
Digital Protection
Editors: Michael Lesk, lesk@acm.org
Martin R. Stytz, mstytz@att.net
Roland L. Trope, roland.trope@verizon.net

you’re a malware analyst, and you’ve
discovered a worm that propagates
slowly across networks, but you’re
not sure what else it might be doing.
Your company’s antivirus software
product depends on you to reverse
engineer the worm code to stop it. If
you break the code first, you will
stake your claim to fame.

These two scenarios illustrate the
yin and yang of reverse engineering
and anti-reverse engineering. In the
first, hackers want to reverse en-
gineer your software as the first step
to cracking your copy-protection
scheme, which you naturally want
to prevent. In the second scenario, if
you can’t reverse engineer the worm
quickly, it might spread widely, caus-
ing unknown damages. In one case,
it’s imperative to prevent reverse en-
gineering to stop software piracy
and the loss of revenue. On the flip
side, reverse engineering software is
critical for defending computer net-
works. Reverse engineering tech-
niques, as well as those used to defeat
reverse engineering, give scientists,
engineers, and hackers alike hope
that they can protect or copy soft-
ware, and defend against or prolifer-
ate malicious attacks.

This column presents the re-
verse-engineering battle from an
anti-debugging perspective. Anti-
debugging encompasses the strate-

gies, techniques, and tricks that pro-
tected software uses to attack
debuggers and thwart reverse engi-
neering. Current research on anti-re-
verse engineering typically focuses on
obfuscation, virtual machine detec-
tion, antidisassembly, and tamper
proofing,1 but little attention has been
paid to anti-debugging—an impor-
tant tool in the software protection ar-
senal. This lack of attention is
surprising because anti-debugging is
frequently employed in practice by
malicious code writers as well as in
copy-protection techniques.

We focus here on describing
state-of-the-art attacks on debug-
gers to prevent reverse engineering.
You can use the information we pre-
sent as part of your strategy to
protect your software or to assist you
in overcoming the anti-debugging
tricks present in malicious software.

Detection
To understand anti-debugging, it’s
important to first understand that a
debugger isn’t a solitary and inde-
pendent system. Rather, debugging
systems are composed of multiple,
layered debugging subsystems that
collectively facilitate debugging.
Each debugging subsystem provides
a different level of support; the
canonical debugging system is com-
posed of a hardware layer beneath a

software layer, and a not-to-be-
underestimated human layer.

The CPU provides the hardware
debugging subsystem—for example,
the Intel x86 architecture supports
debugging through tracing support,
debug registers, and special interrupt
instructions. Software debuggers
such as GDB (GNU Debugger), Ol-
lyDbg, and SoftICE provide an in-
terface that links the hardware
subsystem and the human analyst.

Anti-debugging tricks work by
detecting or exploiting specific de-
bugging subsystems. Software that
employs anti-debugging techniques
can determine if it’s being debugged
by identifying artifacts—side effects
of the debugging process—whether
from the hardware, software, or
human layers. Software can passively
observe or actively invoke artifacts.
For example, software processes can
detect hardware debugging artifacts
when a hardware debugging subsys-
tem uses debug registers to place
breakpoints on processes. The soft-
ware process needs only to check
debug registers for specific values.2

Detecting debugging through a
debug register (shown in Figure 1) is
an example of passive observation of
a hardware debugging artifact.
Processes can also actively produce
unintended side effects from debug-
ging. For instance, SoftICE, a kernel
mode software debugger, contains a
well-known backdoor that allows
debugged processes to communi-
cate with it. As a result, a process can
check for SoftICE’s presence by at-
tempting to access the backdoor
communication channel.3

Processes can also detect human
behavior. When a process detects an
unexpected pause in execution, for

MICHAEL N.
GAGNON,
STEPHEN

TAYLOR,
AND ANUP K.
GHOSH

George
Mason
University

Y ou’re a software engineer, and you’ve developed a

great copy-protection scheme that will save your

company millions in lost revenue due to piracy.

You know your protection scheme will work fan-

tastically—as long as hackers don’t circumvent it. Or perhaps

Software Protection
through Anti-Debugging

82 PUBLISHED BY THE IEEE COMPUTER SOCIETY ! 1540-7993/07/$25.00 © 2007 IEEE ! IEEE SECURITY & PRIVACY

Digital Protection

example, it can presume that a human
paused the process by using a debug-
ger. It’s trivial for processes to detect
pauses in execution; they simply take
two time samples and compare
them—a large difference between two
time samples implies that a human has
paused the process. Processes can take
samples from multiple sources includ-
ing hardware, the operating system,
and external computers in a network.

Penalizing
the debugger
By itself, detection doesn’t thwart
debugging: following detection, a
debugged process must penalize the
debugger. Processes can impose
many potential penalties on debug-
gers, but the simplest one is termina-
tion. Once a process becomes aware
of debugging, it can simply decide to
exit. Although this might seem like
the most obvious action following
detection, it isn’t ideal—not only
does immediate termination tip off
the reverse engineer that the process
has detected the debugging attempt,
it also lets him or her know the anti-
debugging code’s location. At this
point, the analyst will likely restart
the process and attempt to circum-
vent the anti-debugging trick.

The best penalty to choose de-
pends on the purpose of protection.
If a process is trying to protect an al-
gorithm’s intellectual property, for
instance, it could surreptitiously
avoid the algorithm, execute a more
conventional algorithm when de-
bugged, covertly cause the algo-
rithm to behave abnormally, or
introduce a fault that causes itself to
crash later during execution.

Detection is only useful if the
process chooses its penalties wisely.
Remember, the end goal of anti-
debugging is to thwart the entire
debugging system.

Exploitation
Processes can attack debuggers by
exploiting any of the specific debug-
ging subsystems. To do so, it must
first have a vulnerability, which is

often the result of intended features,
unintended bugs, or weaknesses in
the debugging subsystems.

The Intel x86 architecture, for ex-
ample, specifies that hardware break-
points are ineffective when placed on
instructions immediately following a
POP SS or MOV SS instruction.4

This is an intended feature of the ar-
chitecture—it prevents the existence
of invalid stacks during interrupt calls.
Figure 2 shows how this design fea-
ture can be used to shield instructions
from hardware debugging.

The user-mode software debug-
ger, OllyDbg, contains a bug that lets
processes ignore breakpoints placed
on their entry points. Figure 3 shows
an example of modifying a program’s
Portable Executable (PE) header to
thwart debugging. At load-time, Ol-
lyDbg interprets these values as evi-
dence of an invalid binary image.
Although OllyDbg considers the
program to be invalid, it still allows it
to be executed. When executed, any
breakpoints placed on the process’s
entry point will be ignored, allowing
those instructions to be executed
without being debugged.5

Processes can also target human
weaknesses for exploitation in several
ways. Because debugging is only suc-
cessful when the reverse engineer
gains useful knowledge, taxing the re-
verse engineer increases the amount of
time that must be spent debugging a
process. Thus, a process that makes de-
bugging extremely arduous increases
the likelihood that the reverse engi-
neer will eventually give up. Processes
can do this by overloading reverse en-
gineers with meaningless information
such as red herring functions and data,
or they can confuse reverse engineers
by burying their algorithms in com-
plex obfuscations. A reverse engineer’s
patience is ultimately exploited
through the sum of all the anti-debug-
ging techniques a process can present.

Overcoming
anti-debugging
We’ve discussed a variety of ways in
which processes can thwart debug-

gers: penalizing the debugger fol-
lowing passive and active detection;
exploiting features and bugs in the
debugger; and targeting inherent
human weaknesses to confuse, an-
noy, and perplex the person sitting
behind the keyboard. At the end of
the day, though, how effective are at-
tacks on debuggers? Can they always
stop reverse engineering? What are
the limitations of these attacks? How
can reverse engineers overcome
these attacks?

There are a few of points to make
here. First, every debugging attack
targets a specific debugging subsys-

www.computer.org/security/ ! IEEE SECURITY & PRIVACY 83

mov eax, dr7

cmp eax, 400h

jnz Hardware_BPX_detected

Figure 1. Passively detecting a hardware debugging
subsystem. The debug register dr7 will contain the
value 400h if it’s unused.

PUSH SS

POP SS

CALL secret_function

Figure 2. Exploiting a feature of the Intel x86 hardware
debugging subsystem. Instructions can be executed
covertly by calling them after executing POP SS.
Hardware breakpoints can’t be set after the POP SS
instruction is called, so the secret function instructions
are shielded from debugging.

Portable Executable (PE) Header:

...

LoaderFlags: 0XABDBFFDE

NumberOfRvaAndSizes: 0XDFFFDDDE

Figure 3. Exploiting an OllyDbg bug. Based on these
invalid flags, OllyDbg will believe the program is invalid,
but still allow program execution to continue. However,
any breakpoints set on program entry will be ignored,
permitting instructions in program entry to be executed
without being debugged.

Digital Protection

tem. One attack might target Soft-
ICE, for example, so if the reverse
engineer isn’t using SoftICE, then
that attack will fail. Debugging sub-
systems that aren’t specifically tar-
geted by a process are impervious to
attack. Processes usually assume—
incorrectly—that some debugging
subsystems are always used. When a
program is compiled for the Intel
x86 architecture, for instance, it
seems reasonable to assume that at-
tacks on the Intel x86 debugging
subsystem will be effective. How-
ever, an emulator might mimic the
hardware layer, thwarting attacks
against the hardware debugging sub-
system. Though bear in mind that
emulators can be attacked, too.

The second main point regarding
the limitations of attacks on debug-
gers is that reverse engineers can
patch anti-debugging techniques. If
they realize their debuggers are under
attack, reverse engineers will attempt
to circumvent that attack. Processes
can prevent some circumvention ef-
forts through tamper-proofing, but
by itself, tamper-proofing isn’t per-
fect—processes can’t prevent tamper-
ing with 100 percent certainty.

Stealth debuggers
The best way to prevent a reverse en-
gineer from circumventing an attack
is to execute the attack covertly. If
analysts don’t realize they’re being
attacked, they’ll never attempt to
circumvent the attacks.

Likewise, stealth debuggers
represent a significant threat to anti-
debugging techniques: they’re im-
pervious to attack because what the
attacker doesn’t see can’t be ex-
ploited (ideal stealth debuggers are
completely undetectable and unex-
ploitable). They can detect specific
debugging detection methods and
return falsified results to processes
and they can be designed to mini-
mize the possibility of containing
exploitable bugs. Although ideal de-
buggers don’t exist today, researchers
are working to create them.6

Although stealth debuggers can

circumvent most anti-debugging
tricks in theory, some attacks exist
that stealth debuggers can’t over-
come automatically—timingchecks
and human-layer attacks, for exam-
ple. Some detection methods based
on timing checks are very difficult
to automatically circumvent. Gran-
ted, it would be trivial for a stealth
debugger to intercept hardware and
operating system time queries;
however, stealth debuggers will not
be able to intercept and return all
external time queries with 100 per-
cent accuracy because a process can
query the time through a network
in an infinite number of ways. Also,
stealth debuggers can’t automati-
cally prevent attacks on the human
layer because we’ll always have ex-
ploitable weaknesses.

A ttacking the debugger can be an
effective way to thwart the

reverse-engineering process. At the
end of the day, though, who wins?
Can software developers use anti-
debugging to protect their software?
Will security researchers be able to
overcome the anti-debugging tricks
embedded in the latest-and-greatest
malicious software sample?

On one hand, talented and pa-
tient reverse engineers can manually
circumvent most anti-debugging
tricks. Stealth debuggers, once de-
veloped, will also give reverse engi-
neers a significant advantage. But on
the other hand, covert anti-debug-
ging methods provide some software
protection because reverse engineers
can’t manually circumvent anti-de-
bugging techniques they don’t see.
By carefully penalizing the reverse
engineer, protected software stands a
chance, even in the hands of experi-
enced reverse engineers.

Currently, there are enough anti-
debugging techniques available to
software engineers to sufficiently
protect software against most threats.
Likewise, most state-of-the-art mal-
ware can be sufficiently reverse-
engineered with patience and skill to

enable security researchers to con-
tinue to defend their networks.
However, advances in software pro-
tection techniques and reverse engi-
neering might alter the balance.

References
1. P.C. van Oorschot, “Revisiting

Software Protection,” Proc. 6th Int’l
Conf. Information Security (ISC 03),
LNCS 2851, Springer-Verlag,
2003, pp. 1–13; www.scs.carleton.
ca/~paulv/papers/isc5.pdf.

2. K. Kaspersky, Hacker Disassembling
Uncovered, A-List Publishing, 2003.

3. P. Cerven, Crackproof Your Software:
Protect Your Software Against Crack-
ers, No Starch Press, 2002.

4. Intel, Intel 64 and IA-32 Architectures
Software Developer’s Manual, Volume
3: System Programming Guide, 2006;
www.intel.com/products/processor/
manuals/index.htm.

5. N. Brulez, “Scan of the Month 33:
Anti Reverse Engineering Uncov-
ered,” 2004; www.honeynet.org/
scans/scan33/nico/index.html.

6. A. Vasudevan and R. Yerraballi,
“Cobra: Fine-Grained Malware
Analysis using Stealth Localized-
Executions,” Proc. 2006 IEEE
Symp. Security and Privacy (SP 06),
IEEE CS Press, 2006, pp. 264–279.

Michael N. Gagnon is a research staff
member in the Center for Secure Informa-
tion Systems at George Mason University.
His primary research interest is software
protection. Gagnon has a BS in computer
science from George Mason University.
Contact him at mgagnon1@gmu.edu.

Stephen Taylor is a research staff mem-
ber in the Center for Secure Information
Systems at George Mason University. His
research interests include software protec-
tion, computational fluid dynamics, and
gaming. Taylor is pursuing his BS in com-
puter science at George Mason University.
Contact him at staylor5@gmu.edu.

Anup K. Ghosh is chief scientist in the
Center for Secure Information Systems at
George Mason University. His research
interests include malicious code analysis,
virtualization for security, and systems
security. Ghosh has a PhD and an MS in
electrical engineering from the University
of Virginia. He is a senior member of the
IEEE. Contact him at aghosh1@gmu.edu.

84 IEEE SECURITY & PRIVACY ! MAY/JUNE 2007

