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Abstract

The exact solution to the long-rod penetration equations is revisited, in search of improvements to the
solution efficiency, while simultaneously enhancing the understanding of the physical parameters that drive
the solution. Substantial improvements are offered in these areas. The presentation of the solution is
simplified in a way that more tightly unifies the special- and general-case solutions to the problem. Added
computational efficiencies are obtained by expressing the general-case solution for penetration and implicit
time in terms of a series of Bessel functions. Other extensions and efficiencies are addressed, as well.
Published by Elsevier Science Ltd.
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1. Background

The penetration equations that describe the behavior of a long rod that erodes while it
penetrates at high velocity were formulated independently by Alekseevskii [1] and Tate [2] in the
mid-1960s, and are given by

L ’V ¼ �Y=rR ðrod decelerationÞ; ð1Þ

1

2
rRðV � UÞ2 þ Y ¼

1

2
rTU2 þ R ðinterface stress balanceÞ; ð2Þ

V ¼ U � ’L ðerosion kinematicsÞ ð3Þ
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and

’P ¼ U ðpenetration definitionÞ; ð4Þ

where V is the rod velocity, U is the penetration rate, P is the rod penetration, and L is the rod
length, all functions of time. The constant parameters include the rod strength Y ; the target
resistance R; and the target-to-rod density ratio g ¼ rT=rR: The dots signify time differentiation.
These equations have typically been integrated numerically to achieve a solution. Walters and
Segletes [3] obtained an exact solution to these equations. However, the solution was not
expressed in terms of the primitive variables that appear in the original equations, but rather in
terms of a transformation variable, presented without explanation. Little attempt was made to
collate variables into an orderly fashion, leaving an incomplete sense for the term groupings that
actually drive the solution. While mathematically rigorous, the solution was somewhat
cumbersome to use.

This equation set has been re-examined, in search of improvements and extensions to the
solution method, as well as improved solution efficiency. A primary hindrance of the original
solution was in the evaluation of the rod velocity as a function of time. While this hindrance
remains with the current approach, it may be circumvented by choosing an independent variable
other than time, in the evaluation of rod erosion. Indeed, it is often more useful to express the
solution in terms of, for example, rod velocity, rather than the canonical function-of-time
solution.

Though the governing equations (1)–(4) pertain only to the time during which penetration and
erosion simultaneously occur, extensions to the original solution [3] are herein provided for the
subsequent stage of rigid-body penetration or rigid-target rod erosion. In addition to the general-
case solution to the penetration problem being addressed, several special-case conditions,
including the cases for which R ¼ Y ; and rR ¼ rT; respectively, will also be addressed. Not
considered herein, however, because of their simplicity, are three special cases for which R ¼ 0;
Y ¼ 0; and R ¼ Y ¼ 0; respectively. The present method, described subsequently, can be used to
describe the R ¼ 0 solution up until the moment that rigid-body penetration commences.
Subsequent behavior, however, will be governed by Poncelet flow. In the case of both Y ¼ 0 and
R ¼ Y ¼ 0; the solution becomes trivial in that the rod velocity remains constant until the rod is
totally consumed, at which point the event ceases. The penetration velocity and rod erosion
rate also remain constant for these cases, in accordance with Eqs. (2) and (3). For the case of
R ¼ Y ¼ 0; the steady-state erosion rates are governed by the Bernoulli equation.

2. Closed-form solution for L(V)

Without delay, we present the solution to the rod erosion equations, which is valid for all cases
(special cases [R ¼ Y ; rR ¼ rT] and the general case):

L

L0
¼

ffiffiffi
g

p
U � ’Lffiffiffi

g
p

U0 � ’L0

 !ðR=Y�1Þ
ffiffi
g

p
exp

V0
’L0 � V ’L

2Y=rR

� �
; ð5Þ
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where the ‘‘0’’ subscripts signify conditions at the onset of the penetration event. It is worthy to
note that while � ’L is the rate of rod erosion, the term

ffiffiffi
g

p
U would be the rate of rod erosion were

the case hydrodynamic (i.e., were R ¼ Y ¼ 0).
Eq. (5) was discerned from the following special- and general-case solutions, themselves

obtainable from Eqs. (1)–(3), expressed in terms of a single independent variable, V ; the rod
velocity. When special- and general-case problems are considered, however, the solutions, at first
glance, take on different appearances:

R ¼ Y :

Governing equation :

ffiffiffi
g

p
1 þ

ffiffiffi
g

p V ’V 2 ¼ �
Y

rR

.V; ð6Þ

L

L0
¼ exp

�rR

ffiffiffi
g

p
2Y ð1 þ

ffiffiffi
g

p
Þ
ðV2

0 � V2Þ

" #
: ð7Þ

g ¼ 1:

Governing equation :
V

2
þ

R � Y

rRV

	 

’V 2 ¼ �

Y

rR

.V; ð8Þ

L

L0
¼

V

V0

	 
ðR=Y�1Þ

exp
�rR

4Y
ðV2

0 � V2Þ
h i

: ð9Þ

General case:

Governing Equation :
1

1 � g
ð�gV þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gV2 þ 2ðR � Y Þð1 � gÞ=rR

q
Þ ’V 2 ¼ �

Y

rR

.V; ð10Þ

L

L0
¼

V

V0
�

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2ðR � Y Þð1 � gÞ=ðgrRV2Þ

p
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2ðR � Y Þð1 � gÞ=ðgrRV2

0 Þ
q

0
B@

1
CA

ðR=Y�1Þ
ffiffi
g

p
exp

�rR

ffiffiffi
g

p
2Y ð1 þ

ffiffiffi
g

p
Þ

"

� V2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2ðR � Y Þð1 � gÞ=ðgrRV2

0 Þ
q

�
ffiffiffi
g

p
1 �

ffiffiffi
g

p
0
@ � V2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2ðR � Y Þð1 � gÞ=ðgrRV2Þ

p
�

ffiffiffi
g

p
1 �

ffiffiffi
g

p
!#

:

ð11Þ

However, Eqs. (7), (9) and (11) have been organized and presented in a manner to demonstrate
the functional linkage between the special- and general-case solutions. For example, when either
R ¼ Y or g ¼ 1; the extended square-root terms of Eq. (11) become unity, leading to the simpler
(V=V0) monomial and (V2

0 � V2) exponential terms of Eqs. (9) and (7). When g ¼ 1; the leading
multiplier on the exponential term in Eq. (11) matches that of Eq. (9). Also, when R ¼ Y ; the
exponent on the monomial becomes zero, leading to the form of Eq. (7). While the forms for
UðV Þ and ’LðV Þ; obtainable from Eqs. (2) and/or (3), are vastly different in appearance for the
special and general cases, the solutions for LðV Þ nonetheless all share a common structured form
described by Eq. (5).
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3. Choice of model variable

While Eqs. (6), (8) and (10) choose to cast the problem in terms of rod velocity and its
derivatives, this is by no means the only option. Alternate expressions of the result, given as
L ¼ LðUÞ or L ¼ Lð ’LÞ may be obtained as

L

L0
¼

U

U0
�

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2ðR � Y Þ=ðgrRU2Þ

p
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2ðR � Y Þ=ðgrRU2

0 Þ
q

0
B@

1
CA

ðR=Y�1Þ
ffiffi
g

p
exp

2
4�rR

ffiffiffi
g

p
ð1 þ

ffiffiffi
g

p
Þ

2Y
:

� U2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2ðR � Y Þ=ðgrRU2

0 Þ
q

þ
ffiffiffi
g

p
1 þ

ffiffiffi
g

p � U2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2ðR � Y Þ=ðgrRU2Þ

p
þ

ffiffiffi
g

p
1 þ

ffiffiffi
g

p
0
@

1
A
3
5 ð12Þ

L

L0
¼

’L

’L0

�
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2ðR � Y Þ=ðrR

’L2Þ
p

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2ðR � Y Þ=ðrR

’L2
0Þ

q
0
B@

1
CA

ðR=Y�1Þ
ffiffi
g

p
exp

2
4�rRð1 þ

ffiffiffi
g

p
Þ

2Y
ffiffiffi
g

p :

� ’L2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2ðR � Y Þ=ðrR

’L2
0Þ

q
þ

ffiffiffi
g

p
1 þ

ffiffiffi
g

p � ’L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2ðR � Y Þ=ðrR

’L2Þ
p

þ
ffiffiffi
g

p
1 þ

ffiffiffi
g

p
0
@

1
A
3
5: ð13Þ

4. Model-variable transformation

The complications of having the model variable V ; U ; or ’L under the square root for the
general case of Eqs. (11), (12), or (13), respectively, may be circumvented with the selection of a
mathematically more ‘‘natural’’ variable than the velocity V ; U ; or ’L: Looking to Eq. (5) for
guidance, success has been found in

F ¼

ffiffiffi
g

p
U � ’Lffiffiffiffiffiffi
jSj

p ; ð14Þ

where the constant S is defined as 2ðR � Y Þ=rR: The variable F is always nonnegative and follows
somewhat the trend of rod velocity V (it actually equals V=

ffiffiffiffiffiffi
jSj

p
when g ¼ 1). Not surprisingly, F

is also proportional to
ffiffiffi
z

p
; which was the key transformation variable employed in the original

derivation [3]. The key benefit to using the F transformation is that ’L and U ; rather than requiring
square root terms when expressed in V ; may be expressed more simply in terms of F as

’L ¼ �

ffiffiffiffiffiffi
jSj

p
2

Fþ sgnðSÞ
1

F

	 

ð15Þ

and

U ¼

ffiffiffiffiffiffi
jSj

p
2
ffiffiffi
g

p F� sgnðSÞ
1

F

	 

; ð16Þ
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where the signum function, sgnðxÞ; denotes the sign of the argument [sgnðxÞ ¼ x=jxj for xa0; and
sgnðxÞ ¼ 0 for x ¼ 0], in this case the sign of S: The rod velocity, V ; may also be obtained directly,
by substituting these expressions into Eq. (3):

V ¼

ffiffiffiffiffiffi
jSj

p
2
ffiffiffi
g

p ð
ffiffiffi
g

p
þ 1ÞFþ sgnðSÞ

ð
ffiffiffi
g

p
� 1Þ

F

 !
: ð17Þ

When F is used in preference to rod velocity V as the independent variable, the governing
equation (5) leads to the following expression:

L

L0
¼

F
F0

	 
ðR=Y�1Þ
ffiffiffi
g

p
exp �

1

4
ffiffiffi
g

p R

Y
� 1

����
���� ð

ffiffiffi
g

p
þ 1ÞF2

0 þ
ð
ffiffiffi
g

p
� 1Þ

F2
0

 !"(

� ð
ffiffiffi
g

p
þ 1ÞF2 þ

ð
ffiffiffi
g

p
� 1Þ

F2

 !#)
: ð18Þ

With minimal rearrangement, the variable F can be made to appear always in squared form.
It is for this reason that Walters and Segletes [3] selected their transformation variable, z;
proportional to F2. We will do the same here, though with a different proportionality constant,
so that

z ¼ F2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

p
þ 1ffiffiffi

g
p

� 1
��� ���

vuut : ð19Þ

By doing so, the expression for residual rod length, Eq. (18), becomes

L

L0
¼ ðz=z0Þ

ðR=Y�1Þð2
ffiffi
g

p
Þexp �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g� 1j j

p
4
ffiffiffi
g

p R

Y
� 1

����
����½ðz071=z0Þ � ðz71=zÞ


( )
; ð20Þ

where the conditional operators in Eq. (20) are chosen as ‘‘+’’ for g > 1 and ‘‘�’’ for go1; and

ffiffiffi
z

p
¼

ffiffiffi
g

p
þ 1ffiffiffi

g
p

� 1
��� ���S2

0
B@

1
CA

1=4

ð
ffiffiffi
g

p
U � ’LÞ ¼

ffiffiffi
g

p
V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gV2 þ ð1 � gÞS

p
ffiffiffi
g

p
� 1

��� ���ð ffiffiffi
g

p
þ 1Þ3S2

h i1=4 : ð21Þ

Like Eq. (11), the result given by Eq. (20) expresses rod length in terms of a single independent
variable, in this case z: The advantage of Eq. (20) over Eq. (11) is in removing the model variable
from under a radical. The choice of a proportionality constant different from that used in the
prior work [3], when defining z; provides a result that reduces the number of constant parameters
in the exponent. More importantly, however, the appearance in the exponential of the model
variable in the specific form of (z71=z) will greatly expedite the evaluation of rod penetration, as
will be subsequently shown.
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5. Penetration

The evaluation of penetration by way of integrating Eq. (4) may be transformed with Eq. (1)
to give

P ¼
Z t

0

U dt ¼ �
1

’V0

Z V0

V

L

L0
U dV : ð22Þ

The particular functional forms for L and U will govern the form of the solution.

5.1. R ¼ Y

Penetration may be directly evaluated in closed form for the simple case of R ¼ Y ; wherein L is
given by Eq. (7), and U is proportional to V throughout the penetration event. In this case, the
final penetration (given by Pf as U and V approach zero) is

R ¼ Y : Pf ¼
L0ffiffiffi
g

p 1 � exp
�rR

ffiffiffi
g

p
2Y ð1 þ

ffiffiffi
g

p
Þ

V2
0

" # !
: ð23Þ

5.2. g ¼ 1

For the g ¼ 1 special case, where the penetration velocity U is given algebraically by U ¼
ðV � S=V Þ=2; the penetration may be calculated, as per Eq. (22), in closed form if the value of the
V exponent in Eq. (9), given as ðR � Y Þ=Y ; is an even integer (i.e., R=Y is an odd integer). As an
alternative, for cases without the appropriate integer exponents, the penetration for the g ¼ 1
special case may be evaluated by way of series solution in terms of velocity. One way to achieve
this is to express the penetration as

g ¼ 1 :
P

L0
¼

XN
j¼0

aj
rRV2

0

4Y

	 
j
" #

�
L

L0

XN
j¼0

aj
rRV2

4Y

	 
j
" #

ð24Þ

and match the derivative of P to the terms of U ; given by U ¼ ðV � S=V Þ=2: With this approach,
one obtains that a0 ¼ �1; a1 ¼ 2=ð1 þ rRS=4Y Þ; and for the remaining terms, aj ¼ �aj�1=ð j þ
rRS=4Y Þ: Note that rRS=4Y equals ðR=Y � 1Þ=2: While the series terms alternate in sign, the fact
that j is in the denominator of the recursion formula indicates that the rate of convergence for this
solution approach should be similar to that for the exponential series.

Perhaps a more forthright approach for the evaluation of penetration for the g ¼ 1 special case
(and less prone to the precision problems of evaluating an alternating series) is to directly
integrate LU dV ; as per Eq. (22), by initially expanding the exponential term of L into a series,
and integrating term by term to the desired level of precision. As before, S ¼ 2ðR � Y Þ=rR: By
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integrating this expression with respect to V ; as per Eq. (22), one may obtain

g ¼ 1:

P

L0
¼ exp

�rRV2
0

4Y

� � XN
j¼0

1

j!

j �
rRS
4Y

j þ
rRS
4Y

rRV2
0

4Y

	 
j

�
V2

V2
0

	 
rRS=4YXN
j¼0

1

j!

j �
rRS
4Y

j þ
rRS
4Y

rRV2

4Y

	 
j

8><
>:

9>=
>;: ð25Þ

5.3. General case

In evaluating the penetration for the general case, the solution becomes more complicated but
can nonetheless be made more efficient compared to the method presented in the original solution
[3]. Efficiencies are achieved in several ways. The use of rod length L in the form of Eq. (20)
retains integer-powered polynomials in the exponential term. As such, the series expansion of the
exponential, by which the integrals are evaluated, does not require the evaluation of fractionally
powered polynomial expansions, as did the original method [3]. But more importantly, by having
transformed L into a form where the exponential argument is of the explicit form cðz71=zÞ; a
method may be used to expand the exponential in an efficient way, reducing the expansion of the
exponential to power n from a cost of ðn þ 1Þðn þ 2Þ=2 monomial evaluations in z; to one of 2n þ 1
evaluations in z:

The equation describing the penetration, Eq. (22), may be reorganized to obtain an expression
in terms of the transformation variable, z:

P ¼
Z t

0

U dt ¼
Z z

z0

U

’V

dV

dz
dz ¼ �

1

’V0

Z z0

z

L

L0
U

dV

dz
dz: ð26Þ

Using Eqs. (17) and (19), the rod velocity is expressible in terms of z; so that dV=dz may be
computed as

dV

dz
¼

ð g� 1j jS2Þ1=4

4
ffiffiffi
g

p ð
ffiffiffi
g

p
þ 1Þ1=2

z1=2
� sgn½ðg� 1ÞS


ffiffiffi
g

p
� 1

��� ���1=2
z3=2

2
64

3
75: ð27Þ

In a similar vein, from Eqs. (16) and (19), U may be expressed in terms of z; and the product,
U dV=dz; may therefore be computed as

U
dV

dz
¼

g� 1j j1=4 Sj j
8g

g� 1j j1=4�sgnðSÞ
ð
ffiffiffi
g

p
þ 1Þ3ffiffiffi
g

p
� 1

��� ���
2
64

3
75

1=4

þ sgnðg� 1Þ

ffiffiffi
g

p
� 1

��� ���3
ð
ffiffiffi
g

p
þ 1Þ

2
64

3
75

1=4

1

z

0
BB@

8>><
>>:

þ sgnðg� 1Þ
g� 1j j1=4

z2

9>>=
>>;; ð28Þ
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which is of the form

U dV=dz ¼ Aða0 þ a1=z þ a2=z2Þ: ð29Þ

Substituting this result and the transformed expression for L; given by Eq. (20), into Eq. (26)
allows the integral for penetration to take the form

P ¼ BP

Z z0

z

ða0 þ a1=z þ a2=z2Þzb exp½cðz71=zÞ
 dz; ð30Þ

where the conditional minus sign in the exponential is taken when go1; and ai; b; c; and BP are all
constants, expressible as

a0 ¼ g� 1j j1=4; ð31Þ

a1 ¼ �sgnðR � Y Þ
ð
ffiffiffi
g

p
þ 1Þ3ffiffiffi
g

p
� 1

��� ���
2
64

3
75

1=4

þ sgnðg� 1Þ

ffiffiffi
g

p
� 1

��� ���3
ð
ffiffiffi
g

p
þ 1Þ

2
64

3
75

1=4
0
BB@

1
CCA; ð32Þ

a2 ¼ sgnðg� 1Þ g� 1j j1=4; ð33Þ

b ¼
1

2
ffiffiffi
g

p R

Y
� 1

	 

; ð34Þ

c ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g� 1j j
g

s
R

Y
� 1

����
���� ð35Þ

and

BP ¼ L0
R

Y
� 1

����
���� g� 1j j1=4

4gzb
0

exp½�cðz0 þ sgnðg� 1Þ=z0Þ
: ð36Þ

The form of Eq. (30) is basically identical to an intermediate step of the original solution [3],
though with differently defined constants. The prior work [3] opted to transform the equation
again to eliminate the leading polynomials, but did so at the expense of introducing non-integer
powers into the exponential term. Then, the penetration equation was solved by expanding the
exponential into a power series of ðA1zg þ A2z�gÞ j terms and expanding each ðA1zg þ A2z�gÞ j

term into j þ 1 monomials, using a binomial expansion. The net result of the total expansion was
that, to include terms out to a power of j ¼ n; a total of ðn þ 1Þðn þ 2Þ=2 monomials were
generated, and then integrated term by term. With n routinely exceeding 20 to obtain the desired
precision, and approaching 100 for certain initial conditions, the computational burden was
substantial, though still more efficient than a numerical integration of Eqs. (1)–(4).

While the currently proposed method still relies on a series expansion of the exponential to
perform the integration, a technique permits a streamlined method for achieving the expansion. In
particular, a method exists to expand the subject exponential series with the form

exp½cðz71=zÞ
 ¼
XN

j¼�N

C7
j z j; ð37Þ

S.B. Segletes, W.P. Walters / International Journal of Impact Engineering 28 (2003) 363–376370



where the Cj
+ or C�

j coefficients are a function only of the parameter c: In particular, the C�
j

constants are given by evaluations of Bessel functions of the first kind, such that C�
j ¼ Jjð2cÞ: The

Cþ
j constants, by contrast, are given by modified Bessel functions of the first kind, such that

Cþ
j ¼ Ijð2cÞ: The expansion using the form of Eq. (37), to include terms of power z7n; requires the

evaluation of only 2n þ 1 monomials in z, and therefore represents a significant improvement over
the method previously employed [3], which required the evaluation of ðn þ 1Þðn þ 2Þ=2 monomials
in z for identical precision.

While there is an overhead associated with the evaluation of the C7
j parameters, given by the

converging series that defines the Bessel functions for integer order:

C7
j ¼

PN
i¼0

ð71Þic2iþj

i!ði þ jÞ!
; jX0

ð71Þ jC7
�j; jo0;

;

8><
>: ð38Þ

the parameter c is fixed by the initial conditions (material properties) of the penetration problem.
As such, the Cþ

j or C�
j terms may be calculated once at the onset of the analysis, regardless of how

many z values (i.e., velocities) for which the solution needs evaluation. Furthermore, there exists a
recursive technique for evaluating the C7

j parameters of Eq. (38), based on the recursions

Cþ
j

Cþ
j�1

¼
1

j

c
þ

Cþ
jþ1

Cþ
j

ð39aÞ

and

C�
j

C�
j�1

¼
1

j

c
�

C�
jþ1

C�
j

; ð39bÞ

which thereby offer further computational savings.
The integration for penetration is, thus, finally achieved by employing this optimized expansion

and integrating term by term and evaluating at the desired limits. When b is not an integer, which
is the typical case, the result may be expressed as

General case : P ¼ BP

XN
j¼�N

ða0C7
j�1 þ a1C7

j þ a2C7
jþ1Þ

z jþb

j þ b

�����
z0

z

; ð40Þ

where the Cþ terms are used when g > 1 and the C� terms are used when go1: For the case when
b is an integer, the single term of Eq. (40) that would otherwise produce a zero in the denominator
(i.e., the term for which j ¼ �b) originated from a 1=z integration, and would actually have
produced, upon integration, the logarithmic term lnðzÞ; instead of z jþb=ð j þ bÞ:

6. Implicit time

Though these solutions for LðVÞ and PðV Þ bypass the intermediate evaluation of V ðtÞ; the
penetration variables may, if needed, be implicitly expressed in terms of time, by integration
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of LðV Þ;

t ¼
Z V

V0

dV

’V
¼ �

1

’V0

Z V0

V

L

L0
dV ; ð41Þ

in order to obtain tðV Þ: As in the case of penetration, a closed-form solution to Eq. (41) will be
possible only for the special case of g ¼ 1; and then only when ðR � Y Þ=Y is an odd integer (i.e.,
R=Y is even). In all other cases, the integration of Eq. (41) will take the form of a series solution.
Of the several ways to obtain a series integration of the special case solutions, a power-series
expansion is preferable to a repeated integration-by-parts solution because it avoids an alternating
series, for the case when the ‘‘c’’ constant associated with the exp½�cðV2

0 � V2Þ
 term is positive.
Such is always the case for penetration problems. Thus, the special-case solutions for tðVÞ may be
evaluated as

R ¼ Y :

t ¼
rRL0V0

Y
exp

�rR

ffiffiffi
g

p
V2

0

2Y ð1 þ
ffiffiffi
g

p
Þ

" # XN
i¼0

1

i!ð2i þ 1Þ

rR

ffiffiffi
g

p
V2

0

2Y ð1 þ
ffiffiffi
g

p
Þ

 !i"

�
V

V0

XN
i¼0

1

i!ð2i þ 1Þ

rR

ffiffiffi
g

p
V2

2Y ð1 þ
ffiffiffi
g

p
Þ

 !i #
: ð42Þ

g ¼ 1:

t ¼
rRL0V0

Y
exp

�rRV2
0

4Y

� � XN
i¼0

1

i!ð2i þ R=Y Þ
rRV2

0

4Y

	 
i

�
V

V0

	 
R=Y
"

�
XN
i¼0

1

i!ð2i þ R=Y Þ
rRV2

4Y

	 
i
#
: ð43Þ

For the general case, a solution is most profitably obtained in a manner analogous to the
penetration evaluation, in which a transformation to z facilitates a streamlined series solution:

t ¼
Z V

V0

dV

’V
¼ �

1

’V0

Z z0

z

L

L0

dV

dz
dz: ð44Þ

This integration may be staged through the substitution of Eqs. (20) and (27), to give the
following form:

t ¼ Bt

Z z0

z

ðd0=z1=2 þ d1=z3=2Þzb exp½cðz71=zÞ
 dz; ð45Þ

where the conditional minus sign is taken when go1: Here, b and c are defined as before, by
Eqs. (34) and (35), while

d0 ¼ ð
ffiffiffi
g

p
þ 1Þ1=2; ð46Þ

d1 ¼ �sgn½ðg� 1ÞðR � Y Þ

ffiffiffi
g

p
� 1

�� ��1=2 ð47Þ
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and

Bt ¼ L0

ffiffiffiffiffiffi
rR

Y

r
1

8g
R

Y
� 1

����
����

	 
1=2 g� 1j j1=4

zb
0

exp½�cðz0 þ sgnðg� 1Þ=z0Þ
: ð48Þ

By using a method analogous to that in Eqs. (37)–(40), and with the same definitions for C7
j

[given by Eq. (38), where the ‘‘+’’ solution applies for g > 1; and the ‘‘�’’ solution for go1], the
expression for t given by Eq. (45) may be expanded in a series as

General case : t ¼ Bt

XN
j¼�N

ðd0C7
j�1 þ d1C7

j Þ
z jþb�1=2

j þ b � 1=2

�����
z0

z

: ð49Þ

Like Eq. (40), there is one exception to the general validity of this result, specifically for the case
when b is precisely a half integer. If and only if this is the case, a single term of Eq. (49) will require
modification: namely, the term for which j þ b � 1=2 exactly equals zero, originating from a 1/z
integration. This integration would, for this one term only, rightfully have produced a lnðzÞ term,
instead of z jþb�1=2=ð j þ b � 1=2Þ: As with the evaluation of penetration, the summation of
Eq. (49) is carried out for j over some finite range from �n to þn so as to achieve the desired level
of precision.

7. Terminal rod length

The ‘‘terminal’’ rod length may be ascertained for the various solution cases [from Eqs. (7), (9)

or (11)], by setting V to its terminal value, Vx ¼
ffiffiffiffi
S

p
for the case of R > Y and Vx ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�S=g

p
for

RoY ; with the parameter S given by S ¼ 2ðR � Y Þ=rR: When R > Y ; this termination
corresponds to the point where U ¼ 0; when the penetration ceases (though the rod may
continue to erode thereafter). For RoY ; the termination corresponds to the point where ’L ¼ 0;
when the rod erosion ceases (though the rod may continue to penetrate as a rigid body thereafter).
This terminal state, denoted with the subscript ‘‘x’’, corresponds not to the end of the ballistic
event, but rather to the time at which the governing Eqs. (1)–(4) cease to apply. In those governing
equations, developed for the case of a simultaneously eroding rod and target, the subscript ‘‘x’’
condition corresponds to the moment at which either the rod or the target stops eroding. In
general, these two conditions do not occur simultaneously. The rod length (normalized) at the
terminal state ‘‘x’’ for the various cases are expressible as

R ¼ Y :
Lx

L0
¼ exp

�rR

ffiffiffi
g

p
2Y ð1 þ

ffiffiffi
g

p
Þ

V2
0

" #
; ð50Þ

g ¼ 1 :
Lx

L0
¼

V2
0

jSj

� ��ðR=Y�1Þ=2

exp �
1

2

R

Y
� 1

����
���� V2

0

jSj
� 1

	 
� �
; ð51Þ
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General case:

Lx

L0
¼

ffiffiffi
g

p
ðV0=

ffiffiffiffiffiffi
Sj j

p
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðV0=

ffiffiffiffiffiffi
Sj j

p
Þ2 þ sgnðSÞð1 � gÞ

q
1 þ

ffiffiffi
g

p
0
@

1
A

�ðR=Y�1Þ=
ffiffi
g

p
exp

2
4�

R

Y
� 1

����
����:

�
ðV0=

ffiffiffiffiffiffi
Sj j

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðV0=

ffiffiffiffiffiffi
Sj j

p
Þ2 þ sgnðSÞð1 � gÞ

q
� gðV0=

ffiffiffiffiffiffi
Sj j

p
Þ2

1 � g
�

1 þ sgnðSÞ
2

0
@

1
A
3
5: ð52Þ

For cases where R > Y ; this terminal length corresponds to that length of rod as of the moment
that penetration ceases. For RoY ; this is the rod length at the onset of rigid-body penetration.

8. Residual erosion and penetration behavior

Eqs. (1) and (2) are valid only while there is simultaneous target penetration and rod erosion.
Except for the special case of R ¼ Y ; ’L and U will not simultaneously approach zero. In the
general case then, the physical event will continue with either residual rod erosion following the
cessation of penetration (when R > Y ) or residual rigid body penetration following the cessation
of rod erosion (when RoY ). These afterflow events are amenable to closed-form analytical
solution. Continuing to denote the state at this transition point (the moment of transition to either
rigid target or rigid rod) with the use of the subscript ‘‘x’’, the absolute final state, when the rod
velocity itself finally reaches zero, will be denoted with the subscript ‘‘f ’’. Recall that Vx ¼

ffiffiffiffi
S

p
when R > Y ; while Vx ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�S=g

p
when RoY ; where S ¼ 2ðR � Y Þ=rR:

8.1. Residual rod erosion

For the case of R > Y ; the target becomes rigid while rod erosion continues. To deal with this,
Eq. (2) is replaced by the constraint U ¼ 0: The kinematic constraint of Eq. (3) becomes, as a
result, V ¼ � ’L: Solving Eq. (1) for L; differentiating, and substituting the revised kinematic
constraint to eliminate ’L; one obtains as the governing equation

V ’V 2 ¼ �ðY=rRÞ .V: ð53Þ

The result (as a function of V ) is that

L ¼ Lx exp
�rR

2Y
ðV2

x � V2Þ
h i

: ð54Þ

Evaluating the penetration and rod length at the final state (where V ¼ 0), one obtains Pf ¼ Px

and

Lf ¼ Lx exp
�rRV2

x

2Y

� �
: ð55Þ

Because of the similarity between the governing equation here, Eq. (53), and the special case
R ¼ Y governing equation, Eq. (6), the duration of this residual-erosion phase of the rod may
likewise be calculated with the same power-series-solution form used to calculate event duration
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for the special cases. Use of this form leads to

t � tx ¼
rRLxVx

Y
exp

�rRV2
x

2Y

	 
 XN
i¼0

1

i!ð2i þ 1Þ
rRV2

x

2Y

	 
i

�
V

Vx

XN
i¼0

1

i!ð2i þ 1Þ
rRV2

2Y

	 
i
" #

; ð56Þ

which, as V approaches zero, becomes the following result:

tf � tx ¼
rRLxVx

Y
exp

�rRV2
x

2Y

	 
XN
i¼0

1

i!ð2i þ 1Þ
rRV2

x

2Y

	 
i

: ð57Þ

8.2. Residual rigid-body penetration

For the alternate case of RoY ; a state of rigid-body penetration is reached after the rod erosion
ceases. As before, Eq. (2) is replaced by the constraint ’L ¼ 0: The kinematic constraint (3)
becomes, as a result, V ¼ U : However, there is one additional modification required for the
governing equations. In particular, the force causing the rod deceleration in Eq. (1) is no longer Y ;
since the rod is no longer in a plastic state. Rather, it is a diminished stress state applied by the
pressure head and resistance of the target, 1=2rTU2 þ R: But since, kinematically, V ¼ U and L

remains fixed at Lx; the rod deceleration equation becomes

Lx
’V ¼ �ð1=2rTV2 þ RÞ=rR: ð58Þ

This may be solved as

V ¼ U ¼

ffiffiffiffiffiffi
2R

rT

s
tan

g
Lx

ffiffiffiffiffiffiffiffi
R

2rT

s
ðtx � tÞ þ tan�1 Vx

ffiffiffiffiffiffi
rT

2R

r	 
" #
: ð59Þ

The final time, at which the velocity drops to zero, is found to be

tf ¼ tx þ
Lx

g

ffiffiffiffiffiffiffiffi
2rT

R

r
tan�1 Vx

ffiffiffiffiffiffi
rT

2R

r	 

: ð60Þ

The expression for U ; which is Eq. (59), may be integrated one more time to obtain the differential
penetration that occurs during the afterflow phase. One obtains

P � Px ¼
2Lx

g
log cos

g
Lx

ffiffiffiffiffiffiffiffi
R

2rT

s
ðtf � tÞ

" #
� log cos tan�1 Vx

ffiffiffiffiffiffi
rT

2R

r	 
( )
: ð61Þ

When evaluated at t ¼ tf ; and employing some trigonometric substitutions, the final result is that
Lf ¼ Lx and the afterflow penetration is

Pf � Px ¼
Lx

g
log 1 þ

rTV2
x

2R

	 

: ð62Þ

9. Conclusions

This report presents updated results related to the exact solution of the long-rod penetration
equations, formulated by Alekseevskii [1] and Tate [2], and first solved by Walters and Segletes [3].
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While the original solution [3] is accurate and comprehensive, there have been a number of
improvements or enhancements, both to the presentation and the solution approach.

Eq. (5) is a concise analytical presentation of rod length as a function of rod velocity, valid for
both special and general cases, providing an enhanced sense for the terms that drive the analytical
solution. Eqs. (6)–(11) compare and contrast the special- and general-case analytical solutions,
while Eqs. (12) and (13) present the result in terms of an alternate model variable. The key
independent variable transformation (to z), unexplained but indispensable to the original
solution, is herein developed more fully and much of its mystery is thereby uncloaked. Further, its
expression is slightly altered from the original solution, resulting, by comparison, in a form
amenable to a highly streamlined series solution for penetration PðzÞ; as Eq. (40), or implicit time,
tðzÞ; as Eq. (49). Extensions are presented to the original solution, which account for the period of
rigid-body penetration or rigid-target rod erosion that follows the period of eroding-body
penetration addressed by the original penetration equations.

While based on the original solution of Walters and Segletes [3], the current work offers
enhanced appreciation and understanding of the original effort, as well as extensions to the
original work. Finally, the streamlined techniques presented herein make any implementation of
the solution significantly more efficient than the original solution technique.
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