case it is
interpreted as s, or
ii. it is of the form f(τ 1, . . . , τn), where the terms τ 1, . . . , τn are interpretable
in L and hence can be interpreted as the elements s1, . . . , sn ∈ S, and the
n-tuple 〈s1, . . . , sn〉is in the domain of the function f named by f ; in this
case f(τ 1, . . . , τn) is interpreted as f(s1, . . . , sn).

If r is a name in LR of r ∈ R then r is also the name in L∗R of ∗r ∈ ∗R.
If P is a name in LR of the relation P on R then *P is a name in L∗R of
the relation *P on *R in particular, If f is a name in LR of the function
f on R then *f is a name in L∗R of the function *f on *R. The symbols
<,+, and · will denote the corresponding relation and functions inR and *R.

4.2 Skolem Function

A Skolem function replaces every existentially quantified variable, y, with a
term ψ(x1, . . . , xn) whose functional symbol ψ does not occur anywhere else
in the formula. The Skolem function introduces universally quantified vari-
ables x1, . . . , xn whose quantification precedes that of y and whose domain
is dependent on the quantified variable it is replacing.

An example of a Skolem Function is the following:
Consider, “for each nonzero x ∈ R, ∃y ∈ R so that xy = 1.” ψ is a Skolem
function of one variable whose domain is the set of nonzero reals, that satisfies
x · ψ(x) = 1.
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4.3 Transfer Principle

We will define the transfer principle on simple sentences to allow us to take
standard terms and transfer them into the nonstandard reals, making them
nonstandard terms. This allows us to go back and forth between standard
and nonstandard results.

Definition The ∗ − Transform of terms is defined by induction as fol-
lows:
i. If τ is a constant or variable symbol then τ = *τ .
ii. If τ = f (τ 1, . . . , τn) then *τ = *f(*τ 1, . . . , *τn).

Definition If Φ is a simple sentence in LR we define the ∗−Transform
of *Φ of Φ as follows:
a. If Φ is the atomic sentence P 〈τ 1, . . . , τn〉 then *Φ is *P 〈∗τ 1, . . . , ∗τn〉
b. If Φ is the sentence

(∀x1) . . . (∀xn)
[ k∧

i=1

P i〈τ̂i〉 →
l∧

j=1

Q
j
〈σ̂j〉

]
then *Φ is the sentence

(∀x1) . . . (∀xn)
[ k∧

i=1

∗P i〈∗τ̂i〉 →
l∧

j=1

∗Q
j
〈∗̂σj〉

]
where ∗τ̂ = 〈∗τ 1, . . . , ∗τn〉 if τ̂ = 〈τ 1, . . . , τn〉.

Theorem The Transfer Principle If Φ is a simple sentence in LR
which is true in R, then *Φ is true in *R.

5 Nonstandard Calculus

Nonstandard calculus is the approach to calculus that is based on Leibniz’s
ideas, but formalized by Robinson; it allows the simplicity and intuitive power
of infinitesimals, while still working in a mathematically rigorous number
system (Henle & Kleinberg). We will construct basic results of nonstan-
dard analysis only to prove the intermediate value theorem, which we will
prove using both standard techniques and nonstandard techniques to give
the reader the flavor of a nonstandard proof.
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5.1 Topology

We say that a subset A ∈ R is open if and only if the monad of a is con-
tained in *A for each a ∈ A. We say that A is closed if and only if m(a) ∩
*A is empty for each a in the complement of A. Therefore, the closure, Â,
of a set A ∈ R is the set of x ∈ R such that the monad of x∩ *A is not empty.

To obtain Robinson’s characterization of compactness, we need the fol-
lowing standard Lemma.

Lemma Each cover of A ⊆ R by open sets Ai,∀i ∈ I contains a finite
subcover if each cover of A by a collection of open intervals (an, bn) with
rational endpoints, contains a finite subcover.

Robinson’s Theorem The set A ⊂ R is compact if and only if for each
y ∈ *A there is an x ∈ A with x ' y, that is, every point in *A is near a
point in A.

Proof: Suppose that A is compact but y ∈ *A is not near any x ∈ A.
Then for each x ∈ A there is a δx > 0 in R such that | x− y |≥ δx. Since A
is compact, we take a finite subcover

Ai = { z ∈ R : | xi − z |< δxi
}

for i = 1, 2, . . . , n from the cover of A by the sets

Ax = {z ∈ R : | x− z |< δx}∀x ∈ A.

It follows that

(∀ y)
[
A 〈y〉∧ | x1 − y |≥ δx1 ∧ · · · ∧ | xn−1 − y |≥ δxn−1 →| xn − y | < δxn

]
is true in R. Transferring to *R, we obtain a contradiction with the fact
that y ∈ *A and | xi − y | ≥ δxi

for i = 1, 2, . . . , n.
Assume now that a cover Ai,∀i ∈ I contains no finite subcover. By the

lemma, there exists a cover of A by a countable collection of

In = {x ∈ R : an < x < bn},∀n ∈ N
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of open intervals with rational end points which has no finite subcover. Thus
there is a Skolem function ψ : N→ A so that

(∀n)(∀k)
[
N〈n〉 ∧ N〈k〉 ∧ k ≤ n ∧ ak < ψ(n)→ bk ≤ ψ(n)

]
is true in R. By transfer, we see that if ω is infinite, then *ψ(ω) 6∈ *(ak, bk)
for any k ∈ N. Thus, *ψ(ω) ∈ *A is not near a point x ∈ A. Since the
monad of x is contained in *(ak, bk) for some k ∈ N.
�

It should be noted that Robinson’s theorem is analogous to the Heine
Borel Theorem.

5.2 Limits and Continuity

Limits and continuity can be described using nonstandard analysis in much
the same way that topological notions were.

Proposition Recall that Â is the closure of the set A. Let f be defined
on A and choose a ∈ Â. Then, the limit limx→a f(x) exists if and only if
*f(x) ' *f(y) for all x, y ∈ *A with x ' a and y ' a but x 6= a, y 6= a.

Proposition Let f be defined on A ⊆ R. Then, f is continuous at a ∈ A
if and only if *f(x) ' f(a) for all x ∈ *A with x ' a.

Theorem If f and g are defined on A then ∀a ∈ A where f and g are
continuous, so are f + g and fg and, if g(a) 6= 0 then f

g
is as well.

Armed with the preceding four theorems, we can then move on to prove
the Intermediate Value Theorem using both the standard epsilon-delta ap-
proach and the nonstandard infinitesimal approach.

Intermediate Value Theorem If f is continuous on the closed and
bounded interval [a, b] and f(a) < d < f(b) for some d, then there exists a
c ∈ (a, b) with f(c) = d.

Proof using standard techniques Let X be the set of all x ∈ [a, b]
such that f(x) ≤ d. We have that S is non-empy since a ∈ X. We also
have that S is bounded above by b. Since the real numbers are complete, the
supremum c = supX exists. That is, c is the least upper bound for X.

Suppose that f(c) > d. Then we have that f(c) − d > 0, thus, ∃δ > 0
such that

| f(x)− f(c) |< f(c)− d
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for all x such that | x− c |< δ. This is because f is continuous. But, if this
were true, then

f(x) > f(c)− [f(c)− d] = d,

whenever | x−c |< δ. Thus c−δ is an upper bound, which is a contradiction
of c being the least upper bound.

Now suppose that f(c) < d. Again, ∃δ > 0 such that

| f(x)− f(c) |< d− f(c)

for all x such that | x− c |< δ. Then we have that

f(x) < f(c) + [d− f(c)] = d

for all x ∈ (c− δ, c+ δ). Thus there exist an x > c such that f(x) < d. This
again is a contradiction to c being the least upper bound. Thus we have that
f(c) = d. �

Proof using nonstandard techniques Consider points xk = a+k[b−a]
n

, 0 ≤
k ≤ n. If we consider the values of f at xk, we see that there exist a Skolem
function ψ : N → [a, b) satisfying f(ψ(n)) < d and f

(
ψ(n) + [b−a]

n

)
≥ d.

Hence the sentence

(∀n)
[
N〈n〉 → a ≤ ψ(n) < b ∧ f(ψ(n)) + d ∧ f

(
ψ(n)

[b− a]

n

)
≥ d
]

is true in R.
Transferring to *R, and letting n ∈ *N, we have *f

(
*ψ(n

)
< d and

*f
(
*ψ(n) + [b − a]

n

)
≥ d. Let c = std(*ψ(n)) = std

(
*ψ(n) + [b−a]

n

)
. By

continuity, we have f(c) ≤ d and f(c) ≥ d, hence f(c) = d. Note that c
cannot equal a or b or else f(c) would equal either f(a) or f(c). �

6 Robinson’s Philosophy of Nonstandard Anal-

ysis

Throughout most of their existence, infinitesimals were regarded as well
founded fictions that could be used to arrive at the correct answer, which
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would disappear once the correct answer had been obtained. Leibniz referred
to them as “fictions of the mind which enable one to adopt a succinct man-
ner of speaking and which can be eliminated after having been put to use in
mathematical reasoning.” Leibniz declared that for infinitesimals in particu-
lar, “everybody can substitute as small a quantity as he wishes” (Keisler et
al. 1979).

In spite of mathematical differences between Robinson’s nonstandard
analysis and and Leibniz’s infinitesimal calculus, Robinson suggests a similar
philosophical conception of infinity as Leibniz. That is, they both agree in a
distinction between a theological infinity and a mathematical infinity. Fur-
thermore, Robinson agrees with Leibniz’s assertion that infinitesimals are
fictions of the mind. However, Robinson objects to the claim that Leib-
niz’s use of infinitesimals was well founded. Robinson vehemently objects to
Leibniz’s inability to “state with sufficient precision just what rules were sup-
posed to govern [his] extended number system.” In fact, Robinson’s rigorous
definition of the rules governing infinitesimals is seen as perhaps Robinson’s
greatest contribution to mathematics (Keisler et al.).

Robinson’s take on infinity is what is to be expected given that he con-
sidered himself to be a formalist. Thus his philosophy of mathematics is
founded on the following three principles:
1. the principle of the theoretical meaninglessness of the notion of an infinite
totality,
2. the principle of the usefulness of the notion of infinity as a well-founded
fiction, and
3. the principle that there exists an intuitive, nonconventional core of math-
ematics and logic from which is presupposed in all mathematical thinking
(Keisler et al.).

Thus, it makes sense that while he objects to Leibniz’s construction of the
rules governing infinitesimals for claiming to be well founded while lacking
the appropriate rigor, he does not object to the use of infinitesimals once
they were rigorously constructed into the nonstandard reals.

Nonstandard analysis, while initially created by Robinson to introduce a
standard of rigor into Leibniz’s construction of the Calculus, has become a
tool which some would argue provides a better approach than the standard
epsilon-delta, to calculus and analysis. C. S. Peirce declared in The Law of
Mind “the idea of an infinitesimal involves no contradiction– as a mathe-
matician, I prefer the method of infinitesimals to that of limits as far easier
and less infested with snares”.
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Thus, the importance of nonstandard analysis exists on the grounds of us-
ing it as a rigorously defined tool to help understand the standard approach.
Nonstandard analysis is seen as a tool which can provide a new perspec-
tive on the results obtained and one that in many cases produces a shorter
more elegant, yet equivalent result to the results obtained by the standard
approach.

The significance of nonstandard analysis surpasses just its use as a tool.
The mere existence of nonstandard analysis and the consequence that it
achieves the exact same results as the standard approach, implies the inherent
truth in the results of the Calculus. The fact that regardless of the method
the results of the Calculus are the same, implies a higher level of truth.
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