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ABSTRACT 
 
 
 
Systems engineers and software designers collaborate throughout product 
development to delineate and fulfil software requirements.  Given the flexibility of 
software, the effects of software requirement and detail design changes must be 
understood in order to reduce the risk of ripples of further, unanticipated 
modifications.  As such, these designers both perform impact analysis to estimate the 
consequences of design changes.  This dissertation examines the impact analysis 
performed by systems engineers and software designers as prescribed by literature 
and as practised within industry and then investigates the implications of impact 
analysis improvement on the design process. 
 
Literature only mentions the application of impact analysis in practice and often 
conflicts in describing how impact analysis should be performed.  In turn, two 
extensive empirical studies within two global companies explore and characterise the 
challenges of implementing prescribed impact analysis techniques.  Through the 
discussion of specific changes and the associated impact analysis applied, 
interviewees provide suggestions for practical improvement strategies to address 
these challenges.  The effect of impact analysis improvement on the design process 
through such strategies is then further investigated through modelling and 
simulation using system dynamics.  The simulation of a collaborating company’s 
design process shows that the time to complete design work can be reduced by about 
60% through marginally improving IA and also is about twice as sensitive to IA 
improvement than other improvement strategies (e.g. optimising design task 
scheduling or improving requirements management).  As a result, heuristics for 
impact analysis improvement are developed.  These heuristics indicate that the 
quality of impact analysis results and when the analysis is performed during change 
processes can significantly influence the rate of design project progress.  The 
evaluation of the heuristics by the industry collaborators suggests the utility of 
strategically reforming impact analysis practice to provide for software design 
process improvement.  Consequently, this dissertation focuses on the effects of 
impact analysis improvement and argues for elevation of the importance of impact 
analysis within software design processes. 
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1 :: INTRODUCTION 
 
Harnessing the power of software flexibility demands careful management.  Without 
changing any physical hardware, software can modify a product or service to 
address different markets or customer needs and deliver the desired functionality.  
However, such software design changes also can cause unexpected product or 
system performance, revealing the challenge of change management.  Many 
“software failures” have been publicised extensively, but actually have been 
instigated by changes to the overall product or system design, which the software 
design was intended to accommodate (Sommerville 2001: 31).  The knock-on effects 
of making design changes may not be taken into account within the high-level 
design, and, thus, may not be implemented within the software design, causing a 
failure.  Alternatively, system design modifications can lead to software changes, 
which can inadvertently cause unintended and unspecified system behaviour.  The 
software is consequently reported to fail, but, arguably, the system design also 
contributes to the failure. 
 
The Therac-25 cancer radiation therapy machine accidents exemplify change 
mismanagement and are often rated as some of the worst software-related failures 
(Haskins 2006: 3.14).  Between June 1985 and January 1987, the Therac-25 caused at 
least six accidents either resulting in patient death or serious injury due to radiation 
overdoses.  The Therac-25 was largely developed based on prior designs, namely, the 
Therac-6 and Therac-20, and advanced the software control system used in these 
versions.  The software control system enhancements also provided some of the 
functionality previously contained within the hardware design.  In particular, the 
hardware interlocks, used to physically stop the machine from delivering high 
radiation doses or performing unsafe operations, were re-implemented within the 
software design.  In turn, this redesign of the machine functionality relied only on the 
software interlocks to prevent malfunctioning (Leveson and Turner 1993). 
 
Although no single cause can be attributed to the Therac-25 failures, or accidents in 
general, the interlock design change arguably contributed to the risk of radiation 
overdoses.  An error in the Therac-20 software design was carried over into the 
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Therac-25 machine, and this software design fault became active and affected 
operation only after the removal of the hardware interlocks.  This latent dependency 
between the hardware and software interlock designs was not recognised, and, in 
turn, the necessary changes to the software interlocks were not initiated, leading to at 
least two of the patient accidents (Leveson and Turner 1993).  Since the complete 
impact of the interlock design modification on the system performance was not 
determined, the system design failed to some extent (Neumann 1995: 73).  
Furthermore, given that the Therac-25 was also plagued by poor software design 
processes and inadequate testing, leaving such hidden software faults (Leveson and 
Turner 1993), the software design also contributed to the failure by not meeting the 
intended system requirements (Neumann 1995: 73). 

 
Figure 1.1:  Components of the Therac-25 system (Miller et al. 2000) 

Leveson and Turner (1993) note that the Therac-25 accidents should not only be 
classified due to a “software failure”, but also should be viewed from a systems 
engineering perspective.  The “software failure” is only a symptom of the Therac-25 
accidents, and the system dependencies must also be understood to address the 
fundamental causes of the design failure.  By recognising that an error within the 
software interlock design could singularly cause a failure in the Therac-25 machine, 
measures to ensure safe operation could occur at the system-level by adding 
hardware or software redundancy.  Thus, the investigation of the Therac-25 accidents 
specifically suggests that evolutionary design changes can have serious consequences 
on system performance and that the impact of design changes must be thoroughly 
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analysed to provide for the desired product and software behaviour and reduce the 
risk of unsafe operation. 
 
Although implementing effective change management can reduce the risk of product 
or project failures in other product or service domains, such as space, avionics, 
transportation, and defence systems (Neumann 1995: 12-95), medical devices 
epitomise the importance of change management due to their direct effect on human 
health and life.  In particular, the complete impact of design changes must be 
determined and implemented in such products to allow for the safe treatment of 
patients.  Research by Wallace and Kuhn (2001) indicate that the challenges of change 
management continue to transpire in this industry.  By investigating 15 years of 
medical device recall data from 1983 to 1997 collected by the U.S. Food and Drug 
Administration (FDA), they conclude that at least 23 devices were taken off the 
market specifically due to “change impact” faults.  The potential for failures in these 
devices was caused by the unanticipated and unaccounted side effects of software 
changes during product development.  More recent studies indicate that the number 
of FDA recalls due to “software errors” is sharply rising, suggesting that change 
management may still require improvement (Johnson 2006).  Given that this medical 
device software is reviewed and approved by the FDA, this occurrence of design 
flaws indicates that testing, verification, and validation may not be sufficient to 
identify all errors in safety-critical systems or other product designs.  The complete 
impact of changes must be actively determined during the development process as 
opposed to passively found as design faults during design evaluation stages. 
 
While the impact of the design flaws in the recalled medical devices did not cause 
loss of life or significantly affect the health of any patients since they were found 
prior to any accidents, the recall of the equipment inevitably produced financial 
losses for the medical companies.  In turn, effective change management can reduce 
the risk of design failure as well as unanticipated rework and design costs.  Similarly, 
if necessary changes are detected during the design process, design tasks also can be 
scheduled efficiently, avoiding potential delivery delays.  Most software projects 
inevitably have to deal with these risks to some extent (Rosenberg 2007), and when 
any of these risks are taken to an extreme, blockbuster project failures can occur 
(Charette 2005; Flowers 1996; Peterson 1995).  Moreover, as software is increasingly 
incorporated into products (Huhn and Schaper 2006), understanding the impact of 
system and software design changes becomes ever more critical for many 
engineering projects. 
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This challenge of managing design changes has surfaced throughout literature on the 
systems engineering and software design interface.  As such, an exploration of the 
discourse on this interface’s history establishes the context for this research (Section 
1.1).   In turn, this dissertation sets the scope for investigating the systems 
engineering and software design interface for this research project (Section 1.2).  The 
implications of improving change management, as suggested by the discussion of the 
medical device industry, are then considered further (Section 1.3), and a perspective 
for investigating design change is suggested (Section 1.4).  This chapter concludes by 
describing the research methodology and questions (Section 1.5 and Section 1.6, 
respectively) and by outlining the remainder of this dissertation (Section 1.7). 

1.1 HISTORY OF THE SYSTEMS ENGINEERING AND SOFTWARE 
DESIGN INTERFACE 

The fundamental concepts of systems engineering1 emerged in Bell Telephone 
Laboratories in the early 1900s.  The Director of Systems Engineering at Bell, Mr. 
Gilman, formalised these concepts and began teaching the first course on systems 
engineering at MIT in 1950.  Throughout the next decades, industry and government 
practitioners, notably the RAND Corporation and the U.S. Department of Defense 
(DoD), implemented systems engineering and advanced the processes, techniques, 
and tools in this discipline (Buede 2000: 6).   
 
In one of the first formal texts on systems engineering written in 1962, Hall stresses 
that systems engineering should be applied across the phases of product 
development, including problem definition and the design, integration, and testing 
of system components (Buede 2000: 6).  While the definitions of systems engineering 
have evolved, a holistic perspective on planning and designing a product has 
remained central to the discipline. In 2004, the International Council on Systems 
Engineering (INCOSE), a leading professional society focused on developing and 
disseminating systems engineering practices, defined “systems engineering” as:   
 

an interdisciplinary approach and means to enable the realization of successful systems.  It 
focuses on defining customer needs and required functionality early in the development cycle, 
documenting requirements, then proceeding with design synthesis and system validation 
while considering the complete problem: operations, performance, test, manufacturing, cost 
and schedule, training and support, and disposal.  Systems Engineering integrates all the 
disciplines and speciality groups into a team effort forming a structured development process 
that proceeds from concept to operation (INCOSE 2004b). 

 

Although no single definition of systems engineering exists in literature, systems 
engineering intends to coordinate the many disciplines involved throughout product 

                                                        
1 The term system design is used interchangeably with systems engineering in this dissertation. 
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development.  Descriptions by Sage (2000: 3), Kossiakoff and Sweet (2003: 4-5), and 
Blanchard (2003: 29-40) highlight this integration of specialist design disciplines (e.g. 
mechanical, electrical, and software engineering) as well as design process principles 
(e.g. configuration management and concurrent engineering). 
 
As systems engineering theories and practices have matured, software engineering2 has 
become increasingly integrated into product design (Peterson and Hiles 1976), and 
means to integrate software design into systems engineering processes have been 
investigated3.  Sage wrote one of the first in-depth discussions of this interface in 
Software Systems Engineering, originally published in 1989 and as a second edition 
in 1990.  Sage argues for the need to understand and carefully implement this 
interface of systems engineering and software design by citing the budget and 
schedule overruns frequently experienced in practice as well as the poor quality and 
reliability of software at the time (Sage 1990: 84-88).  He specifies that complete, 
consistent, and feasible requirements developed by systems engineers should guide 
the software design and allow for the seamless integration of software into product 
designs (Sage 1990: 240).  As such, requirements continue to be a key artefact of the 
systems engineering and software design interface. 
 
In 1993, Andriole and Freeman analysed the systems engineering and software 
design interface and acknowledged a lack of literature regarding this disciplinary 
interaction.  They conclude that this interface requires a multi-disciplinary approach 
to education and research efforts (Andriole and Freeman 1993).  The concept of 
unifying systems engineering with software design processes has since been 
acknowledged in literature within several design disciplines, including systems 
engineering (Thomé 1993), software engineering (Bate 1998; Sommerville 1998; White 
2005), requirements engineering (Gonzales 2005), and design process research, such 
as concurrent engineering (Kaindl 2005), as well as has been mentioned in design 
standards4, such as the ISO/IEC 15288 standard on systems engineering (ISO/IEC 
2002), the IEEE 1220 standard on the application and management of systems 

                                                        
2 The IEEE Standard Glossary of Software Engineering Terminology (1993)  defines “software 
engineering” as “the application of a systematic, disciplined, quantifiable approach to the development, 
operation, and maintenance of software”. 
3 Literature does not suggest software engineering to replace systems engineering in any way, but 
synthesise the software design with the overall product development.  Hence, this dissertation refers to 
this interaction of these design disciplines as the systems engineering and software design interface. 
4 Sheard (2001) describes the evolving relationships among these design standards and others.  Since 
Sheard’s publication, INCOSE in conjunction with the Electronics Industry Association (EIA) developed 
ISO/IEC 15288, based on EIA 632 (Harwell 1998; Martin 1998).  IEEE (2005a) then adopted this standard 
into IEEE 15288, leading to some commonality between the systems and software engineering 
communities.  In addition, the terminology used in the latest version of CMMI (2006: 532) draws from 
ISO/IEC 15288 and corresponds with ISO/IEC 15504, which similarly describes process maturity levels. 



1 ::  INTRODUCTION 
 

6 

 

 

engineering (IEEE 2005b), and the Capability Maturity Model Integration (CMMI)5 
for integrated product and process development (CMMI 2006).  These publications 
identified are the only found to date to specifically address and elaborate on the 
systems engineering and software design interface.  However, since they do not 
thoroughly analyse handling design changes, a scarcity of research at this interface 
persists. 
 
Nevertheless, this literature on the interface of systems engineering and software 
design suggests design changes can be problematic.  For instance, Sommerville (1998) 
addresses the practice of modifying software within a system design and the 
consequences on the development schedule and budget, writing: 

 
Budget over-runs and delays in delivery are inevitable when the developers of the software 
must constantly accommodate change… We must accept that other problems of systems 
engineering will inevitably mean that there will be demands for software changes at a late 
stage in the development process.  Cost and schedule overruns are the price we have to pay for 
system flexibility. 
 

As suggested, the flexible nature of software can provide for system design changes, 
but may have implications on project management.  However, Sommerville does not 
tackle specific change management improvements in this text. 
 
In turn, Bate (1998) argues that requirements engineering practices at the systems 
engineering and software design interface fundamentally make design modifications 
difficult to handle and states: 

 
For many years, there has been an artificial barrier between these two disciplines.  Software 
engineers often receive incomprehensible or inadequate requirements and specifications, 
frequently at the last moment.  They are expected to turn out the software quickly and rapidly 
adjust to any problems or changes late in the development cycle. 
 

Similarly, if the system requirements given to software engineers to implement 
include errors, these modifications can cause further, unanticipated changes, leading 
problems in managing the change process.  Sage (1990: 125) writes: 

 
Errors introduced at the onset of system and software requirements specifications, if not 
detected early, will continue to propagate throughout the entire design and development 
lifecycle.  They will not be picked up early through the programming phase, as this activity 
occurs only after the errors are inserted into the detail design.  Thus, there is a need for 
validation of system and software requirements specifications early in the design effort. 
 

As such, Bate and Sage indicate that improving requirements engineering practices 
at the interface can provide for better change management and interaction of the 

                                                        
5 Boehm (2000)  and Gibson (2003) highlight the systems engineering and software design interface with 
respect to CMMI. 
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systems and software engineering disciplines.  However, they do not consider 
alternative means for improving the handling of design changes. 
 
While such remarks on the challenges of design changes and potential improvement 
strategies have been intertwined with the evolving discussion of the systems 
engineering and software design interface, no panacea to managing design changes 
at the interface has been found or may exist.  Likewise, no in-depth study on the 
specifics of handling design changes at the systems engineering and software design 
interface has occurred either.  This research project builds on this history of analysing 
the systems engineering and software design interface and investigates design 
change, thereby, filling a gap in the literature to date and addressing the continued 
challenges of change management in industry, as suggested by the opening 
discussion of medical devices in this dissertation. 

1.2 SCOPING THE SYSTEMS ENGINEERING AND SOFTWARE DESIGN 
INTERFACE 

Since systems engineering and software design must be coordinated throughout 
product development, encompassing the interactions of these disciplines succinctly 
in a definition can be problematic.  For the purpose of this research project, the 
systems engineering and software design interface is delineated with respect to 
design changes.  As observed in empirical studies (Chapter 3), such modifications 
stem from causes, including new functionality requirements, design errors, design 
improvements, or the adaptation of legacy systems.  However, even with this focus, the 
word interface may be ambiguous.  The Oxford English Dictionary defines “interface” 

(1989) as: 
 
a means or place of interaction between two systems, organizations, etc.; a meeting-point or 
common ground between two parties, systems, or disciplines; also, interaction, liaison, 
dialogue.  
 

Based on this definition, identifying the “means or place” of a design change 
transmitted between the systems and software engineering “disciplines” describes 
the interface.  However, similar to the term “interface”, the words “means” and 
“place” can have many different interpretations and appear similarly ambiguous.   
 
In order to distinguish the interface addressed, this research project interprets the 
definition of interface in terms of people (i.e. the “disciplines” enabling design 
change), product (i.e. the “place” of design change), and process (i.e. the “means” for 
design change).  The people performing the systems and software engineering 
inevitably affect how design changes are handled at this interface.  A designer’s 
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education, knowledge, and experience all influence the implementation of design 
changes.  Similarly, team dynamics and communication contribute to the effective 
management of changes (Chudge and Fulton 1996; Crowston 1997; Koffi 2005; 
Wiegers 1994).  This research project does not intend to specifically address these 
people aspects of handling design changes at the systems engineering and software 
design interface. 
 
The products or artefacts of design changes also characterise this interface.  For 
example, a change to a system requirement may link to modifications in the 
associated software design and code. The systems and software engineering 
disciplines interact through the objects affected by this design change, including 
software requirement documentation, change requests, system and software design models, 
software design documentation, or code, as observed in empirical studies (Chapter 3).  In 
effect, these artefacts define an aspect of the systems engineering and software 
design interface.  However, this research project does not focus on the style, 
semantics, or management tools used for such design change artefacts at the 
interface. 
 
Instead, this research project views the systems engineering and software design 
interface in terms of change processes, and, more specifically, investigates impact 
analysis tasks within change processes (Section 1.4).  These tasks, which scope the 
effects of design modifications, can be performed using design objects, such as 
analysing the documented traceability relationships between system requirements 
and software specifications.  Design reviews held between systems and software 
engineers are another type of impact analysis task (Section 2.5)6.  In turn, design-
related procedures (e.g. configuration management) influence the change processes 
implemented and, consequently, the type of impact analysis practised.  Hence, this 
dissertation investigates the systems engineering and software design interface7 
through first addressing the prescribed change processes and related procedures and 
then focusing on impact analysis tasks given this perspective. 

                                                        
6 As suggested by these examples, the process interface between systems engineering and software 
design cannot be completely decoupled from the people and product aspects.  People and company 
culture affect the process of design reviews, and the tools for and representations of design artefacts 
influence the change process applied.  While this research focuses on change processes, links are made 
to people and products where relevant within this dissertation. 
7 The systems engineering and software design interface is abbreviated as the systems-software interface 
in the remainder of this dissertation. 
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1.3 EMERGENT CHANGES IN COMPLEX SYSTEM DESIGN 
Design changes can significantly affect the progression of product development 
processes.  For instance, during highly iterative design processes, rework may 
consume a large percentage of the development effort as changes evolve the state of 
the design.  In this case, implementing effective change processes is vital to the 
overall design process.  Similarly, change processes may also have a significant role 
in product customisation processes.  Existing products may be reused with slight 
alterations to meet specific customer needs or adapt to new purposes.  While most of 
the design may not change, the necessary modifications require effective 
management of design effort and rework.  In effect, these product development 
processes are driven by the change processes implemented (Eckert et al. 2005). 
 
Within such design processes, the successful planning of modifications provides a 
primary means for projects to stay on budget and schedule, as indicated by 
Sommerville (1998) and Bate (1998) within the literature focusing on the systems-
software interface (Section 1.1).  However, products can often have many complex 
interdependencies between and within disciplinary designs, and a design change can 
initiate additional modifications through these interactions.  Design modifications 
can cause further, unexpected changes, leading to rework, additional costs, and 
schedule delays, as suggested by the initial discussion of the medical device 
industry.  As such, managing this unanticipated propagation or emergence of 
additional changes also provides for effective product development processes. 
 
Eckert et al. (2004) define two types of modifications, emergent and initiated changes.  
As termed, emergent changes are “caused by the state of the design, where problems 
occurring across the whole design and throughout the product lifecycle can lead to 
change”.  In other words, unanticipated problems or knock-on effects require 
additional, emergent design modifications.  Given this perspective, design errors due 
to human mistakes, unlike more fundamental flaws in the design, are not considered 
emergent changes since they are not explicitly caused by the state of the design.  In 
turn, Eckert et al. define initiated changes as “arising from an outside source, 
typically a new requirement from customers or certification bodies, or initiated by 
the manufacturer”.  Such initiated changes may be difficult to control, although, in 
some cases, negotiation with customers and manufacturers can help to manage these 
modifications.  If the complete impact of an initiated change is not determined, 
unexpected, emergent changes can certainly arise. 
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Given that the management of emergent changes can shape the progression of design 
change processes, Eckert et al. (2004) describe two basic scenarios for the 
implementation of design modifications.  Either initiated design changes and the 
associated emergent modifications can be implemented within a planned schedule, 
or these changes exceed the allotted amount of time.  In the first situation, changes 
can ripple or blossom.  A ripple pattern characterises the overall decrease in the 
number of changes and, therefore, the change effort.  Thus, emergent changes are 
effectively managed in this scenario in that the rework generally diminishes with 
time.  In turn, changes may blossom when large-scale modifications are required, 
meaning that significant redesign effort is required, but is possible to complete on 
schedule.  Change propagation is also managed in this case since emergent changes 
are identified and implemented systematically.  In the second case, Eckert et al. 
characterise the pattern of changes not completed on schedule as an avalanche, in 
which unexpected, emergent changes occur and require more design effort than 
budgeted.  Figure 1.2 illustrates these patterns of change processes. 
 

 
Figure 1.2:  Characterisation of change processes (Eckert et al. 2004) 

Although ripples, blossoms, and avalanches are described in terms of scheduling, the 
anticipation of the rework involved also can affect the budgeted development costs.   

1.3.1 THE EFFECTS OF UNEXPECTED, EMERGENT CHANGES 
While Eckert et al. (2004) qualitatively describe the potential consequences of 
unanticipated design modifications on change processes, the additional costs, 
schedule delays, and probability of product failure caused by such changes cannot be 
quantified in general.  Many influences contribute to these same effects, including 
unrealistic project goals, inaccurate estimates of resources required, poorly defined 
system requirements, ineffective communication between stakeholders, stakeholder 
politics, and sloppy development practices (Brooks 1995; Charette 2005; Yourdon 
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1999).  All of these elements must be addressed to provide for the holistic mitigation 
of these risks. 
 
Nevertheless, given that software projects continue to face budget and schedule 
overruns, improving change management practices can support and enable more 
effective design processes.  Charette (2005) describes 31 high-profile software projects 
from 1992 to 2005, which failed to meet customer requirements, budget, and 
schedule, and depicts a dismal future for software design.  He suggests that 5 to 15 
percent of software projects within a £500 billion worldwide market per year are 
abandoned shortly before or after release, while many others deliver over-budget 
and late products and services.  Previously, in 2002, the U.S. National Institute of 
Standards and Technology pinned software failures as costing the U.S. economy 
alone approximately $59.5 billion every year (Rosenberg 2007).  Although these 
statistics may be notional, reducing the notorious risks of such software development 
problems can more generally improve the operation of the businesses and 
governments that sponsor software projects.  Effective software design change 
management contributes to this overall improvement. 

1.3.2 THE INCREASING IMPORTANCE OF EFFECTIVE CHANGE MANAGEMENT 
Software is incorporated more and more into product designs ranging from fast-
moving consumer goods to large, complex systems, such as cars and airplanes.  For 
instance, mobile phones currently have about 2 million lines of code, and, by 2010, 
they are expected to have 20 million lines of code.  Also in 2010, the control systems 
in cars are expected to exceed 100 million lines of code (Charette 2005).  The addition 
of more software into products increases the contribution of the software design to 
the functionality of the product.  In turn, Huhn and Schaper (2006) estimate that 
software design will account for 15 percent of the revenue generated by a car in 2015 
as opposed to only 4 percent in 2003.  Similarly, Bill Gates (2007), founder of 
Microsoft, also suggests that robotics, which relies on software for intelligence, is fast 
becoming reality within product design and must be supported by software 
development tools and techniques. 
 
Given that software projects have clearly been challenged by successfully delivering 
products and services on budget and schedule, the increase in incorporating software 
into products inevitably compounds the risks of additional costs, delays, and 
failures.  Huhn and Schaper (2006) generally suggest focusing on improving the 
software design processes implemented in order to cope with the escalation of 
software within products.  However, they specifically note that changes, due to 
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design flaws, made to the software embedded in car control systems are much more 
expensive to implement than modifications for electronic hardware design errors.  
As such, improving design change management processes can decrease this cost of 
software and contribute to process improvement in light of the increase of software 
in products. 

1.3.3 CHANGE MANAGEMENT RESEARCH 
Change management for technical systems8 is a developing field of research.  While 
literature often mentions changes tangentially, research devoted to understanding 
and analysing changes and change processes is just emerging within engineering 
design and systems engineering publications (Section 2.1.2).  This research project 
stems from work on change management undertaken at Cambridge Engineering 
Design Centre (EDC).  Empirical studies on change processes beginning in 1999 have 
characterised the nature of design modifications and change processes within the 
development of complex products, such as helicopters, diesel engines, and jet 
engines (Eckert et al. 2005).  As a result, the Change Prediction Method (CPM) has 
been developed to address the difficulties encountered in understanding the 
consequences of a change.  Using a model of the dependencies between components 
within a product, the CPM yields a prediction and visualisations of the components 
potentially affected by a change.  In turn, previously unanticipated changes can be 
systematically identified and analysed in order to plan a change process (Clarkson et 
al. 2004).  This research project extends this work in change management of 
Cambridge EDC, which has focused on mechanical design, by considering other 
techniques used to examine the knock-on effects of initiating design modifications 
within systems and software engineering. 

1.4 IMPACT ANALYSIS TO MANAGE EMERGENT DESIGN CHANGES 
In order to address change management at the systems engineering and software 
design interface, this research project investigates means to completely identify 
required changes, thereby, reducing unanticipated, emergent modifications.  As 
suggested by the scope set for the systems-software interface (Section 1.2), this topic 
is interpreted through change processes.  Within change processes, impact analysis 
(IA)9 is the primary means for evaluating the effects of changes.   
 

                                                        
8 Change management within business literature is considered a separate field of research.  This 
literature primarily discusses means of implementing organisational change or transformation (Jarratt 
2004: 24) and is not addressed by this research project. 
9 Lindvall (1997b) has also used the abbreviation of “IA” for “impact analysis”. 
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Bohner and Arnold (1996: 3) define IA in the pivotal book Software Change Impact 
Analysis as: “identifying the potential consequences of a change, or estimating what 
needs to be modified to accomplish a change”.  Based on their definition, IA 
determines the scope of modifications in terms of the design details and can occur 
throughout the software development lifecycle.  By first using IA to indicate the 
design elements potentially affected by a change, designers then determine the 
design artefacts that actually require modification. 
 
Other definitions of IA focus on particular phases of the lifecycle.  For example, 
Lindvall (1997a: 4) investigates IA within the requirement development and 
planning phase.  Furthermore, IA is also conceptualised beyond the impact of 
changes on design details.  For example, Pfleeger and Atlee (2006: 526) focus on the 
risk of making modifications and state that IA is: “the evaluation of the many risks 
associated with the change, including estimates of effects on resources, effort, and 
schedule”.  Consequently, these definitions influence the techniques that can be 
considered IA10. 
 
This research project focuses on managing knock-on effects to detail designs.  
Improving the assessment of changes within the design details is the first step to 
controlling emergent modifications, which can be aggravated by the influence of 
resources, effort, and scheduling as well as other effects, such as safety criteria.  Thus, 
the definition of IA by Bohner and Arnold suits this perspective to reduce the risk of 
emergent changes, and Figure 1.3 illustrates the definition IA for this research 
project. 
 

Impact Analysis (IA): 
 “identifying the potential consequences of a change, or estimating 

what needs to be modified to accomplish a change”  
(Bohner and Arnold 1996: 3) 

 
Figure 1.3:  Definition of IA used in this research project 

Bohner and Arnold (1996: 1) depict IA as an integral part of a change process during 
new product development and software maintenance.  Given that IA can be applied 
in these different cases, both of these contexts are considered in this research (Section 
2.4).  Bohner and Arnold (1996: 8) also indicate that designers perform IA in response 
to a change request (also known as an engineering change or engineering change request 

                                                        
10 For example, failure modes and effects analysis (FMEA) could be considered as IA by Pfleeger and 
Atlee’s definition and not by Bohner and Arnold’s definition. 
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(Jarratt 2004: 24-26)) to scope the modification that is approved by a change control 
board (Section 2.4.3).  While formal change control can occur throughout the software 
lifecycle, informal change processes also can take place in practice (Sommerville 
2007: 500).  In turn, this research uses the term design change since more specific terms 
within change processes (e.g. change request or engineering change) may limit the 
types of IA that are considered11.  The analysis techniques considered as IA by 
Bohner and Arnold are extended based on this perspective and through a literature 
review (Section 2.5). 

1.5 RESEARCH METHODOLOGY 
This project initially identified relevant literature on design change at the systems-
software interface (Chapter 2).  While this literature review suggests that this 
interface can be problematic with respect to design change, the literature found often 
only tangentially discusses the difficulties encountered, as initially suggested in 
Section 1.1.  Furthermore, the points of view in this literature often conflict with each 
other in terms of how change processes and IA should be performed at this interface.  
These scarcities and disparities found as well as interest in the general research topic 
by two industry collaborators indicated that additional inquiry would be useful. 
 
The Design Research Methodology (DRM) proposed by Blessing et al. (1995) and 
further described by Blessing and Chakrabarti (2002) indicates that a researcher 
should aim to set measurable criteria for success.  A first descriptive study follows 
and investigates current industry practice.  The researcher then prescribes a desired 
scenario through the development of a method or tool.  A second descriptive study 
evaluates the method or tool and ultimately measures the method or tool against the 
success criteria.  Iteration between the descriptive and prescriptive studies to develop 
the criteria may occur.  In turn, these research phases may be covered in more or less 
depth during each iteration and also depending on the project resources available.  
Figure 1.4 outlines DRM. 
 
Eckert et al. (2003) propose another methodology through their spiral of applied 
research framework and indicate that design research can begin with questions and 
that the research objectives subsequently can be derived and tailored from empirical 
studies.  However, the framework stipulates that research may also begin in any of 
the other 8 types of research and that research may backtrack through these stages or 

                                                        
11 For instance, design reviews performed independently of a formal change process may not be 
considered a form of IA (Section 2.5.3), even though they are effective means to detect design flaws.  
Design flaws or problems, corrected with associated changes, are more fundamental than design 
mistakes due to human error, which reviews may also find. 
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progress in parallel or reverse order as necessary.  The spiral formed by repeatedly 
undertaking the 8 research types leads to insights, which sculpt the progression of 
the research.  Figure 1.5 illustrates this research methodology, highlighting the 
phases implemented in this research project. 
 

 
Figure 1.4:  DRM (Blessing and Chakrabarti 2002) 

 

 
Figure 1.5:  The spiral of applied research (Eckert et al. 2003) 

 



1 ::  INTRODUCTION 
 

16 

 

 

 
Figure 1.6:  Phases of research performed 

Figure 1.6 details the research phases performed from the spiral of applied research 
framework and maps them to DRM, showing how both methodologies are satisfied.  
As shown in Figure 1.6, after an initial literature review identifying the scarcities and 
disparities in research on IA at the systems-software interface (Chapter 2), this 
project entered the spiral at empirical studies of design behaviour during an exploratory 
empirical study at an aerospace company.  This empirical study aimed to tailor 
research questions to suit the research gaps identified in the literature review and 
meet the interests of this industry collaborator.  Specifically, the research questions 
were modified to focus on the systems engineering and software design interface, as 
opposed to the interaction of mechanical engineering and software engineering, 
which was also considered at the onset of the empirical study.  In turn, an 
appropriate set of initial research questions was developed, which correspond with 
the research aims and criteria described by DRM. 
 
After the exploratory study, characterisations describing the nature of IA at the 
interface were created in the development of theory and integrated understanding phase.  
These two stages of the spiral were repeated by conducting further empirical studies 
more specifically on IA at the aerospace company and at a telecommunications firm, 
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which led to the refinement of the characterisations.  Information, insights and 
requirements were identified throughout these research stages.  An extended 
literature review and reflection by the industry collaborators occurred after this 
iteration around the spiral and provided a means to assess the characterisations in 
the evaluation of theory phase.  In turn, examination of the IA characterisations and 
observations from the IA empirical studies responded to several of the research 
questions.  Analysis of quantitative data from the aerospace company and simulation 
work addressed the remaining research questions as well as allowed for the 
assessment of industry-elicited IA improvement strategies through the evaluation of 
empirical studies stage.  These research phases fit into the first descriptive study stage 
in DRM in that design behaviour was observed and analysed, allowing for 
development of a support tool.   
 
Specifically, the simulation work was used to create heuristics for improving the 
application of IA within change processes in the development of tools and procedures 
research phase.  This set of heuristics is a tool to guide and improve design practice, 
corresponding with the prescriptive study in DRM.  Finally, the heuristics developed 
were discussed with some of the key industry collaborators from the empirical 
studies, providing for the evaluation of tools and the second descriptive study in DRM. 

1.6 RESEARCH QUESTIONS 
In order to contribute to improving the design process, this research project aims to 
analyse the management of design changes by specifically investigating IA.  This 
research project addresses this high-level objective through the following succession 
of research questions.  The first three questions stem from the gaps found in the 
literature review (Chapter 2) and are addressed through the empirical studies.  The 
fourth research question examines design process improvement through IA and is 
tailored in Chapter 5 to confront the challenges of improving IA as elicited from 
industry. 
 
Understanding change processes at the systems-software interface sets the context 
for investigating IA, and the literature review reveals different prescriptions and 
standards for implementing change processes and IA.  In turn, the empirical studies 
(Chapter 3) address how the industry partners account this variety in prescribed 
change processes and IA techniques through company policies and procedures.  
Thus, the first research question (Figure 1.7) pertains to how design modifications 
should be managed using IA within change processes. 
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How are change processes and impact analysis prescribed at the 
system and software engineering interface within industry? 

 
Figure 1.7:  Research question 1 

The second research question (Figure 1.8) focuses on the application of IA in practice.  
The literature review suggests that industry often does not implement the IA 
techniques available, increasing the risk for emergent changes.  However, no study 
specifically on IA uptake or research on the collective influence of different IA 
techniques on managing emergent changes has occurred to date.  As such, the 
empirical studies (Chapter 4) investigate the application of a spectrum of IA 
techniques in practice. 
 

Does impact analysis influence the management of emergent 
changes in practice?  If so, how? 

 
Figure 1.8:  Research question 2 

The third research question (Figure 1.9) addresses the challenges influencing the 
implementation of IA in practice.  While the literature review implies that IA 
techniques are often not applied as prescribed, the specific reasons for this behaviour 
have not been established yet.  The empirical studies reveal the challenges of 
performing IA in practice (Chapter 4).  In turn, understanding the effectiveness of IA 
on managing design changes and the disparity between prescribed and practised IA 
can illuminate areas for improvement (Chapter 5). 
 

What are the challenges in using impact analysis  
to manage emergent changes at the systems and software 

engineering interface? 
 

Figure 1.9:  Research question 3 

Finally, the fourth research question (Figure 1.10) indicates the need to understand 
the relative effect of IA improvement on the overall design process given that change 
management is only one element of product development.  Implementing 
improvement strategies can incur significant costs and effort, and the potential 
benefits must be understood by industry to make appropriate management 
decisions. 
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Can the application of impact analysis  
improve the design process?  If so, how? 

 
Figure 1.10:  Research question 4 

1.7 DISSERTATION STRUCTURE 
The structure of this dissertation (Figure 1.11) follows the application of the spiral 
research methodology (Figure 1.6).  Chapter 2 summarises the literature review 
conducted and highlights the change processes and IA techniques prescribed and 
practised.  Areas of scarcity and disparity in literature provide several areas suitable 
for empirical research.  With this basis, Chapter 3 outlines the observations in the 
empirical studies on the change processes and IA prescribed and practised.  In 
Chapter 4, characterisations of IA synthesise the insights gained in the empirical 
studies.  This theoretical framework addresses the differences between prescribed 
and practised IA and confronts the influences for the variation.  The IA tasks applied 
in practice and ideas for IA improvement from the aerospace firm are described and 
analysed in Chapter 5.  This discussion leads to the refinement of research question 4 
to specifically address how modelling and simulation can show the effects of IA 
improvement on design processes, setting up further inquiry into IA.  Chapter 6 
describes the background of system dynamics as a research discipline for process 
modelling and simulation analysis and details the adaptation of the rework cycle 
(Cooper 1993a) to model IA.  In turn, Chapter 7 explains the simulation design and 
implementation of the adapted rework cycle and evaluates the elicited ideas for IA 
improvement using this model.  Chapter 8 develops heuristics to guide the 
improvement of IA within change processes based on the simulation work.  The 
industry evaluation of these heuristics is also discussed.  Finally, Chapter 9 addresses 
the research questions, contributions, and future work of this research project. 
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Figure 1.11:  Dissertation structure



 

 

 
 
 
 
 
 
 

2 :: LITERATURE ON SYSTEM DESIGN                           
AND SOFTWARE CHANGES 

 
An analysis of literature sets the basis for the investigation of IA at the systems-
software interface.  This review extracts specific scarcities and disparities that exist 
within literature regarding design change processes and IA.  These insights depict 
the need for further inquiry to examine these gaps and disparate perspectives. 

2.1 THE LITERATURE SEARCH PROCESS 
While some literature specifically addresses the systems-software interface, none of 
this literature found to-date targets change processes or IA to manage design 
changes (Section 1.1).  However, research directed at design change could appear 
instead within a variety of research areas relating to the systems-software interface.  
Thus, several engineering disciplines that are associated with this interface were 
investigated.  Namely, the literature review explored the fields of systems 
engineering, software engineering, requirements engineering, mechatronics12, control 
system design, and engineering design.  More specifically, given the large volume of 
literature that exists within software engineering, the review focused on plan-driven 
(e.g. waterfall processes) (Boehm 2002), agile, and software maintenance processes 
within this domain as well as literature on software modelling techniques and 
software inspection and review methods used for IA. 
 
Although this disciplinary design literature often describes design and change 
processes, additional literature specifically focusing on design processes was also 
surveyed to determine other perspectives on design change at the systems-software 
interface.  This body of literature includes change management, configuration 
management, and concurrent engineering.  The relationships between the engineering 

                                                        
12 The International Federation for the Theory of Machines and Mechanism (IFTMM) defines 
mechatronics as “the synergetic integration of mechanical engineering with electronic and intelligent 
computer control in the design and manufacturing of industrial products and processes” (Comerford 
1994). 
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disciplines and design process areas are noted from both literature points of view 
(Section 2.1.1 and Section 2.1.2, respectively). 
 
Each literature area was explored in books, journals, conference proceedings, and 
websites for specific concepts on design change, including: 
 

• Type, taxonomy, or characterisation of design changes, 

• Prescribed and practised change processes, 

• Design processes standards, and 

• Prescribed and practised IA. 

 

Bibliographies of references were additionally used to find the most relevant work.  
These concepts were selected since they encompass investigating the system-
software interface in terms of change processes and IA (Section 1.2). 

2.1.1 LITERATURE PUBLISHED WITHIN ENGINEERING DISCIPLINES 
Systems, software, and requirements engineering literature yields information in 
characterising design changes, change processes, process standards, and IA.  In turn, 
mechatronics (Bolton 1999; Centinkunt 2007) and control system design (Englander 
2000; Gorsline 1986) literature primarily focuses on technical engineering details, but 
occasionally also refers to design or change processes at the interface, while literature 
in engineering design contains technical details and also extensive information on 
design processes.  However, within engineering design, extensive work centring on 
design changes or change processes for products containing software has not been 
found to date.  Table 2.1 maps a representative selection of literature found in 
mechatronics, control system design, and engineering design to the design change 
topics examined. 
 
Based on the mappings in Table 2.1, systems, requirements, and software 
engineering literature provides the most guidance on developing software products.  
As such, this literature review concentrates on the perspectives from each of these 
disciplines on the systems-software interface.  However, even these areas of research 
do not fully address IA at this interface.  The perspectives from each of these 
disciplines can often be prescriptive in nature and, specifically, do not fully describe 
the implementation of IA in practice. 
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Table 2.1:  Mapping of a selection of mechatronics, control system design, and 
engineering design literature to design change at the systems-software interface 

Concept from Literature References Mapping to Design 
Change at the Interface 

Bradley et al. (2000: 79) separately draw from 
engineering design and software process 
models to set the context for mechatronic 
design and suggest that mechatronics is a 
subset of systems engineering. 

Homkes (2006) indicates that mechatronics 
occurs within systems engineering processes. 

Mechatronics and control 
system design literature 
suggests that mechatronics is a 
subset of systems engineering. 

Auslander et al. (2002: 9) identify systems 
engineering as a method for coordinating 
mechanical and software designs. 

Mechatronics and control 
system design literature 
suggest that systems 
engineering provides a means 
for implementing multi-
disciplinary design and change 
processes. 

van Brussel (1996) describes how mechatronics 
as a discipline provides the technical 
foundation for concurrent engineering. 

Mechatronics literature 
proposes that this discipline can 
fulfil concurrent engineering 
practices.  

Comerford (1994) indicates that mechatronics 
simulation is a resource to incorporate into 
concurrent engineering in which designers can 
share results instead of working in parallel 
without complete understanding of the entire 
design. 

Mechatronics literature does 
not specifically describe 
appropriate design or change 
processes as applied within a 
concurrent engineering 
framework, but focuses on 
technical details. 

Pahl et al. (1996: 128-134) as well as French 
(1998: 2) indicate that the design process for 
primarily mechanical products involves 
generating requirements and then developing 
a conceptual, embodiment, and detail design. 

Engineering design literature 
prescribes design processes for 
product development. 

Zhang and Li (1999) describe a method to 
design a mechatronic system by specifically 
considering the control system. 

Engineering design tends not 
to differentiate itself from 
systems engineering or 
specifically address interfacing 
with software design processes.  
However, research on change 
management is often published 
within this discipline (Clarkson 
et al. 2004; Eckert et al. 2004). 

Jalkio (2006) discusses the importance of 
requirements modelling such that the 
partitioning of the design between disciplines 
can be determined. 

Hallin et al. (2003) suggest to model 
information between hardware and software 
system elements to provide for better 
information sharing. 

Gelle (2005) discusses a method to use the 
Unified Modelling Language (UML) to model 
system interfaces. 

Mrozek (2002) describes how UML can be 
used to design mechatronic systems.  He notes 
that the mechatronic design process is 
iterative, and the simulation of UML models 
can aid managing redesign. 

Mechatronics, control system 
design, and engineering design 
literature indicate that 
modelling of a system design 
provides a means to analyse the 
interface between disciplines. 

Kanoun and Ortalo-Borrel (2000) suggest that 
the interface between hardware and software 
should be modelled in order to understand 
system dependability properties. 

Modelling of a system design 
may also help to understand 
the scope of changes.  
However, the literature found 
does not specifically address IA 
for design changes. 
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2.1.2 LITERATURE FOCUSING ON THE DESIGN PROCESS 
Literature on change management, configuration management, and concurrent 
engineering was also examined to gain insight into design changes the systems-
software interface.  As previously indicated in Section 1.3.3, this research project has 
developed from research into change management of technical systems at 
Cambridge EDC.  This investigation of IA specifically draws from research regarding 
the characterisation of design changes and change processes (Eckert et al. 2004) and 
managing change propagation (Clarkson et al. 2004), published within engineering 
design.  Other research lead by Fricke and published within systems engineering 
mentions software change management, but does not focus on the systems-software 
interface (Fricke et al. 2000; Fricke and Schultz 2005).  de Weck is also pursuing 
further research in change management and has investigated data mining and 
analysing change propagation in recorded software change data sets from industry 
(de Weck 2007; Giffin et al. 2007).  Similar work has focused on correlating (Chmura 
et al. 1990) and visualising (Eick et al. 2002) such data sets.  However, this research 
does not account for the principle of change propagation (Section 1.3).  
Consequently, this research contributes to change management literature, given that 
no research has specifically explored IA within change processes. 
 
Configuration management literature also contributes to understanding design 
change at the systems-software interface. Although design standards (Chrissis et al. 
2007; CMMI 2006; IEEE 2005a; ISO/IEC 2002) prescribe applying configuration 
management, these standards do not elaborate on the implementation details, as 
does literature specific to this field.  Configuration management literature describes 
processes for implementing design changes.  Furthermore, this discipline discusses 
the management of requirements, design models, and other forms of documentation 
used for IA with respect to these change processes (Hass 2003) and software code file 
management within project teams (White 2000: 184-185).  Some of this literature 
distinguishes the implementation of configuration management depending on the 
nature of the design process implemented (e.g. a sequential waterfall approach 
versus a more iterative method) (Hass 2003).  In effect, configuration management 
literature does not explicitly address the systems-software interface, yet influences 
the processes of using of requirements, models, and other documentation as key 
artefacts of the interface.  Thus, configuration management literature provides a 
perspective into change processes and IA at the interface. 
 
As suggested by Table 2.1, systems engineering offers guidance in managing 
concurrent design processes across multiple disciplines (Blanchard 2003: 29-40; 
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ISO/IEC 2002).  Similarly, literature specifically focusing on the systems-software 
interface refers to concurrent engineering (Kaindl 2005).  However, these literature 
areas do not discuss performing multiple changes or instances of IA concurrently 
within a design process in detail and only prescribe the implementation of 
concurrent engineering.  In turn, concurrent engineering literature occasionally 
mentions systems engineering (Kusiak 1993: 537), but does not specifically address 
change processes or IA.  Thus, the remainder of this chapter draws from change 
management and configuration management literature. 

2.2 LITERATURE REVIEW DISCUSSION STRUCTURE 
This literature review synthesises the perspectives gathered on characterising design 
changes, change processes, process standards, and IA dispersed throughout the 
indicated engineering disciplines and design process research.  Figure 2.1 illustrates 
the structure of the discussion of this literature relevant to IA. 
 

 
Figure 2.1:  Literature review discussion structure 

This discussion first focuses on and analyses two characterisations of design changes, 
one from change management and the other from software engineering, which 
address emergent changes and IA (Section 2.3).  These characterisations suggest a 
scarcity in research in that they specify a limited selection of IA techniques and only 
allude to influences that can degrade IA results, leading to emergent changes.  
Secondly, given that IA occurs in both design and maintenance processes, systems 
engineering and software design process models during these project phases are 
examined in conjunction with design process standards and requirements 
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engineering.  These design process models are then linked to change process models 
described within configuration management (Section 2.4).  With this basis, different 
types of IA are described as prescribed (Section 2.5) and practised (Section 2.6).  This 
discussion highlights several conflicts in the literature regarding IA implementation 
and scant information on how IA is actually used in practice.  These insights into 
these scarcities and disparities are summarised and related to the research questions 
(Section 2.7). 

2.3 DESIGN CHANGE CHARACTERISATIONS 
Systems and requirements engineering literature frequently highlights the difficulties 
in managing requirement changes or implementing late requirements in design 
processes.  These discussions often suggest that making requirement modifications 
can ripple throughout product designs (Eisner 2002: 236-237; Endres and Rombach 
2003: 16) and lead to unexpected, emergent changes (Kossiakoff and Sweet 2003: 267-
268).  However, no research found to date in these literature areas explicitly defines 
the characteristics of requirements changes that cause such knock-on modifications 
during the design or maintenance phases of a product. 
 
In contrast, within change management literature, Eckert et al. (2004) explicitly 
address the characteristics of emergent changes and change processes and 
conceptualise design change from many different angles.  Although this research 
includes elements specific to mechanical design changes (e.g. design manufacturing), 
the basic characterisation of emergent and initiated changes provides a foundation to 
distinguish the nature of software modifications during design and maintenance 
(Section 1.3).  The CPM developed from this research (Section 1.3.3), as a form of IA, 
addresses the need to control the risk of emergent design changes.  However, this 
research into change management only centres on this form of IA and does not 
describe the range of IA available (Section 2.5) to support controlling emergent 
changes in mechanical or software engineering.  As such, this research project 
extends this work. 
 
Software engineering and configuration management literature often focuses on 
change during maintenance and conceptualises design modifications as “corrective”, 
“adaptive”, and “perfective” maintenance, as originally proposed by Swanson 
(1976).  Corrective maintenance removes faults; adaptive maintenance allows a 
software program to operate in another environment; and, perfective maintenance 
encompasses changes due to user requests.  ISO/IEC and IEEE have since adopted 
this classification of maintenance changes.  However, these organisations have 
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published definitions that differ with each other and from Swanson’s definitions, 
causing further research into these change characterisations (Chapin et al. 2001).  
ISO/IEC includes “preventative” maintenance to correct latent design faults, and 
IEEE uses “emergency” maintenance to describe unscheduled changes to correct 
faults, allowing for system operation (Canfora and Cimitile 2001: 94-95).  Most 
significantly, Buckley et al. (2003) extend Swanson’s characterisation and include 
emergent changes and IA within software design during design and maintenance. 
 
While Eckert et al. (2004) describe modifications based on a variety of attributes, such 
as the source of a change and propagation properties, and then discuss the CPM as 
IA, the characterisation by Buckley et al. (2003) expresses change characteristics in 
terms of the “mechanism of change”, which is defined as the tools or features of tools 
used to assess and implement the modification.  In effect, these tools effectively can 
perform IA.  Buckley et al. propose four major themes, “temporal properties”, “object 
of change”, “system properties”, and “change support”, each with underlying 
dimensions to characterise software changes (Figure 2.2).   

 

 
Figure 2.2:  A software change taxonomy (Buckley et al. 2003) 

Of particular interest, Buckley et al. define “change history” or the timing of changes 
in terms of software versioning tools and techniques as used to assess modifications 
and distinguish between performing synchronous and asynchronous changes.  
Synchronous changes are described as “convergent” and can be integrated into the 
tasks of the software design process since versioning tools constantly share all data.  
In contrast, asynchronous changes may be “divergent” when work commences in 
parallel with no data sharing, requiring rework tasks for design integration.  
Emergent changes, as described by Eckert et al. (2004), can occur in this latter case 
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and, thus, are related to the task synchronisation within change processes.  In effect, 
Buckley et al. suggest that performing IA with complete information can allow for the 
effective synchronisation of design tasks, minimising knock-on changes. 
 
Furthermore, within the “change propagation” dimension of this characterisation, 
Buckley et al. describe specific tools (e.g. refactoring tools13) for automating change 
implementation as the “mechanism of change”.  They note that these tools perform 
IA and cite the fundamental IA text by Bohner and Arnold14 (Section 1.4).  However, 
as defined by Bohner and Arnold and this research project, IA allows for the scoping 
of possible changes, which may or may not be implemented, while Buckley et al. only 
focus on performing detail design changes automatically.  In turn, both reduce the 
risk of unanticipated change propagation and emergent modifications, but from 
fundamentally different perspectives.  The taxonomy of change by Buckley et al. 
neglects the spectrum of IA techniques available for use. 
 
Comparing the characterisations by Eckert et al. and Buckley et al. suggests two areas 
for further inquiry.  Firstly, additional process characteristics that cause emergent 
changes (e.g. synchronisation) have not been explored.  Secondly, managing 
emergent changes using the spectrum of IA techniques available has not been 
addressed.  Both of these areas of scarcity are confronted in the research questions 
(Section 2.7), and the remainder of the literature review concentrates on discussing 
IA as prescribed by literature and practised within industry. 

2.4 PRESCRIBED DESIGN AND CHANGE PROCESSES 
Systems and software process models suggest how IA should be performed to assess 
design changes.  Systems engineering process models (Section 2.4.1), supported by 
design standards and requirements engineering literature, indicate that documenting 
requirements is a crucial element of the systems-software interface and can be used 
to execute IA throughout the design process.  Some software process models (Section 
2.4.2), based on this systems engineering perspective, also describe IA using 
requirements during design and maintenance.  However, agile software design 
processes do not document requirements as explicitly and, consequently, have an 
alternative perspective on IA.  The range of agile development methods, including 

                                                        
13 Refactoring tools identify patterns in software code and modify the code structure into a more robust 
form.  The changes made automatically propagate throughout the software code (Section 2.5.2). 
14 Bohner and Arnold (1996)  propose a different classification of design changes, including 
modifications due to incorrect information, clerical errors, errors of omission, inconsistencies, and 
ambiguities, based on a specific taxonomy used by the U.S. National Aeronautics and Space 
Administration (NASA).  However, this characterisation does not link to IA, emergent changes, or 
rework effort. 
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Extreme Programming (XP) and Scrum, generally focuses on iterative development 
to adapt to changing customer needs.  Emphasis is placed on working software 
rather than supporting design documentation and following rigid development 
processes (Beedle et al. 2001).  In turn, configuration management offers change 
process models (Section 2.4.3) detailing how IA tasks should occur within both 
requirements-based and agile design methods.  As a result, this range of process 
models describes the context of implementing IA at the systems-software 
engineering interface. 

2.4.1 SYSTEMS ENGINEERING PROCESS MODELS 
Systems engineering literature often discusses implementing software design 
changes through requirements during product development.  An adaptation of the 
Vee model for the systems-software interface clearly illustrates this interaction 
through requirements (Figure 2.3).  This model specifies that systems engineers 
develop software specifications based on identifying customer and functional 
requirements.  While software engineers should have input during this design phase, 
they primarily focus on producing the software detail design from the specifications 
received from systems engineers. 
 
Similarly, other systems engineering process models from the DoD, NASA, and the 
U.S. Coast Guard depict the flow-down of system requirements to software 
designers for implementation (Eisner 2002: 236-237).  The IEEE 1220 standard also 
defines a process for requirements engineering of a system design and discusses the 
transformation of requirements into a detail design solution, as shown in Figure 2.4.  
Although this standard does not explicitly mention software design and generally 
recognises subsystem design, it references implementing design processes according 
to the IEEE standard for software lifecycle processes (Shaaf 2005). 
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Figure 2.3:  The Vee model of the systems engineering and software design 

interface (Blanchard 2003: 27) 

 
Figure 2.4:  IEEE 1220 systems engineering process model (IEEE 2005b: 12) 
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IEEE 1220 aligns with ISO/IEC 15288 in terms of concepts and definitions.  However, 
ISO/IEC 15288 does not graphically model the overall systems engineering design 
process as does IEEE 1220, but instead describes specific systems engineering sub-
processes with defined purposes, inputs, activities, and outcomes.  ISO/IEC 15288 
covers a broad range of these detail process definitions, such as acquisition and 
supply, implementation, integration, verification, validation, operation, maintenance, 
and disposal.  In turn, the INCOSE Systems Engineering Handbook also conforms to 
ISO/IEC 15288 and graphically depicts the systems engineering process through the 
Vee model (Haskins 2006: 3.3-3.6).  CMMI (2006: 396), given the purpose to measure 
processes, also does not specifically describe systems engineering processes.  
However, CMMI does suggest that requirements are an interface between systems 
and software engineering. 
 
Although these systems engineering process models and standards depict different 
design process details, systems engineering uniformly prescribes requirements as a 
key artefact of the systems-software interface.  As expected, requirements 
engineering similarly discusses using requirements at the interface of systems 
engineering and software design (Kotonya and Sommerville 1998: 14).  As such, 
systems engineering, requirements engineering, and design standards often 
prescribe capturing the relationships between system requirements developed by 
systems engineers and the related detail software specifications created by software 
designers through document traces.  In effect, traces can define the decomposition of 
requirements across multiple disciplines and particularly link the system and 
software designs.  In turn, the potential consequences of a change to a requirement 
can be visualised using these captured dependency relationships, known as 
traceability IA (Section 2.5.1).  This form of IA can be applied throughout the software 
lifecycle just as new requirements and requirement modifications can occur.  The 
prescription of working with requirements at the systems-software interface 
influences the frequent recommendation of using traceability IA within literature 
(Strens and Sugden 1996).  Nevertheless, literature also suggests performing other 
forms of IA (Section 2.5.2 and Section 2.5.3). 

2.4.2 SOFTWARE DESIGN PROCESS MODELS 
Some software engineering literature similarly depicts the interface with systems 
engineering through requirements.  Plan-driven design processes, such as the 
waterfall method and as opposed to agile design processes (Boehm 2002), develop 
system requirements, which software then details and implements (Figure 2.5).   
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Figure 2.5:  The waterfall software design process (Boehm 1988) 

Although Boehm and Turner (2005) accept that requirements allow systems 
engineers to coordinate mechanical and hardware designs, which often operate 
sequential design processes, with software development, they also argue that 
software engineering should adopt more iterative and agile design processes.  
Accordingly, systems and software engineering need to reconcile these different 
design process approaches.  The spiral software lifecycle model (Figure 2.6) and the 
Rational Unified Process (RUP) suggest such iterative design processes, which 
include the allocation of system requirements to software design.  Given that systems 
engineering and iterative software design processes include requirement 
development phases, process planning can synthesise these product development 
models in theory.  As such, Turner (2007) proposes means to incorporate more 
concurrency and iterative software design into systems engineering.  Subsequently, 
traceability IA can still be implemented through the captured requirement 
relationships.   
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Figure 2.6:  The spiral software lifecycle model (Boehm 1988) 

Notably, in the spiral model, IA tasks (e.g. when traceability IA is applied) are not 
distinguished for the design iterations depicted, but can be conceptualised based on 
the change process models presented in Section 2.4.3.  These models indicate that IA 
should occur to scope design modifications prior to making change requests (Figure 
2.10) or, in turn, prior to fixing the changes to incorporate into the next prototype 
iteration (i.e. in the risk analysis phases in Figure 2.6)15.  Moreover, IA also should be 
performed while implementing changes (Figure 2.11) and, consequently, also during 
the incorporation of modifications analysed through the evolving prototypes into the 
design (i.e. in the development and revision of software requirements, software product 
design, and detailed design in Figure 2.6). 
 
Agile software development processes, such as Extreme Programming and Scrum, 
often do not formally write, analyse, or review the complete set of requirements 
before commencing software design.  Davies (2005) describes requirement 

                                                        
15 As highlighted in the definition of IA for this dissertation (Section 1.4), IA is not considered a type of 
risk analysis.  However, IA fits into this stage of the spiral model since this risk analysis phase drives the 
changes made to evolve prototype designs in successive iterations. 
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documentation, analysis, and freezing before design as an “ivory tower”.  Agile 
methods expect requirements to change frequently and emerge during development.    
As a result, requirements may be captured simply in colloquial text within a 
prioritised list or backlog database or may be part of story cards that describe 
scenarios of product operation.  Thus, agile processes can be more difficult to 
synchronise with systems engineering, which relies on requirement development 
and partitioning, and presents another perspective on IA given that requirement 
traces may not exist (Section 2.5). 
 
Software maintenance literature refers to design work occurring after the release of a 
product and often conforms to the systems engineering approach through 
requirements.  For instance, Pfleeger and Atlee (2006: 527) specifically name 
traceability IA (Section 2.5.1) as an essential task to handling such rework and design 
changes and suggest that requirements are central to controlling maintenance costs.  
Their maintenance process model also suggests that traceability IA is a means to 
account for ripples of changes or emergent modifications (Figure 2.7). 
 

 
Figure 2.7:  A software maintenance model (Pfleeger and Atlee 2006: 527) 

Similarly, Sommerville (2007: 499) explicitly identifies IA within his maintenance 
process model and suggests implementing traceability IA to determine the scope of 
changes (Figure 2.8). 
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Figure 2.8:  A software maintenance model (Sommerville 2007: 499) 

Although formal change requests initiate these change processes (Figure 2.7 and 
Figure 2.8), as configuration management literature suggests should occur (Section 
2.4.3), Sommerville (2007: 499) also notes that changes can often occur informally, 
especially if urgent, and that requirements are rarely consulted or updated in this 
case.  However, he states that many changes made directly to the software code can 
introduce design inconsistencies, create a chaotic design structure, and cause the 
software to “age”.  Ambler (1999: 191) similarly depicts these problems produced by 
“emergency” changes.  In addition, Yourdon (1989: 447) also describes the 
temptation to make “quick-and-dirty” changes to software code and notes the 
importance of keeping requirements documentation up-to-date.  The updating of 
supporting design documentation may be neglected in practice since this 
administrative work is given lower priority than implementing code changes.  In 
turn, van Vliet (2000: 474-475) illustrates this practice through his “quick-fix” model 
of software maintenance (Figure 2.9) in which code is updated initially and other 
design artefacts may only be updated later, if time and budget permit. 
 

 
Figure 2.9:  The quick-fix model of software maintenance (van Vliet 2000: 474-475) 

Using requirements to maintain a system and determine knock-on changes through 
IA may be impossible, if they are not up-to-date or do not even exist.  Ebner and 
Kaindl (2002) indicate that requirements, design, or design rationale documents 
rarely exist in general for legacy software.  In this case, the quick-fix model may 
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accurately depict the maintenance process performed, focusing on directly using 
code for IA. 

2.4.3 CHANGE PROCESS MODELS 
Configuration management literature describes the details of change processes 
during product development.  This literature area often refers to placing a baseline 
design under formal configuration control.  The baseline design contains all design 
artefacts (e.g. requirements, design models, software code, other documentation, etc.) 
and is used as a reference point for future design modifications (Haskins 2006: 5.12-
5.13).  In turn, defined change processes handle the incorporation of proposed 
modifications into a baseline design.  Hass (2003) indicates that configuration 
management change processes can occur within systems engineering or agile 
development processes and describes archiving practices for this variety of processes 
accordingly.  As a result, the implementation of configuration management processes 
can influence designers’ access to up-to-date information and, therefore, IA 
techniques and affect the outcome of the IA performed. 
 
Figure 2.10 exemplifies the structure of change processes found within configuration 
management literature.  A change request (also known as an engineering change or 
engineering change request) initiates a change process by documenting the scope of the 
design modification and potentially estimating the cost and development time.  A 
change control board (CCB), which may include projects managers and stakeholders, 
accepts or rejects the change request.  The CCB may perform IA during this decision 
process (Whitgift 1991: 135).  However, IA inevitably also occurs during the creation 
of the change request (Leishman and Cook 2003).  If a change request is accepted, 
then the design modification is implemented and verified.  While Figure 2.10 
illustrates a change process focused on software design modifications, a CCB can 
oversee modifications for system designs as well. 
 
In practice, change requests also may be revised or trigger alternative requests before 
acceptance or rejection by a CCB, and, moreover, a CCB may leave change requests 
open or, in other words, not take action to accept or reject a design modification 
throughout a design project.  Figure 2.10 notably does not illustrate these scenarios. 
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Figure 2.10:  A prescribed software change process (Leishman and Cook 2003) 

Bohner and Arnold (1996: 7) note that IA also should occur in conjunction with the 
implementation of the modification to ensure that the full scope of the change is 
performed, reducing the risk of unexpected, emergent changes.  Figure 2.11 models 
this continual use of IA during change processes. 
 

 
Figure 2.11:  Impact analysis within change processes (Bohner and Arnold 1996: 6) 
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When configuration management change processes take effect during product 
development, all modifications should be tightly recorded and documented through 
change requests.  However, the delineated point at which such configuration 
management is implemented can vary from project to project (Haskins 2006: 5.12-
5.13).  In effect, change processes prior to configuration management can be less 
formal in that change requests may not be documented or reviewed by managers or 
stakeholders, and, hence, the times when IA is applied can vary, but should occur, 
nevertheless. 
 
In summary, the process models reviewed throughout this section indicate a variety 
of perspectives on how and when IA should be applied during product development 
and specifically contrast performing IA through a requirement-engineering approach 
and within agile software development.  The following section details the IA 
techniques used within these processes. 

2.5 IMPACT ANALYSIS TECHNIQUES 
Systems, requirements, and software engineering have developed a spectrum of IA 
techniques to perform within more or less formal change processes.  Bohner and 
Arnold (1996) define two classes of IA, traceability and dependency IA, and this 
research identifies a third type, experiential IA, through a comparison of plan-driven 
and agile software development literature (Figure 2.12). 
 

 
Figure 2.12:  Classification of IA techniques 

Although any of these IA techniques can be applied as prescribed by change 
processes (Section 2.4.3), experiential IA may also be performed as defined by design 
review procedures (Ambler 1998: 488).  In effect, design reviews, a form of 
experiential IA, can initiate change requests and the associated processes, if they 
detect design flaws or errors. 
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2.5.1 TRACEABILITY IMPACT ANALYSIS 
Systems and software engineering literature as well as design process standards, 
including IEEE 1220 (IEEE 2005b: 17), ISO/IEC 15288 (ISO/IEC 2002: 21-28), and 
CMMI (2006: 413), requirements engineering (Hofman 2000: 79; Hull et al. 2004: 151), 
and configuration management (Hass 2003: 100; Whitgift 1991: 150) literature 
frequently prescribe capturing the relationships between system requirements and 
software specifications, known as requirement traceability.  This literature suggests 
that maintaining these associations in a requirements traceability matrix (Haskins 2006: 
4.7; Kossiakoff and Sweet 2003: 452) affords completeness in design documentation 
throughout product development (DeGrace and Stahl 1993: 81-82). 
 
Given a requirement or specification change, the existing traceability relationships 
extending from the affected element can be identified, indicating additional 
requirements or specifications that may need modification.  In turn, these traces 
allow engineers to perform traceability IA across the systems-software interface 
(Eisner 2002: 236-237; Nuseibeh and Easterbrook 2000).  Assuming that the 
traceability relationships captured are complete and up-to-date, following these 
traces can ensure that an initiating design change and its related modifications are 
implemented fully, reducing the risk for unanticipated, emergent changes (Ambler 
2002: 244; Robertson and Robertson 1999: 186).  Leveson and Weiss (2004) even argue 
that traceability is fundamental for managing design changes in safety-critical 
systems in order to prevent accidents and unanticipated product behaviour. 
 
In contrast to hardware, software changes are deterministic to some extent in that, 
without implementing modifications fully (e.g. variable usage or name changes), 
software may not compile and run or fail basic system tests.  Hardware 
modifications can be more probabilistic since emergent system properties can occur 
(e.g. vibration), affecting product operation.  As such, initiating software changes and 
the associated first-order, knock-on changes can be treated in terms of completeness to 
meet the desired functionality.  First-order, knock-on changes are directly related to 
an initiating design modification, while higher-order, knock-on modifications 
indirectly occur and may be spawned through interacting requirements or other 
simultaneous changes.  Notably, since software changes can be implemented in 
different ways to meet the same functionality, completeness only describes the 
chosen implementation. 
 
While design and maintenance processes highlight requirement traceability (Section 
2.4), traces can extend beyond these relationships.  Traces can also map system 
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requirements to software detail designs (i.e. system requirements are linked to 
software lifecycle objects or work products, such as models, code files, or other design 
documentation) (Bohner and Arnold 1996: 3).  Vertical traceability16 refers to the 
relationships within a type of software lifecycle object (e.g. between system 
requirements), and horizontal traceability captures the associations between different 
types of work products (e.g. between system requirements and software 
specifications) (Pfleeger and Atlee 2006: 526).  Figure 2.13 illustrates vertical and 
horizontal traceability relationships. 
 

 
Figure 2.13:  Vertical and horizontal traceability (Lindvall and Sandahl 1998) 

As a result, traceability IA can indicate the effects of changes on the system 
requirements, software specifications, and specific software lifecycle objects, which 
essentially can document the entire systems-software design (Dick 2005).   
 
As described by Bratthall et al. (2000), documenting design rationale and inserting 
traces to this variety of artefacts improves the IA capabilities by encapsulating a 
wider scope of the change consequences.  Similarly, Lacaze et al. (2006) have created 
a tool to support performing IA by tracing rationale to modelled design artefacts; 
Boehm and Kitapei (2006) also prescribe using traceability links to design rationale in 
the IA performed during negotiating requirement changes; finally, Bass et al. (2006) 
outline how traces to design rationale can be captured “causally” and “structurally” 
and feed into IA.  Furthermore, Hull et al. (2004: 133-134) suggest that additional 
logic or “rich traceability” can be added to traceability relationships, which are 
traditionally binary in that they exist or do not exist.  By including “and” and “or” 
logical operators, traceability can be used to show the conditions under which 

                                                        
16 Literature also provides a variety of other naming conventions for the mapping between artefacts 
(Blanchard 2003: 84; Grady 2006: 58; Jalote 2000: 58; Lindvall 1997a: 20-21; Sommerville 2001: 142-145). 
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system requirements satisfy user requirements.  By including this additional 
information, further analyses can be performed using the traceability relationships.  
For instance, “validation” analysis can ensure that the functional requirements meet 
the customer requirements (Dick 2005). 
 
Requirements engineering literature also suggests creating specialised traceability 
databases for design variables, called data dictionaries (Bray 2002: 334).  Data 
dictionaries store information about variables used in system design models, 
software models, or even code.  By capturing the relationships between variables and 
their use in models and code, a change to the name, meaning, or use of a variable can 
be propagated throughout the design (Sommerville and Sawyer 1997: 181-184). 
 
Although requirements may not be formally documented within agile software 
development (Section 2.4.2), taking the perspective of Boehm and Turner (2005), 
merging traditional requirement documentation with other requirement artefacts, 
such as backlog databases and story cards, should be considered.  Daniels and Bahill 
(2004) exemplify this perspective and suggest a method to integrate requirement and 
use-case documentation, while Alexander (2002) discusses the implementation of 
supporting tools for this integration.  In turn, using multiple forms of requirement 
capture and tracing between these work products provides abounding design 
documentation, which can be used for traceability IA (Jacobson et al. 1999: 4).   
 
However, literature on agile development processes does not necessarily support 
capturing traceability or using this form of IA, arguing that maintaining traces has a 
high cost and is labour-intensive (Ambler 2002: 244).  Kotonya and Sommerville 
(1998: 132) give an overview of the costs of traceability and write: 
 

The fundamental problem with maintaining traceability information is the high cost of 
collecting, analysing, and maintaining that information.  There is a high initial cost involved 
in assessing dependencies.  Additional costs are incurred to update this information every 
time a requirements change is made.  When projects are working to a tight time schedule, 
other work must sometimes take higher priority.  All too often, traceability information is not 
updated.  The information becomes progressively less useful so there is little incentive to use it 
and keep it up to date.  Within a relatively short time, it is discarded and change analysis is 
carried out informally.  

 

Although the cost of maintaining traces arguably can be reduced through effective, 
automated management tools (Grady 2006: 58), traceability relationships, 
nevertheless, require continual resources during the design process.  Palmer (2002) 
argues that these costs outweigh the risk of avoided rework and the potential for 
product failure.  In turn, Grady (2006: 58) contends that simply relying on human 
memory (i.e. termed experiential IA in Section 2.5.3) cannot effectively determine the 
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consequences of design modifications in the wake of changing program personnel, 
the length of complex design projects, and the sheer volume of design information 
and recommends absorbing the costs of traceability IA.  In addition, Parnas (1986) 
directly confronts the reality of evolving requirements and suggests “faking” the 
requirement development process.  He argues that requirements naturally change 
during design and that not all requirements exist at the beginning of design.  As 
such, requirement documentation should be updated as new requirements emerge 
and errors are found.  The design can be updated rationally as opposed to in an ad 
hoc manner.  With this perspective, traceability IA may provide insufficient results at 
the beginning of the design process and more reliable results towards the end of 
development (Gilb and Graham 1993: 12; Neill and Laplante 2003).  Thus, less 
incentive also may exist in the short-term for designers to maintain traces, even 
though it can be useful throughout product development (Grady 2006: 58; Palmer 
2002). 
 
To address the costs and potential lack of incentive for maintaining traces, Kotonya 
and Sommerville (1998: 132-134) suggest creating practical, useable procedures to 
enable traceability IA.  They propose that capturing some traceability information is 
more beneficial than recording none or some in an ad hoc manner.  This concept of 
lightweight traceability forms a middle ground between systems engineering and 
agile design methods and also initiates another debate on the essential information 
that should be encapsulated in this case.  Neither Kotonya and Sommerville or other 
literature offer explicit suggestions on such traceability policies. 
 
Many commercial computer tools allow for the semi-automation of traceability IA by 
structuring the relationships among software lifecycle objects.  Within INCOSE’s 
taxonomy of systems engineering tools website, 22 traceability tools are listed 
(INCOSE 2004a), such as Borland Caliber-RM™, Telelogic DOORS®, and IBM 
Rational® RequisitePro®.  IA results produced by these tools may still require manual 
analysis since modifications may not propagate across all traceability relationships, 
as described by Bohner and Arnold (1996: 8).  Research continues to aim to improve 
the results of these tools to virtually eliminate this work by hand through enhancing 
the relationship modelling (Ebner and Kaindl 2002; von Knethen 2002), the 
visualisation of traceability links (Marcus et al. 2005), the traceability IA algorithms 
(Lock and Kotonya 1999; O’Neal 2003; O’Neal and Carver 2001), and the automation 
of maintaining traces (Hayes et al. 2005; Marcus et al. 2005).  However, even without 
tool automation, traceability IA can be performed manually by searching for and 
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following references between work products (Brown et al. 1999: 98), although this 
search process may be difficult to do exhaustively (Dick 2005). 

2.5.2 DEPENDENCY IMPACT ANALYSIS 
Although systems, requirements, and software engineering literature emphasises 
requirements as a primary work product at the interface, dependency IA techniques 
can also assess design modifications.  Bohner and Arnold (1996: 2) describe 
performing dependency IA by identifying the linkages between variables, logic, 
modules, etc. within software architecture or code.  If a design change from systems 
engineering is known to affect a specific software artefact, dependency IA, 
performed using the actual software code, can depict additional areas that also 
require modification.  Bohner and Arnold recognise that dependency IA is limited to 
low-level design, compared to traceability IA, which broadly analyses relationships 
between work products.  As such, dependency IA does not indicate further changes 
required of requirements or other work products.  For instance, dependency IA may 
not be able to diagnose the timing and synchronisation of software functions, 
requiring a high-level analysis of the distribution of software requirements and 
timing constraints.  Nevertheless, traceability IA can be used in conjunction with 
dependency IA for more detailed analysis of software designs (Rierson 2000).   
 
Program slicing and refactoring are examples of such low-level, code-based, 
dependency IA.  In program slicing, the dependencies of a variable at a certain point 
in a program are determined.  This slice or connections within the program include 
all of the statements in the program that might affect this variable.  Thus, the 
potential set of knock-on changes to this variable can be assessed (Binkley et al. 2007; 
Horwitz et al. 1990; Sridharan et al. 2007; Weiser 1984).  Based on the concept of 
program slicing, more specific forms of this dependency IA have stemmed.  Static 
algorithms identify relationships within the program structure (Buckner et al. 2005; 
Han 1997; Kung et al. 1994; Rajlich 1997; Rajlich 2000; Rajlich and Gosavi 2004; van 
den Berg 2006); dynamic methods gather information about program behaviour at 
run-time (Apiwattanapong et al. 2005; Breech et al. 2005; Law and Rothermel 2003); 
and, hybrid algorithms incorporate both static and dynamic characteristics (Ren et al. 
2006; Ren et al. 2005).  Similar support for dependency IA has been based on 
algorithms using probabilities (Tsantalis et al. 2005), heuristics (Hassan and Holt 
2004), and other coupling measures (Briand et al. 1999).  Unlike these dependency IA 
algorithms, refactoring often automatically changes the software code and is 
frequently used within Extreme Programming.  Refactoring tools make modifications 
to the internal code structure and propagate these changes without modifying the 
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external code behaviour (Fowler 2004).  In turn, the changes initiated are often 
restricted to follow certain patterns and focus on producing more robust code.  IBM 
Rational® RequisitePro® and Metallect IQ (Figure 2.14) are two commercial software 
tools available for dependency IA that use such analysis algorithms to map 
relationships within software code. 
 

 
Figure 2.14:  Screenshot of code dependencies from Metallect IQ (Metallect 2007) 

Extending Bohner and Arnold’s definition of dependency IA, literature also 
describes techniques implemented through system and software design models.  
Models can map the dependencies between model elements and be used to scope a 
design change.  The impact of a change identified on the model components can be 
translated into the consequences on the actual design.  Specifically, UML models17 
can visualise system or software requirements in terms of the details of a software 
design (Holt 2001: 235-240), and specialised algorithms have been developed to 
perform IA on UML diagrams (Briand et al. 2003; Briand et al. 2005; Lee et al. 2002).  
Other modelling formats can be used in a similar manner to perform IA (Ajila 1995).  
Such analysis of models can be considered dependency IA in that modelled 
relationships depicted are often more detailed than those used for traceability IA and 

                                                        
17 INCOSE has extended UML for systems engineering modelling capabilities and created the Systems 
Modelling Language (SysML), allowing for the clear depiction of system requirements for software 
design (Haskins 2006: 7.7-7.8).  Furthermore, SysML can support integrated software and hardware 
designs, granting IA to be performed across these disciplines.  Advancing the techniques for 
interdisciplinary IA could provide a means to avoid accidents, such as the Therac-25 discussed in the 
introduction to this dissertation. 
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can be animated, actively changing software code in some cases.  UML modelling 
programs, such as ARTiSAN Studio®, support such dependency IA, and, since 
systems engineering and agile development methods promote using UML, both can 
implement such dependency IA (Ambler 2002).   
 
Although the specific dependency IA techniques described thus far often can rely on 
automated algorithms, dependency IA can also be performed through manual 
searches of variables or logic in software models or code.  Systematically following 
dependencies can indicate the consequences of making a change.  van Vliet (2000: 
459) suggests that a top-down study of program text can effectively identify knock-
on effects of changes and notes that only localised study of variables and program 
logic can cause unanticipated problems.  The code should be first analysed at a high-
level for dependencies between code modules, functions, etc. and then investigated 
in progressively more detail until low-level relationships between specific variables 
within the program logic are reached.  However, similarly to employing traceability 
IA by hand, manual searches can be difficult to implement thoroughly for large, 
detailed software designs. 

2.5.3 EXPERIENTIAL IMPACT ANALYSIS 
Literature on IA often refers to using alternative techniques to aid in understanding 
the consequences of changes.  For example, Bohner and Arnold (1996: 7) write that if 
design relationships are not or cannot be captured for traceability or dependency IA 
(e.g. early in design processes), then designers can use review techniques, such as 
inspections, walkthroughs, and desk checking, to identify requirement and variable 
relationships and, in turn, infer the impact of changes.  While Bohner and Arnold do 
not classify such techniques as IA, literature supports the argument that reviews18 
can identify defects and potential problems in design, which necessitate 
modifications.  van Vliet (2000: 87) indicates that expert design knowledge employed 
during reviews quickly and efficiently detects errors.  Similarly, Endres (2003: 17) 
states that reviewing also can cheaply spot changes early, as opposed to detecting 
design errors late and then making design modifications at a high cost.  In addition, 
Humphrey (2000: 150) argues that reviews are essential because it is impossible to 
exhaustively test software systems to find all errors and make appropriate changes.  
Furthermore, testing should not be assumed to be able to find all design errors (e.g. 
high-level design flaws, such as not meeting user needs, may not be found during 

                                                        
18 Bohner and Arnold do not appear to distinguish between these different reviewing techniques.  While 
walkthroughs, scenarios, inspections, peer reviews, and the like have different motivations and 
methodologies (Hofman 2000: 70-77), the generic term review is used in this research for simplification, 
as does Ciolkowski (2003). 
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low-level testing) (Ellims et al. 2006).  Designers must use their logical reasoning to 
interpret the impact of changes in these cases.  Similarly, traceability and dependency 
IA techniques may require designer interpretation to determine the relevant results 
and consequences of changes, as suggested by Bohner and Arnold’s definition of IA 
(Section 1.4) and as indicated by research into software “information leaks” (George 
and Bohner 2004).  Hence, IA can involve using engineering judgement and 
knowledge. 
 
Although review methodologies attempt to support the systematic evaluation of 
designs through assigned roles, checklists, and reviewing rules and processes 
(Ambler 2002: 473; Bush 2004; Gilb and Graham 1993: 43-62), reviews still depend on 
designer knowledge and experience to identify design errors and the associated 
knock-on changes.  As such, engineers can perform IA by simply thinking about the 
implications of a change and using “general knowledge” (Sommerville 2001: 145) or 
informally discussing proposed modifications within the design team as done in 
agile processes.  Applying engineering judgement, just as formal reviews, can 
identify tacit dependencies and implications of design changes not found through 
traceability or dependency IA techniques.  Furthermore, capturing and then 
reviewing tacit relationships between design artefacts through design rationale can 
enhance this judgement (Boehm and Kitapei 2006).  Using such design rationale, 
which may also be captured for traceability IA (Section 2.5.1), can enhance both 
techniques.  Ambler (2002: 244) specifically argues for using engineering judgement 
instead of traceability IA and writes: 
 

Warning: Think Very Carefully Before Investing in a Requirements Traceability 
Matrix…This is not travelling light… The benefits of having such a matrix is that it makes it 
easier to perform an impact analysis that pertains to a changed requirement because you know 
what aspects of your system will potentially be affected by the change.  However, if you have 
one or more people familiar with the system, which you want to have anyway, and if you want 
to be effective at enhancing the system, then it is much easier and cheaper to simply ask them 
to estimate the change.  Traceability matrices are highly overrated because the cost to maintain 
such matrices, even if you have specific tools to do so, typically far outweigh the benefits. 

 

Given that agile design methods focus on working software and emphasise 
communication, rather than documentation, they may prefer implementing IA 
through informal discussions and individual engineering judgement. 
 
In turn, this research defines experiential IA to include review processes, informal 
discussions, and the application of engineering judgement.  Experiential IA can 
identify implicit design dependencies and, therefore, mechanisms for change 
propagation through expert knowledge.  However, this form of IA may be 
unsystematic by nature, potentially neglecting means of change propagation.  
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Nevertheless, performing experiential IA does not exclude the implementation of 
traceability and dependency IA, and vice versa.  
 
To summarise the specific IA techniques cited in this section, Figure 2.15 provides 
example references for the traceability, dependency and experiential classification 
(Figure 2.12).  The effort to implement each type of IA is further investigated through 
modelling and simulation in Chapters 6, 7, and 8 using the adapted rework cycle 
model (Figure 8.2).  This work focuses on analysing the completeness of IA for 
design modifications and the associated first-order, knock-on changes (Section 2.5.1 
and Section 6.3.2). 
 

 
Figure 2.15:  The range of IA techniques 

2.6 IMPACT ANALYSIS IN PRACTICE 
Even though literature promotes traceability, dependency, and experiential IA as 
effective means to identify the scope of changes (Section 2.5), literature also suggests 
that these IA techniques are not always implemented in practice.  The following 
discussion highlights the disparities between the prescribed and practised forms of 
traceability (Section 2.6.1), dependency (Section 2.6.2), and experiential (Section 2.6.3) 
IA.  Attributes of practised change processes, such as documentation and model 
maintenance, review processes, and only relying on memory and experience, can 
cause these IA techniques to deliver less than perfect results, increasing the risk of 
unanticipated, emergent changes. 
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2.6.1 TRACEABILITY IMPACT ANALYSIS IN PRACTICE 
Literature suggests that requirement management and traceability maintenance 
processes can cause the disuse of traceability IA in practice.  Frequent or late 
requirement changes particularly produce this effect (Blanchard 2003: 4; Humphrey 
2000: 111; Jalote 2000: 56).  If changes occur frequently, designers may not keep 
traceability information always up-to-date.  If late requirements emerge, traces may 
not be maintained during the implementation of emergency or quick-fix change 
processes (Section 2.4.2).  Similarly, if requirements are inconsistent or incomplete 
dependency traces may not be reliable (Heimdahl and Leveson 1996; Sage 1990: 240).  
In turn, the traceability IA performed with such inaccurate information does not 
provide useful results, potentially leading to abandonment of this technique.   
 
Although some literature indicates that requirement management improvement can 
occur in practice, increasing productivity (Damian et al. 2005), other literature 
confirms that frequent and late requirement changes continue to plague design 
projects (Emam and Hoeltje 1997; Jones 2006).  In a special issue of IEEE Software 
devoted to large-scale studies on software engineering practice, research indicates 
that documentation is not maintained (Lethbridge et al. 2003) and traceability 
between work products is not always captured during design processes (Graaf et al. 
2003).  While out-of-date requirements and traces can occur due to the logistics of 
tool configuration and the sharing of information (Kotonya and Sommerville 1998: 
134), these large-scale studies indicate that this is not the case since the information is 
simply not maintained consistently.  In effect, the IA results obtained can be out-of-
date, at best, and without the capture of traces, the analysis cannot even be 
performed in practice. 
 
In addition, literature suggests that maintaining documentation and traceability can 
be challenging based on the nature of the design process implemented.  For example, 
Rottman (2006) notes that requirement management is particularly difficult when 
outsourcing software design.  Coordinating information between dispersed teams 
developing system requirements and programming the software affects the handling 
of requirements and changes.  As opposed to “throwing requirements over a fence”, 
responsibility and participation in IA is required of both parties.  However, even for 
co-located design teams, highly parallel design processes can cause problems and 
design errors (Perry et al. 2001).  Specifically, concurrent requirement changes can 
lead to out-of-date, inaccurate traces and unhelpful IA results (Buckley et al. 2003).  
Thus, the context of the design process (i.e. outsourcing or high concurrency) can 
influence the implementation of traceability IA in practice. 
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2.6.2 DEPENDENCY IMPACT ANALYSIS IN PRACTICE 
The implementation of dependency IA can face similar challenges to traceability IA, 
even though most of the literature on dependency IA found focuses on algorithm 
development.  While dependency IA may be difficult to implement based on the 
context of the design process (i.e. outsourcing or high concurrency) since dependency 
models have to be maintained, as do traceability relationships, no literature has been 
found to specifically address this concern.  Nevertheless, literature suggests that the 
lack of model maintenance has lead to erroneous IA results in practice.  In particular, 
literature indicates that performing IA on incomplete and inconsistent models can 
produce misleading results.  For example, Pap et al. (2001) discuss the importance of 
creating complete and consistent UML models for design specifications and cite 
incidences in which ambiguous specifications have caused software failures.  In turn, 
Pap et al. develop methods to check UML diagrams for these properties.  Graff et al. 
(2003) similarly report the inconsistency of UML models in practice during a large-
scale study of the software engineering industry, potentially causing inaccurate IA 
results.  Furthermore, incompleteness and inconsistencies within software design 
and code can occur independently (Nuseibeh et al. 2000), and, consequently, 
dependency IA results either based on models or code can both be incorrect and 
unhelpful. 

2.6.3 EXPERIENTIAL IMPACT ANALYSIS IN PRACTICE 
Finally, literature notes that experiential IA is not necessarily implemented as 
intended.  Ciolkowski et al. (2003) report from a large-scale study on software 
engineering practice that reviews are often performed using unsystematic techniques 
and do not specifically look for design faults and the associated necessary changes.  
Using reviews only to educate others on a design or to follow procedures misses the 
opportunity to evaluate the design quality.  Ciolkowski et al. also indicate that 
standard processes for reviews often do not exist.  In turn, the results produced by 
reviews can vary greatly, making this form of experiential IA unreliable to detect 
knock-on changes.  Similarly, Weinberg (2003) and Chao et al. (2004) separately 
acknowledge that reviews are often not rigorously implemented within industry.  
They indicate that cosmetic reviews occur in that there is no real intent to find 
defects, and the reviews simply provide a false sense of security that design progress 
has been made.  In contrast, Bush (2004) notes that review processes have been both 
fervently adopted as well as abandoned in companies.  She attributes these 
differences to organisational culture.  Consequently, there is no overwhelming 
evidence that reviews are a key form of IA used in practice. 
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Studies have also shown that the reliance on experiential IA techniques using 
engineering knowledge and judgement produces inaccurate estimations of change.  
Specifically, Lindvall and Sandahl (1998) experimentally demonstrate that engineers 
predict incomplete sets of changes when only using their judgement, producing an 
ineffective means of IA.  Similarly, von Mayrhauser et al. (1997) report on 
observations that changing software code can cause memory overloading for 
designers.  In these experiments conducted, designers ended up relying on provided 
tool support to obtain information then implementing changes.  Thus, the 
implementation of experiential IA is not necessarily a proven method for detecting 
changes in practice. 

2.7 SCARCITIES AND DISPARITIES IN IMPACT ANALYSIS LITERATURE 
In this chapter, several scarcities and disparities within literature on IA have been 
illuminated.  Firstly, the search process (Section 2.1) indicates that the systems-
software interface is treated only tangentially within disciplinary and design process 
literature, and no abundance of research focuses on the nature of this interface 
(Section 1.1).  Of the literature found specific to the interaction of systems 
engineering and software design, no research concentrates on change management, 
even though much of this literature mentions the difficulty of handling design 
modifications.  As a result, this research project as a whole addresses this general 
lack of research. 
 
Secondly, the review of change characterisations suggests a potential scarcity of 
research at the interface in that only one process characteristic, synchronisation, is 
mentioned to influence the management of emergent changes using IA (Section 2.3).  
Although other literature on traceability IA practice corresponds to this 
characterisation in that outsourcing and highly concurrent processes can affect the 
sharing of information and application of IA (Section 2.6.1), other influences may 
also exist and have yet been explicitly defined.  In effect, the reasons for the 
differences between the prescribed and practised forms of IA have not been 
characterised.  Research question 3 (Figure 1.9) refers to this concern of scarcity in 
literature, and the empirical studies describe the influences on implementing IA in 
practice (Chapter 4). 
 
Thirdly, in the discussion of design processes (Section 2.4), systems engineering 
processes and the standards associated with these processes (e.g. ISO/IEC 15288, 
IEEE 1220, and CMMI) conflict with literature on agile software development 
methods (Boehm and Turner 2005).  These different perspectives have not been fully 
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interpreted in terms of implementing IA.  The discussions on traceability (Section 
2.5.1) and experiential (Section 2.5.3) IA highlight this discrepancy, but often the 
literature cited only prescribes or devalues certain IA techniques from a theoretical, 
academic perspective.  Research question 1 (Figure 1.7) is derived from examining 
these disparities in literature and noting that no other research found to date has 
examined these different perceptions of IA within industry.  In turn, the empirical 
studies investigate the prescription of IA by company policies and procedures from 
systems engineering and agile methods perspectives (Chapter 3). 
 
Fourthly, literature suggests that prescribed IA techniques are not always 
implemented in practice (Section 2.6).  For instance, research on requirement and 
model maintenance practice suggests that traceability and dependency IA may not 
produce useful results and, in turn, not be applied in practice.  Similarly, literature on 
experiential IA shows that the adoption of design reviews for IA varies within 
industry.  However, no research found identifies the spectrum of IA available and 
succinctly describes the difference between these IA techniques as prescribed and 
practised.  Thus, a scarcity on the influence of IA on emergent design changes in 
practice appears to exist within literature, as described in research question 2 (Figure 
1.8).  The empirical studies do not aim to perform a large cross-sectional study across 
many companies and industry sectors to answer this question.  They intend to 
provide a characterisation and theoretical argument to depict the influences of 
different types of IA on emergent change management in practice (Chapter 4). 
 
Finally, no literature found suggests improvement strategies for implementing IA.  
Many of the descriptions of IA simply prescribe the techniques, but do not address 
the challenges of applying them in practice.  This scarcity of improvement strategies 
is addressed in research question 4 (Figure 1.10).  Ultimately, this research question is 
grounded in the desire of the industry collaborators to understand the effect of IA on 
product development. 

2.8 SUMMARY 
Given the scarcity of literature directly confronting the systems-software interface 
(Section 1.1), a literature search uncovers several research areas noting aspects of this 
disciplinary intersection.  A review of change characterisations, design, maintenance, 
and change process models, and IA techniques illuminates a disparity in 
perspectives on how design changes should be handled at the interface.  Scarcities 
within the literature found are also identified in that the difficulties of implementing 
IA in practice have not yet been fully examined, and the usefulness of IA to manage 
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emergent changes in practice has not been determined.  These scarcities and 
disparities (Section 2.7) identified through the literature review reflect the research 
questions presented at the beginning of this dissertation (Section 1.6) and are 
addressed through empirical studies. 
 
 
 



 

 

 
 
 
 
 
 
 

3 :: EMPIRICAL STUDIES ON SYSTEM DESIGN                                                    
AND SOFTWARE CHANGES 

 
This research project conducted empirical studies at two large engineering firms in 
the aerospace and telecommunications industry sectors to identify prescribed and 
practised change processes and IA techniques implemented at the systems-software 
interface.  In the aerospace company, embedded software supports the functionality 
of a primarily mechanical product.   This firm advocates using a systems engineering 
design approach in which system designers develop the high-level software 
requirements and software designers implement these specifications.  In contrast, the 
telecommunications company develops products integrating hardware and software, 
and the software delivers most of the functionality of these products.  Agile software 
design processes are implemented this latter company.  The selection of these 
companies for participation in the empirical studies was opportunistic in that both 
had interest in the research project and were willing to grant access to company 
resources.  Nevertheless, these industry partners characterise IA practice with respect 
to the systems engineering and agile processes spectrum discussed in the literature 
review (Chapter 2).  Figure 3.1 maps a selection of this literature on prescribed and 
practised change processes and IA and the industry partners’ processes to this 
spectrum. 
 

 
Figure 3.1:  The systems engineering and agile processes spectrum 
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This chapter first describes the method used to conduct the empirical studies (Section 
3.1).  Accordingly, this discussion provides the background for presenting the results 
of these empirical studies in the remainder of Chapter 3 as well as Chapters 4 and 5 
(Section 3.2). 

3.1 METHOD OF THE EMPIRICAL STUDIES 
Systems and software engineering research increasingly employs empirical studies to 
investigate design practice (Ott et al. 1999; Perry et al. 2000; Seaman 1999). Several 
different approaches to empirical research exist, including (1) biography, (2) 
phenomenology, (3) grounded theory, (4) ethnography, and (5) case study (Cresswell 
1998).  The investigation of IA was conducted using an approach informed by 
grounded theory.  As opposed to other empirical research methodologies, grounded 
theory is data-driven and focuses on developing new theories and explaining 
phenomenon based on systematically collecting and analysing information.  
Employing this methodology provides an impartial approach to describing IA 
practice as observed within the aerospace and telecommunications companies. 

3.1.1 GROUNDED THEORY 
Grounded theory often only relies on data collection through interviews.  However, 
other data collection methods can also be used within a grounded theory framework.  
For example, informal discussions, observation, and documentation review can be 
recorded through memos (Goulding 2002: 64-66).  Using such a variety of techniques 
can obtain additional information not available through interviews, allowing for the 
triangulation of data in that multiple sources can corroborate the information 
collected (Bratthall and Jørgensen 2002).   
 
Grounded theory stipulates that collected data, including interview transcripts and 
memos, be analysed through coding.  Coding entails attaching descriptions or 
interpretations to sections of interview transcripts or memos.  This analysis process 
should occur throughout the data collection process, and the codes developed should 
be compared with each other and new data collected in order to refine code 
definitions and conceptualise the interdependencies between codes.  Such code 
refinement should be performed before the collection of additional data (Seaman 
1999).  Through this method of constant comparison, codes can be grouped into 
themes, which help to develop over-arching theories and conceptualisations of the 
data (Strauss and Corbin 1998: 101-161). Through coding, the data collected drives 
the analysis results and key concepts identified. 
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3.1.2 DATA COLLECTION AND ANALYSIS 
The empirical studies were conducted using a grounded-theory informed approach 
across two phases of interviews: 
 

• Phase 1 consisted of an exploratory study at the aerospace company and investigated 
the prescribed and practised change processes and IA techniques (Section 3.1.3). 

• Phase 2 conducted empirical studies specifically on IA at the aerospace and 
telecommunications companies and determined the influences on performing IA in 
practice (Section 3.1.4). 

 

While conducting these interviews on-site at the aerospace and telecommunications 
companies, memos were also used to capture data from informal discussion, 
observation, and documentation review. 
 
Of the techniques implemented, interviews and informal discussions were the 
primary means to gain insights into the challenges of change management, while 
observations and documentation reviews supplemented this information gathered.  
Since the author was often on-site daily at the companies, numerous discussions 
occurred and provided perspectives on the research project.  In most instances, 
interviews clarified and elaborated on topics covered in these discussions.  However, 
in order to provide an additional means to capture intangible information, such as 
the topics in these discussions, the tone of interviews, and insights made during 
observation and documentation review, memoing accompanied all of these activities.   
 
A semi-structured style of interviewing was implemented in that a list of topics was 
generated before each interview, but the conversation was allowed to progress into 
relevant areas as initiated by interviewees.  All interviewees were male, except for 
one working at the telecommunications company.  Within both companies, key 
stakeholders, including (1) system designers, (2) software designers, (3) design 
process engineers19, and (4) managers, all participated in the interviews.  Based on 
questioning the individuals sponsoring the research project within these companies, 
no other category of employee directly influenced the processes or IA performed at 
the systems-software interface20.   

                                                        
19 In the participating companies, teams are assigned to define and support the systems engineering and 
agile processes implmented.  This dissertation describes individuals with this role as design process 
engineers. 
20 This research project was also discussed with individuals within other areas of the companies.  
Mechanical and hardware engineers were particularly consulted in the aerospace firm.  However, they 
reported to have little input to the software processes.  Similarly, verification and validation teams 
primarily indicated finding design flaws as opposed to performing IA and root causing the required 
modifications (Section 3.4.1).  Within the telecommunications company, interactions with stakeholders 
from around the company during a 3-day design workshop confirmed these primary stakeholders, as 
hardware designers had no input to the IA performed on the software application design (I-40). 
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Although the partitioning of work between systems and software engineers differ 
between the two companies and even among design projects within the companies, 
both companies define systems and software engineering roles.  In turn, Appendix A 
lists the stakeholder role of each interviewee based on his or her assigned job title 
and allocates each interviewee a unique identifier, which is used as a reference in the 
remainder of this dissertation.  References are given in parenthesis in the form “I-
id#”.  Appendix A also includes interviews external to the empirical studies that 
were conducted at three other companies (a large computer hardware and software 
development firm, a small company focusing on research and development for 
computer hardware and software, and a medium-size consultancy working within 
telecommunications) for general research feedback, advice, and input. 
 
Given that a specific project group within the aerospace company sponsored this 
research project, full access was available to this group.  More information could be 
readily gathered from these engineers through daily interactions since the author 
was co-located with this team while on-site.  The author mitigated this potential bias 
through interviewing contacts gained outside of this group, including three different 
project groups, the software maintenance design team, the team of design process 
engineers, and senior managers responsible for all software projects.  In turn, 49% of 
the interviews were conducted outside of the sponsoring project design team.  
Within the telecommunications company, the author did not work closely with a 
project team.  Interviewees across the organisational structure were recruited 
through personal contacts of the individuals sponsoring the research project within 
the company.  Just as in the aerospace company, a cross-section of project teams, the 
design process engineering group, and managers provided interviews. 
 
As described by grounded theory, transcripts of interview audio recordings and 
memos, which captured discussions, observations, and documentation reviews, were 
coded by identifying and revising overarching concepts and themes.  A software 
tool, HyperRESEARCH21, was used for all coding activities (Figure 3.2).   
 

                                                        
21 More information about HyperRESEARCH™ can be found at http://www.researchware.com. 
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Figure 3.2:  Screenshot of HyperRESEARCH 

This software tool allows for the coding of text files, collates codes and quotes into 
reports, and provides a means to visualise code relationships and hierarchies in a 
code map.  While other software tools provide similar functionalities (e.g. NVivo22), 
HyperRESEARCH was the only tool available for the Macintosh operating system 
when the empirical studies commenced.  Hence, this software tool was used given 
that the author’s computer operated on this platform.  Although some literature 
advocates not using software tools for coding and rather manually coding using pen 
and paper (Gilbert 2002), manual coding would have been difficult to perform, 
especially while on-site at the aerospace company.  The author did not have access to 
print transcripts and memos, and the alternative of handwriting transcripts is a 
laborious task and limits the manipulation of data.  Accordingly, computer tools 
effectively allowed for the transcription and coding during this research project. 
 
During the exploratory empirical study at the aerospace company (Section 3.1.3), 
transcription, memoing, and coding were performed on-site between interviews and 
other interactions, and the method of constant comparison was used to refine codes 
prior to subsequent interviews.  The pattern of responses observed allowed for the 
construction of questions asked in following interviews.  Subsequent interviewees 
pointed out errors and subtleties not initially identified, and, in turn, an 

                                                        
22 NVivo is a popular qualitative research tool for the Windows platform. More information about this 
product can be found at http://www.qsrinternational.com. 
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understanding of the prescribed and practised change processes and range of IA 
available within these processes emerged.  The concepts and themes related to these 
change processes and spectrum of IA stabilised during this interview process, 
suggesting that a common understanding had been reached between the author and 
the interviewees. 
 
The IA empirical studies (Section 3.1.4) built on the concepts and themes identified in 
the exploratory empirical study and introduced more detailed coding for the issues 
and difficulties related to implementing IA.  Constant comparison was not strictly 
implemented for the second phase of the aerospace study.  Based on the allocated 
time on-site at the aerospace company, audio recordings of the interviews could not 
be transcribed and coded prior to the next interview.  Interview transcripts and 
memos were analysed together in order to refine the coding scheme.  However, 
constant comparison was used at the telecommunications company since more time 
was available between data collection activities.   
 
The coding of the interviews and memos in all empirical study phases provides the 
findings used in the IA characterisations (Chapter 4).  Based on the exploratory 
empirical study, initial definitions and models for the characterisations were created 
to describe and clarify the nature of IA.  These definitions and models captured the 
notable differences between the prescribed and practised IA and were refined into 
the characterisations presented in this dissertation through the IA empirical studies. 
 
Since the IA techniques, tasks, quality, and rigour (Section 4.1, Section 4.2, and 
Section 4.3) characterisations are descriptive and theoretical in nature, they did not 
change significantly after the IA empirical studies.  More importantly, the interviews 
during the IA studies illuminated areas for improvement in the influences 
characterisation (Section 4.4), allowing this characterisation to be more thorough and 
applicable to a wider range of IA implementations.  Specifically, the coding of these 
interviews helped to refine the meanings of the codes originally produced in the 
exploratory study.  In some cases, codes from the exploratory study with similar 
connotations were grouped into a single overarching concept.  In other cases, codes 
were divided into sub-codes with more specific definitions.  In addition, some of the 
original codes had been mistakenly used for multiple, dissimilar meanings, and the 
transcripts and memos were recoded for clarity.  All of the transcripts and memos 
were recoded until all codes had unique meanings and were grouped logically into 
themes. 
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3.1.3 PHASE 1 – THE EXPLORATORY EMPIRICAL STUDY 
An initial 7-week study on-site at the aerospace company aimed to gain insights into 
the interface between system and software designers.  Given the promotion of 
systems engineering processes within the company, the empirical study specifically 
explored the requirements management and change processes implemented, 
including the IA techniques available during these processes.  During this empirical 
study, IA practices were also initially investigated in terms of the challenges of 
implementing IA.  Thus, the study enquired into the following areas:  
 

1. The change and requirement management processes prescribed by the company, 
2. The change and requirement management processes in practice, and 
3. The IA performed by the system and software designers.  

 

Twenty-six interviews, lasting between one and two hours each, indicated that 
variation in the IA implemented existed and that no IA may occur within some 
change processes, suggesting further inquiry into IA practice.  (Appendix A depicts 
the details of the interviews.) 

3.1.4 PHASE 2 – THE IMPACT ANALYSIS EMPIRICAL STUDIES 
The second phase included a 1-week follow-up study at the aerospace company 
within the sponsoring project group, including 13 additional interviews 
approximately a year after the exploratory study.  Five of these 13 interviewees had 
been interviewed in phase 1, and the remaining interviewees were newly recruited.  
These interviews typically took about half an hour since the background information 
on the company processes was collected within the first phase.  Six interviewees 
were systems engineers, and the remaining 7 were software designers.  At the time of 
these interviews, the project only employed 17 systems designers and 20 software 
engineers.  Thus, about 35% of both the system and software design teams 
participated in this IA study. 
 
Given the disparity between the prescribed and practised forms of IA observed in the 
first phase, this IA empirical study at the aerospace company focused on 
understanding the reasons for this difference.  In addition, interviewees were asked 
to respond to a series of high-medium-low ratings of selected parameters to quantify 
IA practice within the company (detailed in Section 5.2.1) and estimate the quality of 
IA results in order to gauge the effectiveness of the IA performed.  Each interviewee 
was then asked to describe what improvement strategy would allow them to give 
only high quality ratings to the IA results.  Hence, the interviews aimed to:  
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1. Identify the range of IA implemented in practice, which might not be prescribed by 
the company 

2. Determine the IA perceived as available, which might not be performed,  
3. Elicit the influencing factors in selecting the IA performed or barriers to not 

implementing IA, 
4. Quantify the quality of the IA implemented, and 
5. Obtain suggestions for IA improvement. 

 

As described in Section 3.1.2, these interviews allowed for the refinement of the IA 
characterisations (Chapter 4) through the discussion of the first three aims in the list 
above.  As such, the interviews also intended to cover the spectrum of IA typically 
applied to capture IA practice (Chapter 5) through the parameter rating exercise.  
Thus, similar to the characterisation development, a structure or model for an 
elicitation method to capture the range of IA implemented was constructed during 
the exploratory study.  During the IA study, this elicitation method was employed, 
but also benefited from the data collected and was refined to remove less significant 
elements to finalise the elicitation method presented (Section 5.1).  The development 
of the method is detailed in Section 5.1.1. 
 
Through this elicitation method, these interviews discussed the above list of topics 
surrounding IA by walking through a number of specific changes and their 
associated IA, which recently occurred or were occurring at the time of the interview.  
To set a basis, each participant was first asked to identify the range of IA techniques 
perceived to be available, either prescribed by the company or individually 
developed.  Designers were then asked to describe the change and IA performed 
according to the elicitation method.  Finally, participants rated the IA used (detailed 
in Section 5.2.1), were prompted to discuss the influences for not selecting other 
available IA techniques, and suggested an IA improvement strategy. 
 
In addition, the second phase of the empirical studies benefited from 9 interviews23 
during a 3-month period (during which the aerospace IA study also occurred) and 
numerous informal discussions during a 3-day design workshop at the 
telecommunications company.  The interviews at the telecommunications firm were 
approximately one hour since background questions on the change processes 
implemented were required.  These interviews and discussions centred on the first 
three elements of the IA empirical study interviews at the aerospace company, as 
described in the list above.  Since no access to a project group could be obtained, 
discussions on a number of specific changes could not be conducted.  As such, 
                                                        
23 These interviews were not allowed to be audio recorded.  As such, notes were taken during the 
interviews and memos were written afterwards. 
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interviewees were asked to describe their general opinion on the quality of the 
results from different IA techniques and to suggest improvement strategies.   This 
empirical study contributes a perspective on IA based on an agile software design 
process and contextualises the results obtained from the aerospace company. 

3.2 EMPIRICAL STUDIES DISCUSSION STRUCTURE 
After introducing the products developed by the collaborating companies (Section 
3.3), the remainder of this chapter focuses on the change processes, IA techniques, 
and processes improvement strategies within the aerospace (Section 3.4) and 
telecommunications (Section 3.5) companies.  This discussion provides the 
foundation for Chapter 4 to present the IA characterisations developed, which 
generically depict the disparity between prescribed and practised IA.  Finally, 
Chapter 5 describes the elicitation method and makes observations on the IA 
practised specifically at the aerospace company based on the details of the changes 
and ratings elicited.  These particular observations as well as the elicited strategies 
for IA improvement are interpreted through the IA characterisations and contribute 
to addressing the research questions (Section 1.6).  Figure 3.3 outlines this discussion 
of these outcomes with respect to the phases of the empirical studies conducted. 
 

 
Figure 3.3:  Empirical studies discussion structure 
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3.3 INTRODUCTION TO THE AEROSPACE AND 
TELECOMMUNICATIONS FIRMS 

The collaborating aerospace and telecommunications companies are both considered 
large, global firms.  The aerospace company has development, manufacturing, and 
service facilities across 50 countries and employs close to 40,000 people, while the 
telecommunications firm provides products and services in more than 150 countries 
and employs over 100,000 individuals.  The empirical studies were conducted within 
the product development departments located within the UK, although interviewees 
sometimes mentioned their counterparts in other countries.  Within this context, 
system and software design processes only account for a fraction of the product 
development within a framework of manufacturing, operation, and support.  
Nevertheless, improving the initial design of the product can have knock-on effects 
into the operation, maintenance, and decommissioning phases. 
 
Within the aerospace company, the products available have similar software 
architectures and are derived from similar requirements.  The company estimates 
that at least 70% of the software requirements and design can be reused for new 
products, while the remaining 30% are application specific.  In turn, the product 
platform of the software design can be essentially customised for specific customers 
to meet new applications.  In some cases, the software of in-service products is also 
redesigned to provide new functionality or change the existing product behaviour to 
accommodate the needs of customers.  Section 3.4.5 discusses the impact of this 
product-line approach on the company’s strategy for improving software 
development. 
 
Embedded software implements the algorithms and logic of several electronic 
controllers within the aerospace company’s products.  These controllers interact with 
mechanical actuators and electronic sensors to manipulate the product and ensure 
safe operation.  The customer highly influences the software interface used to operate 
the product.  Each customer can have different interfaces for the information and 
data supplied as an input to control the product and the operation information 
outputted from the product, and the aerospace company is required to adapt to 
different input and output data formats.  Since this information is provided through 
software developed by the customer, the system and software development teams of 
the aerospace company and customer must work together to ensure the software 
designs are compatible.  Consequently, the customisation of the control system 
platform as well as the interface with mechanical design and the customer’s software 
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design results in a highly iterative development process primarily influenced by the 
changes performed. 
 
In contrast, software development projects within the telecommunications company 
widely vary.  For example, software is designed to use by representatives in call 
centres, to manage customer and billing information across many products and 
services, and to implement the products and services provided by the company.  
Consequently, the telecommunications firm has setup an independent, in-house 
software development team to implement the various projects within the company.  
As such, software implemented to provide new services, as focused on within the 
empirical study, could be considered one-off development projects.  The 
requirements for these projects often change frequently during the development 
process, and, based on the company vision and changing business landscape of the 
company, services may be further developed, combined, or discontinued.  Hence, 
this software must be designed for adaptability and maintenance.   
 
In the past, new software developed to provide such services has not necessarily 
been synthesised with existing services.  Additional stovepipe systems often were 
developed separately to add new functionality.  The nature of this software 
development practice has caused fragmentation between the services offered.  In 
turn, the telecommunications company is implementing a new all-encompassing and 
extendable platform to manage the services provided.  As opposed to the design 
process of the aerospace company, which focuses the customisation of products, this 
strategy places emphasis on change management during the maintenance of the 
platform delivered. 

3.4 FINDINGS FROM THE AEROSPACE COMPANY 
The following sections outline software development within the aerospace company 
at the time of the empirical studies.  The systems-software interface is first defined 
based on the company-defined job roles and the interactions of these designers in 
handing design changes (Section 3.4.1).  The discussion then contrasts the prescribed 
(Section 3.4.2) and practised change processes (Section 3.4.3) and IA (Section 3.4.4).  
Finally, the company design process improvement strategies affecting change 
management are described (Section 3.4.5). 

3.4.1 THE SYSTEMS ENGINEERING AND SOFTWARE DESIGN INTERFACE 
Within the aerospace company, the control system design group develops the 
software for the products.  Systems engineering, software design, and hardware 
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design roles24 are explicitly defined by job titles within this development team.  
Systems engineers serve as the primary interface internally between hardware and 
software designers as well as between the control system group and other external 
stakeholders (i.e. not in the control system design group), including mechanical design 
teams, hardware suppliers, and the customer.  Input and negotiation with these 
external stakeholders allow the systems engineers to develop requirements for the 
hardware and software.  As such, the aerospace company explicitly prescribes using 
the Vee model for systems engineering (Figure 2.3).  Specifically, systems engineers 
deliver (1) written system requirements to software designers and also may provide (2) 
models of these requirements to clarify this written text in some cases.  These models 
usually depict the intended behaviour of the software design, but not the 
implementation details.   
 
Typically, a single systems engineer is assigned to develop the requirements and 
associated models of several functional areas of the system design.  These areas have 
distinct purposes within the design and are more or less decoupled from each other.  
While two or three lead systems engineers with significant experience in designing 
the product line perform this partitioning of the design for each new product, this 
division is primarily based on the products previously developed.  Depending on the 
size of a functional area, a single or team of several software designers respond to the 
system requirement documents and models and develop additional work products 
for this functional area, including (1) software specifications of the detail design, (2) 
UML software design models, and (3) code. 
 
The systems engineers are the central point of communication between the hardware 
and software designers.  The majority of the software team only interfaces with 
systems engineers to develop application software, which controls the functionality of 
the product, based on the system requirements and models.  However, a small 
portion of the software designers may also work directly with hardware engineers to 
develop operating system software for the electronic controller.  In addition, software 
designers tend not to communicate with external stakeholders.  Little interaction 
occurs between hardware suppliers or mechanical engineering and the software 
engineering team (I-3, I-10, I-11).  Some designers consider this communication 
unnecessary in that systems engineers are updated directly by these stakeholders 
and the relevant information is passed on to the software designers (I-19).  This 

                                                        
24 The control system development group also defines hardware and software verification and 
validation roles.  However, these individuals do not conduct the primary IA techniques performed 
during change processes and, thus, are not covered in this dissertation.  These roles also were not filled 
during the exploratory study with the assigned project group. 
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practice also allows for tight control over the software design in order to meet safety-
critical software regulations (Section 3.4.2).  However, software designers often may 
work with the customer to define the details of the inputs and outputs to the 
software interface (Section 3.3).  These discussions usually focus on clarifying the 
data formats used between the software developed by the aerospace company and 
by the customer.  Even though systems engineers specify this input and output 
information in a requirement document, this interface usually changes during the 
product development process, and direct communication between the software 
development teams often can effectively resolve any issues.   
 
In contrast, electronic hardware engineers often directly contact suppliers and 
mechanical design teams to develop the suite of actuators and sensors used by the 
control system.  As such, hardware engineers can initiate bottom-up changes to the 
system requirements and design written by systems engineers based on this 
communication pattern, while systems engineers primarily spawn top-down 
functionality changes to the software designers.  Software designers may also request 
changes to the system design, but these modifications tend to focus on the details of 
the functionality implementation.  Hence, systems engineers tightly control the 
software developed, compared to the relative autonomy of the hardware engineers, 
and, as such, systems and software engineers are the primary stakeholders to 
perform the IA on the software design. 
 
While the control system group defines the role of systems engineers, two other 
teams within the company also perform systems engineering.  These teams are 
responsible for ensuring that the overall customer requirements are met and 
integrating the control system design with the mechanical design.  However, these 
systems engineers do not directly develop, change, or perform IA on the software 
requirements and only may have input into negotiations on the general functionality 
of the software design.  Project managers within the control system group and other 
senior project managers can similarly influence the software functionality.  These 
managers are the primary negotiators in terms of the functionality provided to the 
customer, but focus on the schedule and budget for the project.  Nevertheless, this 
input can affect the software modifications performed.  These project managers 
convey such changes to the systems engineers for further negotiation to detail the 
requirements and perform IA. 
 
In summary, systems engineers control the changes to the software design, and only 
the systems and software engineers perform IA on the software design.  As such, the 
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empirical studies focused on the change processes implemented between the systems 
engineers and software designers within the control system group to analyse the 
systems-software interface in practice. 

3.4.2 THE PRESCRIBED CHANGE PROCESSES AND IMPACT ANALYSIS 
TECHNIQUES 

The control system group implements a software design process that adheres to the 
safety-critical software regulation, DO-178B, also known as “Software Considerations 
in Airborne Systems and Equipment Certification”.  The Radio Technical 
Commission for Aeronautics (RTCA), the European Organization for Civil Aviation 
Electronics (EUROCAE), and the Federal Aviation Administration (FAA) use DO-
178B for the certification of avionics software.  DO-178B requires that all product 
development processes demonstrate compliance to prescribed planning, 
development, verification, configuration management, and quality assurance 
processes through design documentation (Hayhurst and Holloway 2002; Hicks 2006). 
 
Design process engineers synthesise these defined certification processes with “best 
practices” elicited from systems engineers and software designers within the 
company to develop useable software development processes.  The company-
prescribed design processes are made accessible to all designers across design 
projects within the control system group and are supported through internet-based 
software tools.  Since software development teams in different countries work on 
different areas of the product line, standardising the design processes used across 
these teams has been a major undertaking for the design process engineers during 
the past 8 years. 
 
The following two sections discuss the change processes prescribed by these design 
process engineers.  The control system group implements formal change processes 
(Section 3.4.2.1) from a fixed time during a project when a first baseline for the 
software requirements and design is set.  This point in time varies from project to 
project based on the scope of the functionality or customisation required by the 
customer.  Prior to this date, changes to any software work products are 
implemented according to informal change processes (Section 3.4.2.2). 

3.4.2.1 THE FORMAL CHANGE PROCESS AND IMPACT ANALYSIS 
The prescribed formal change process adheres to configuration management 
literature (Section 2.4.3).  A CCB, consisting of the lead systems engineers, lead 
software engineers, and project managers, organises regular meetings to review 
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change requests initiated by systems or software engineers.  Systems engineers tend 
to submit change requests for the system or software designs on behalf of external 
stakeholders, given that the company tightly regulates the software change processes 
in order to follow DO-178B.  During the meetings, the CCB makes the decision 
whether or not to go forward with the proposed design modifications.   
 
In the case of large functionality changes, requiring significant development time and 
costs, systems engineers submit change requests to the control system CCB and also 
to the project CCB.  The project CCB, which manages the changes for the entire 
product, but primarily focuses on mechanical design modifications, tends not to 
make decisions on these change requests and usually agrees with the 
recommendations of the control system CCB.  An engineer reasoned (I-7) that the 
project CCB does not have a sufficiently detailed understanding of the control system 
design to make a fit decision.  The primary purpose of escalating software changes to 
the project CCB is to make high-level project managers and other design disciplines 
aware of potential schedule delays or budget overruns. 
 
Systems and software engineers must describe the impact of a modification on a 
change request form for either the control system or project CCB.  The consequences 
of the change on the operation safety of the product and an estimation of the time 
required to implement the change must be indicated through ratings using pre-
defined scales and written rationale for the given ratings.  In addition, the size of the 
change in terms of the affected documentation, models, and code must be described.  
These design change details directly relate to the results of performing IA.  
Individual change request forms must be submitted separately for system or 
software design changes. 
 
While change request forms require IA to be performed, no specific form of IA is 
stipulated by the company’s prescribed development process in this context.  
However, the empirical studies observed that many IA techniques are available to 
engineers, as depicted by Table 3.1.  These available IA techniques also cover the 
range of IA described in the literature review (Figure 2.15). 
 
The control system CCB25 reviews the scope of the modification described on the 
change request form, providing another instance of IA during the change process.  
However, since this CCB often has many change requests to review during each 

                                                        
25 The remainder of this section focuses on the control system CCB since they fundamentally determine 
if change requests are accepted or rejected, as opposed to the project CCB. 
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meeting, engineering judgement (i.e. experiential IA) is often only performed to 
assess the change request.  This CCB rarely, if ever, consults requirements, models, or 
code through traceability or dependency IA. 
 
If a modification is approved, the change request enters a queue of other accepted 
change requests.  A systems engineer is usually tasked with prioritising these 
changes and scheduling them for implementation.  This change packaging can depend 
on resources available, the similarity of the changes, and the criticality of the 
modifications.  More detailed IA is applied throughout the change implementation.   
 

Table 3.1:  IA techniques (from Figure 2.15) within the aerospace company 

Impact Analysis Technique Description 
Traceability IA –  
Requirement traceability      
(software tool) 

Traceability relationships between system requirements and software 
specifications are captured in a database tool.  This tool provides an 
algorithm to automatically perform traceability IA. 

Traceability IA –  
Requirement documentation 
(manual) 

All versions of system requirements and software specifications are available 
to engineers in a computer network directory.  These documents can be 
manually searched to determine their interdependencies. 

Traceability IA –  
System and software                       
data dictionaries 

A data dictionary captures information about the variables used in the 
requirement models developed by systems engineers.  Another data 
dictionary is used for the variables used within the software UML models, 
which are identical to those within the software code. 

Dependency IA –  
Software requirement models 

A model is produced to describe and animate the software behaviour given 
in the system requirements for each functional area.  IA can be implemented 
by manually searching through the model variables for interdependencies or 
animating the model under different scenarios. 

Dependency IA –  
Integrated software          
requirement model 

Individual software requirement models are integrated into a meta-model 
describing the functionality and behaviour of the overall software design.  IA 
can be implemented similarly to the individual software requirement 
models. 

Dependency IA –  
Software UML model 

An integrated UML model is developed for the entire software design.  IA is 
primarily performed through manual searches for dependencies across the 
software design.  The UML variable names differ from the software 
requirement model variables names. 

Dependency IA –  
Software code 

Current or previous versions of the software code can be downloaded and 
manually searched for function and variable usages. 

Experiential IA –  
Formal design review 

Design reviews allow for the detection of design flaws in the requirements 
and models produced by systems engineers and the specifications, models, 
and code developed by software designers by using systematic meeting 
procedures. 

Experiential IA –  
Integrated product team meetings 

Regularly scheduled integrated product team meetings, in which systems 
engineers, software designers, and other stakeholders discuss any issues 
related to a specific functional area, can be used to determine the 
consequences of design changes. 

Experiential IA –  
Informal discussions 

System and software engineers can discuss changes with each other in 
person since they are co-located.  Alternatively, designers contact each other 
by telephone or email. 

Experiential IA –  
Engineering judgement 

Engineering judgement can always be consulted to determined the impact of 
changes based on individual knowledge and understanding of the design. 

 
In many cases, different engineers perform the IA for the change request than during 
the change implementation.  As such, these engineers can often obtain different IA 
results, depending on factors, such as the IA techniques applied and the information 
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available at the time of IA.  For instance, an engineer may not perform IA on the 
requirement documentation and assume that no modifications are necessary, while 
another designer may notice changes required to the requirements when reading 
through the documentation.  Such a disparity in IA results can cause additional, 
knock-on changes to be noticed during the change implementation or even later 
during development.  As an outcome of this formal change process, all necessary 
modifications are expected to be made to the system requirements, software 
requirement models, detail software specifications, UML models of the software 
detail design, and software code as well as the traceability relationships captured 
within the traceability database tool and data dictionaries. 

3.4.2.2 THE INFORMAL CHANGE PROCESS AND IMPACT ANALYSIS 
Due to the compression of project development schedules by the company to stay 
competitive in their market, software design begins prior to the finalisation and sign-
off approval of the system requirements.  Systems engineers release requirements 
and accompanying requirement models to the software designers for 
implementation after receiving sufficient input from relevant stakeholders.  
However, given that the needs of stakeholders change, especially during the early 
phases of the project, design modifications may be necessary after this release of 
requirements and prior to the first baselining of the requirements and design.  As 
such, these changes occur through informal change processes. 
 
As prescribed by the company, if a system or software designer wishes to make such 
a design change, lead system or software designers, respectively, which later serve 
on the CCB, must evaluate the proposed change.  The lead engineer grants approval 
or rejects the change based on the impact of the change and justification for the 
modification.  In some cases, external stakeholders are involved in these decisions for 
system design changes.  These changes are occasionally and inconsistently 
documented in a computer database, but are more often captured through emails or 
informal reports.   
 
Prior to the first baselining of the design (Section 2.4.3), not all of the requirement 
documentation exists, and the traceability relationships have not been inputted into 
the traceability tool or data dictionaries.  Furthermore, not all of the requirement 
models or UML models have been implemented.  Thus, identifying all of the 
interdependencies between the design partitions is often not possible using 
traceability and dependency IA.  Often the impact of the change must be estimated 
using experiential IA.  In turn, this informal change process tends to occur through 
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discussions.  Given that these discussions or the approval or rejection of the design 
change require no documentation, this process facilitates communication within the 
team and provides for an agile process of immediately handling and implementing 
design modifications. 

3.4.3 THE CHANGE PROCESSES IN PRACTICE 
Although the formal and informal change processes are generally followed as 
prescribed in practice, the implementation of these change processes is influenced by 
the compressed development schedules.  As a result of reducing the time allotted for 
projects, more and more of the design work must occur concurrently.  Specifically, 
more of the software design must occur earlier in the design process without signed-
off or agreed requirements from stakeholders.  During the initial stages of the design 
process, stakeholders may need to wait for information from suppliers or experiment 
test results to determine the specifics of the control system requirements.  
Nevertheless, the software design begins, sometimes without stakeholder input to 
requirements or with requirements that are known to change.  A system designer (I-
13) explained: 
 

The main challenges come from the time-scale of the project.  You can’t do it the way you are 
supposed to - top-down - because of time scales.  So, hardware are ordering and acquiring 
things before they have got the requirement.  Software starts coding before we get them their 
requirements.  So, it’s all done all at once.  Fair enough, that’s real life. 

 

Since system requirements are often similar between existing designs in the product 
line, previous requirements and software designs are used as a starting point, thus, 
removing the necessity for specifics from stakeholders to begin design work.  These 
requirements and design are then changed as necessary to meet the specific 
stakeholder needs.  This coping strategy for handling changes often works effectively 
for much of the product functionality because the control system designs are similar 
within the product line.  However, based on a company investigation of software 
changes across the product line, approximately 30% of the software requirements are 
highly volatile and change frequently across the products.  As such, reusing 
requirements between projects does not always prove effective. 
 
Alternatively, in the case of new functionality development, the requirements also 
may be initially unknown before design commences.  Systems engineers may write 
several requirement documents, each with different functionality scopes, and release 
these documents to the software engineers for implementation.  In turn, the software 
designers model and code several different implementations of the functional area.  
Once the final requirements are known, documented, and signed-off, the software 
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designers then make modifications to the selected implementation and delete the 
unnecessary implementations within the software design and code (I-3, I-4).  Finally, 
in other instances, the functionality required continues to change throughout the 
development process.  Requirement documents may be completely rewritten, 
leading to significant redesign of the software.  The systems and software engineers 
do not employ definitive coping strategies for changes in this situation (I-30). 
 
Given that software design work commences without fixed requirements, many 
changes occur in practice during development.  System and software design changes 
to a single functional area can occur simultaneously.  As such, even formal change 
processes can have some informal features in that the scope of changes in original 
change requests are often expanded during implementation to handle or provide for 
other concurrent or upcoming modifications.  Acceptance of such additional changes 
can occur through informal discussions without necessarily any documentation or IA 
(I-3, I-28).  Working in parallel causes changes to be handled in parallel as well. 
 
If such internally generated changes to a functional area are captured within a single 
iteration of the system and software design, then relatively little administrative costs 
for the changes are necessary.  However, if much iteration occurs due to finding and 
implementing changes piecemeal, the administrative costs for the change processes 
with respect to the amount of change performed are more significant.  These costs 
are firstly composed of the work involved for writing the change request, holding the 
CCB, and performing the design modification.  More significantly, testing must be 
redone every time a change is implemented within a software function.  Hence, the 
effectiveness of the change processes in terms of administration costs is influenced by 
the complete identification and single execution of changes. 
 
Due to the concurrent development of mechanical, hardware, and software designs, 
externally-initiated system and software design changes also can surface individually 
then interact with on-going modifications, leading to additional modifications.  For 
mechanical and hardware components, design flaws or integration issues between 
these physical components may be identified only after manufacturing has begun or 
orders have been placed.  The system and software designs may unexpectedly 
change to account for these deficiencies.  For instance, a manager (I-2) described a 
mechanical flaw that required the development of additional software safety checks.  
These changes interacted with other simultaneous mechanical changes, causing 
ripples of many unanticipated, emergent changes and delaying the product delivery.  
As another example, a system designer (I-15) discussed a series of software changes 



3 ::  EMPIRICAL STUDIES ON SYSTEM DESIGN AND SOFTWARE CHANGES 
 

72 

 

 

made incrementally during the design process to account for hardware design faults.  
These changes compounded and ultimately caused the area of software design to 
unexpectedly produce undesirable system behaviour when certain conditions were 
met.  Unfortunately, this problem was only detected after the product was released 
and product failures occurred.  As such, concurrent development can unexpectedly 
increase the number of system and software design changes and the administrative 
costs of their implementations, but also largely affect project management and 
product success. 
 
Change packaging can reduce these administrative costs initiated by compressed 
design schedules and concurrent design (I-2, I-21, I-22).  For example, queuing 
related changes in documentation, models, and code allows designers to implement 
multiple changes to a functional area simultaneously.  Particularly for code changes, 
change packaging eliminates the need to re-test multiple times for each singular 
change implemented.  Designers can also identify the interactions of the set of 
changes during implementation, finding emergent effects initially and reducing the 
need for additional change processes.  In effect, change packaging provides another 
coping mechanism to handle design changes and implement effective software 
development. 

3.4.4 THE IMPACT ANALYSIS TECHNIQUES IN PRACTICE 
Given that the aerospace company does not prescribe the use of IA techniques and 
many are available for use, designers are allowed to freely choose the IA applied.  As 
observed in the empirical studies, the IA implemented depends on the type of 
change.  For instance, systems engineers may rely on a form of traceability IA to a 
high-level requirement change, and software engineers may only use dependency IA 
on a low-level software design change.  Alternatively, designers may employ a single 
favourite IA technique as opposed to implementing multiple different methods.  In 
some cases, designers suggested that IA is not performed at all during a change 
process.  This scenario can occur when a low-level design change, such as a variable 
value change in the code, is simply executed without determining if there are 
consequences to other areas of the design.  This lack of IA for such a number change 
actually was a primary cause of a design failure after product release (I-15).  
Provided that this example may be an extreme case, nevertheless, it emphasises the 
importance of IA. 
 
During the empirical studies, designers stressed the importance of implementing IA.  
For instance, a systems engineer (I-21) stated:  “Impact analysis is absolutely really 
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important”.  This designer then described using the requirement traceability tool, 
data dictionaries, and requirement models.  Another systems engineer (I-26) said: “I 
think there should be up-front analysis of the change packages.  I’d like to see impact 
analysis done there rather than these other techniques that are more reactionary than 
forecasting”.  Managers (I-2 and I-23) similarly indicated that IA is crucial within the 
design process.  However, some other systems and software engineers did not 
understand how to use the IA techniques available.  Commonly, designers 
questioned how data dictionaries could be used to perform IA (I-14, I-25).  Many 
designers (I-15, I-19) also did not know that the requirement traceability tool 
included a feature that could automatically perform IA.  Furthermore, several other 
systems engineers (I-13, I-19) suggested that the review processes are not focused on 
finding design flaws and are rather a process formality.  In particular, one (I-17) 
asserted: “Do they (engineers) not have time to do them (design reviews)?  You 
always find time to fix problems in the end, but not time to prevent them in the 
beginning”.  These observations suggest the lack of IA prescription and lack of 
implementation of some of the IA techniques, even though IA is acknowledged as an 
important element of the design process.   
 
In summary, this description of the aerospace company’s change processes and IA 
practices sets the stage to characterise how IA can differ as prescribed and 
implemented in Chapter 4.  Chapter 5 builds on these descriptions to analyse the 
specific IA techniques typically applied by designers within the aerospace company 
and develop strategies for IA improvement. 

3.4.5 THE STRATEGIES FOR IMPROVING THE DESIGN PROCESS 
Given that this dissertation assesses IA improvement strategies (Section 5.3) and 
proposes heuristics for IA improvement (Chapter 8), other design process 
improvement strategies also must be considered.  Specifically within the aerospace 
company, an initiative is being implemented to collate and systematically reuse 
control system requirements.  Standardised requirement documentation, models, 
and traceability relationships are being developed in order to efficiently extend the 
product line and customise products.  As such, more rigorous forms of traceability 
and dependency IA are also being investigated for these requirements and models, in 
turn, providing effective means to manage design changes. 
 
In addition, another initiative within the aerospace company is standardising the 
design and change processes prescribed, as suggested in Section 3.4.2.  Previously, 
each design project defined new processes and implemented new design tools in an 
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attempt to improve the product development from earlier projects, and, in some 
cases, these simultaneous changes led to worse design processes.  Consequently, the 
new company strategy tightly controls the changes made to the processes and tools 
in order to systematically and incrementally improve their product development 
processes.  However, acceptance and support of this initiative by designers and 
managers has been difficult to obtain.  A design process engineer (I-16) stated: 
 

My biggest worry is that for every program here people are going to reinvent the wheel… 
unless they get some standardisation or agree to some standardisation.  I see a great reluctance 
to do that since everyone thinks that they can do it better than the previous project, but I think 
that is the biggest risk for this organisation.  What they perceive as ‘we can do this better than 
the previous one’ will turn into ‘oh dear, this is not better than the previous one’. 

 

Designers may also have a preference for familiar, past processes and are reluctant to 
change their use of design tools.  Specifically, some IA tools and techniques used on 
past projects are no longer supported, and some designers suggested a preference for 
these forms of IA.  A systems engineer (I-30) described his preference for Yourdon 
methods previously used since he could easily determine the impact of changes.  He 
said: 
 

This is going back to the days when we use to do a lot of Yourdon analysis and so on.  The 
whole models were data driven.  Because of that, if anyone wanted a piece of data, it had to be 
declared up front.  You had to declare that in the Yourdon structure so you could use it.  Here 
we tend to do it after the event.  So we do our designs, we try to fit them together… the data 
dictionary is always so far behind, as it stands today. 

 

Given that the standardised processes prescribed do not outline the use of IA, this 
systems engineer could not perform IA to find out the flow a particular variable in 
the requirement model because the data dictionary information was incomplete.  
Arguably, the standardised processes should allow for the necessary IA methods to 
implement design changes.  As such, these processes should continue to evolve and 
support the implementation of the IA tools available, thus, potentially allowing for 
acceptance and adaptation of the new methods by designers.  Moreover, 
understanding the influence of IA on the design process can provide for this 
evolution. 

3.5 FINDINGS FROM THE TELECOMMUNICATIONS COMPANY 
The following sections highlight the systems-software interface (Section 3.5.1), the 
context of the agile development methods implemented (Section 3.5.2), and the 
prescribed (Section 3.5.3) and practised (Section 3.5.4) change processes and IA 
within the telecommunications company.  Their strategies for processes 
improvement are also discussed (Section 3.5.5).  Comparing these empirical findings 
with the aerospace company suggests the influence agile development processes and 
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the nature of the products designed can have on the change processes and IA 
implemented.  The IA characterisations (Chapter 4) draw from this discussion to 
describe how IA practice can vary. 

3.5.1 THE SYSTEMS ENGINEERING AND SOFTWARE DESIGN INTERFACE 
Although agile development processes do not define systems engineering as a role, 
the telecommunications company includes two different types of systems 
engineering positions in their team structure.  At a design project level, system 
architects are responsible to ensure that the customer needs and requirements are met 
and perform IA on the software design.  At a higher level, solution designers 
synchronise the requirements for multiple projects in order to meet the overall, 
strategic goals of the company in terms of the product suite developed, while 
providing input into individual design projects.  Although these designers do not 
necessarily produce requirement documentation, as do the systems engineers in the 
aerospace company, nevertheless, they elaborate on the system requirements for the 
software design through other work products and communication means grounded 
in agile development methods.  In some cases, they can even become involved in 
synchronising detail designs and perform IA across software designs.  As such, 
software engineers design and implement software code to meet the requirements 
produced by the system architects and solution designers, and this systems-software 
interface is comparable to that within the aerospace company (Section 3.4.1).  
However, given the different project sizes within the company (Section 3.3), system 
architects and software engineers may only be responsible for the entire product 
design, from requirements to code, in smaller projects. 
 
Similarly, stakeholders can vary from project to project.  Generally, an in-house 
customer (i.e. another area of the company commissioning the product) is the 
primary stakeholder.  In some cases, in-house hardware engineers can also be 
stakeholders.  However, standard computer hardware is frequently purchased from 
suppliers.  Neither of these stakeholders typically performs any detailed IA on the 
software design, but may request software design changes. 

3.5.2 THE CONTEXT OF IMPLEMENTING AGILE DEVELOPMENT METHODS 
The telecommunications company began transitioning to agile development 
practices 5 years ago to focus on producing working software and align with the 
agile manifesto (Beedle et al. 2001).  Design process engineers promote the use of 
agile techniques within the company by running training programs and assisting in 
the development of processes on each project.  Given this transition to agile 
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development processes, design process engineers work to educate designers on agile 
methods and displace the waterfall processes long used within the company.  In 
addition, they are aiming to certify their agile processes implemented with CMMI as 
well as define off-shore outsourcing procedures since software coding is performed 
less and less within the UK.  The integration of agile processes with these two 
elements has proved challenging for the design process engineers. 
 
Large development projects also pose another challenge for the agile development 
prescribed.  Even though agile development processes tend to be associated with 
small development teams, the telecommunications company is also applying agile 
development to large-scale projects.  Design process engineers (I-42 and I-43) admit 
that systems engineering techniques are typically implemented along with a few 
agile techniques in these cases.  In particular, these projects often focus on 
requirement development and system design partitioning before the majority of the 
software design commences for each segment of design and code incrementally 
delivered.  A manager (I-44) suggests that a systems-engineering approach has been 
found to be more appropriate and notes that the company has recognised the 
limitations of implementing agile processes in these projects.  Despite the mandate of 
agile processes, this manager speculates that the company may soon undergo 
another change and begin to prescribe systems engineering processes. 

3.5.3 THE PRESCRIBED CHANGE PROCESSES AND IMPACT ANALYSIS 
TECHNIQUES 

The telecommunications company prescribes that all projects must deliver work 
products and software code to the customer at fixed intervals throughout the 
development process.  These intervals are typically between one and two months.  
However, this company also stipulates that projects individually define the 
combination of different development techniques to tailor suitable design and 
change processes.  For example, design projects can combine Scrum daily meeting at 
which all design team members meet to discuss their work output for the day with 
pair programming as well as with other agile techniques.  This practice accounts for 
the range of software projects sponsored and also greatly varies the development 
processes implemented in practice. 
 
Some projects implement formal change processes just as in the aerospace company 
with a CCB (Section 3.4.2.1), while others only implement change processes 
resembling the informal change processes within the aerospace company (Section 
3.4.2.2).  In the later case, team meetings or individual discussions may determine if 
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proposed changes should or should not be implemented and the packaging of these 
changes, and story cards or backlog databases may only capture and document any 
design modifications. 
 
The design process engineers support a range of software tools to implement IA, 
including requirement traceability databases and software modelling programs.  
While these tools are available for use by design projects, the company does not 
specifically prescribe their use on any project similar to the aerospace company 
(Section 3.4.2.1).  Thus, different projects can implement different IA tools.  However, 
given the agile processes mandated, the company particularly encourages 
experiential IA.  Team communication and design reviews used for IA are 
recommended and occur frequently during projects.  In some projects, experiential 
IA may be the primary form of IA besides directly using software code to perform 
dependency IA. 

3.5.4 THE CHANGE PROCESSES AND IMPACT ANALYSIS TECHNIQUES IN 
PRACTICE 

Although the interviewees generally indicated that agile development processes 
were implemented in practice more and more, several suggested their preference for 
other design processes.  For instance, a system architect (I-37) and software designer 
(I-38) interviewed indicated that they liked the processes used prior to the switch to 
the agile development methods.  They suggested they now had to place too much 
work effort into developing the design processes they used on projects as opposed to 
previously when they could focus more on designing software products.  While 
analysis and understanding of the design process implemented can be beneficial, 
these interviewees maintained that they believe that the processes implemented were 
not efficient.  As such, the company culture may not yet have fully adopted the 
mandate of agile processes. 
 
Similarly, even though customers are encouraged to actively take part in the software 
development process and particularly design reviews, the design process engineers 
(I-39, I-42) interviewed suggested that project economics does not always provide for 
this practice.  Given that the customers within the company also have their jobs to 
fulfil, these individuals often cannot spare working on-site with the design team.  
Some of these customers also do not accept the agile development perspective and 
believe that they are contracting the software design and should not be required to 
put significant effort into the development process.  In turn, this lack of adoption of 
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agile development methods affects the experiential IA relied upon, causing it to be 
less useful to obtain customer feedback, which agile processes often demand. 
 
The design process workshop observed and interviewees (I-37, I-38, and I-39) further 
indicated that experiential IA is primarily implemented in practice.  Through the 
adoption of agile processes, other forms of IA have been abandoned in some cases 
since they require too many resources.  For example, traceability IA is now only 
implemented in large projects.  This practice contrasts with the aerospace company 
in that the telecommunications company projects appear to select a few IA 
techniques to implement, while the aerospace company has opted to investigate 
more costly and in-depth means of traceability and dependency IA for all projects.  
These differences are likely due to the nature of the products developed and change 
processes implemented.  Since the aerospace company essentially performs 
customisation to extend the software product line, investing in IA techniques can be 
beneficial.  The telecommunications company may prefer experiential IA since the 
products do not stem from a product platform, and the product requirements often 
change during development. 

3.5.5 THE STRATEGIES FOR IMPROVING THE DESIGN PROCESS 
Currently, the design process engineers are educating and promoting the adoption of 
these practices to shift the company culture.  The primary focus is to uproot the 
legacy of waterfall development and build enthusiasm for agile processes.  As 
envisioned, implementing agile development methods is the design and change 
process improvement strategy.  To a lesser extent, as suggested in Section 3.5.2, the 
design process engineers are also refining the agile processes supported to comply 
with CMMI and allow for outsourcing procedures.  Although incorporating systems 
engineering practices may be the step taken to improve the development processes 
for larger design projects, no definitive measures have been taken to adjust the agile 
development processes. 

3.6 SUMMARY 
This chapter first describes the method used to conduct the empirical studies at the 
aerospace firm and telecommunication company and outlines the structure for 
discussing these studies in this dissertation.  Subsequently, the systems-software 
interface is then depicted in terms of each company’s structure, and the change 
processes and IA are then summarised as prescribed and practised.  Finally, this 
chapter contrasts the strategies for process improvement in the companies.  In turn, 
Chapter 4 further discusses and characterises this disparity of prescribed and 
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practised IA, and Chapter 5 investigates a variety of IA improvement strategies 
within the context of these process improvement initiatives. 
 
The empirical studies address the first research question (Figure 1.7) through the 
observations of the company-prescribed change processes and IA.  Both companies 
support the formal change processes prescribed within literature.  However, these 
firms also do not necessarily strictly enforce their application of these change 
processes and also use informal change processes.  In addition, designers are granted 
access to the range of IA techniques outlined within literature in both companies, but 
both company-prescribed processes do not specify the application of IA techniques 
within either the formal or informal change processes.  In fact, designers may not be 
educated on the range of IA in some cases, leading to the disuse of some of the 
techniques.  Hence, the empirical studies imply that there is a lack of IA prescription 
within change processes by industry, which the literature review does not explicitly 
identify.  The companies allow for the implementation of the literature-prescribed 
change processes and IA techniques, but do not enforce their application.  
Furthermore, unlike the agile process literature disparaging traceability IA, the agile 
development processes supported in the telecommunications firm provide for 
traceability IA.  Thus, the empirical studies suggest that the disparity identified in 
the literature review between systems engineering and agile design perspectives 
does not necessarily occur in practice.   



 

 

 
 
 
 
 
 
 

4 :: IMPACT ANALYSIS CHARACTERISATIONS 
 
The observations and coding of the interviews and memos from the empirical studies 
allow for the conceptualisation of key themes surrounding implementing IA in 
practice.  This chapter discusses these results from the empirical studies in terms of 
four characterisations of IA.  Specifically, the following characterisations define the 
difference between prescribed and practised IA, outlined in the overview of the 
aerospace and telecommunications company change processes and IA (Chapter 3), 
through the terminology of IA techniques and tasks (Section 4.1) as well as IA quality 
(Section 4.2), describe a scale for this disparity through IA rigour (Section 4.3), and 
classify influences affecting the actual implementation of IA (Section 4.4).  These 
characterisations are evaluated through literature on software development practice 
and by the industry collaborators (Section 4.5).  Thereby, the IA characterisations 
establish the foundation for further inquiry into IA practice and improvement 
strategies specifically occurring within the aerospace company (Chapter 5). 

4.1 IMPACT ANALYSIS TECHNIQUES AND TASKS 
The empirical studies suggest that IA may not be applied as prescribed or idealised.  
Some interviewees discussed the lack of IA implementation in practice, while others 
suggested the difficulties in applying IA (Section 3.4.4 and Section 3.5.4).  This 
dissertation distinguishes this disparity by taking IA techniques to include the 
possible methods or approaches to estimating the scope a change (e.g. traceability IA) 
and IA tasks as the actual implementation of IA techniques within a particular 
context (e.g. without complete traceability relationships) (Figure 4.1). 
 

IA Technique: 
The theoretical method or approach 
to estimating the scope of a change 

 
IA Task: 

The actual implementation of an IA technique 
within a particular context 

 
Figure 4.1:  Definitions of IA techniques and tasks 
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4.2 IMPACT ANALYSIS QUALITY 
In turn, this research proposes that the quality of IA26 depends on the actual results of 
the IA tasks performed as opposed to the theoretical results of the IA techniques 
(Figure 4.2).  Going through a systematic process of applying an IA technique that 
produces incorrect or useless results is not necessarily better than performing an ad 
hoc examination yielding correct and helpful results.  Under this guise, the quality of 
the IA results can be characterised, for example, by completeness, correctness, and 
clarity27.  Complete IA results indicate all possible system and software design 
artefacts that are affected by an initiating change; correct IA results do not 
erroneously denote work products that are affected by the change; and clear IA 
results communicate potential change impacts unambiguously.  In turn, increasing 
the quality of IA results reduces the likelihood of emergent, knock-on modifications 
by providing an understanding of actual change impacts. 
 

IA Quality: 
Completeness, correctness, and clarity  
of IA results produced from IA tasks 

 
Figure 4.2:  Definition of IA quality 

4.3 RIGOUR OF IMPACT ANALYSIS TECHNIQUES AND TASKS 
Given that IA quality characterises the results of IA tasks, this research introduces 
the concept of IA rigour to describe IA results with respect to IA techniques.  This 
research takes IA rigour to correspond to the risk of unexpected change propagation, 
similarly to IA quality.  More rigorous IA is expected to reduce the tendency of 
emergent changes, while less rigorous IA may lead to knock-on modifications.  
However, as opposed to IA quality, IA rigour (Figure 4.3) correlates to the size of the 
search space for possible change impacts, which depends on the IA technique used. 
 

IA Rigour: 
Thoroughness of the search for potential 

impacts of a design change 
 

Figure 4.3:  Definition of IA rigour 

                                                        
26 Note that the cumulative influence of applying multiple IA techniques can affect this characteristic. 
27 These three attributes mimic adjectives used to describe well-defined, high quality requirements.  In 
requirements engineering literature, other adjectives, such as consistency, unambiguity, usability, or 
reliability, have also been used with similar and overlapping definitions by published standards and 
authors.  Thus, there are other possible adjectives that could be used to describe IA results (Kececi and 
Abran 2001).  However, the terms, completeness, correctness, and clarity, suggest the essence of IA 
result quality to anticipate knock-on changes. 
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As such, more rigorous IA is expected to systematically search all possible means of 
change propagation, decreasing the potential for unanticipated, knock-on changes, 
while less rigorous IA may perform a more ad hoc or unsystematic search process and 
has a risk of requiring unexpected modifications.  As a consequence, IA rigour can be 
used to compare the different approaches of IA techniques.  Figure 4.4 suggests a 
scale of rigour for instances of IA techniques.  This characterisation does not aim to 
classify all IA techniques possible and only suggests a relative rating of typical IA 
techniques, also classified the literature review (Figure 2.15).  In turn, more rigorous 
IA techniques (i.e. traceability IA) do not necessarily translate to being good IA 
techniques; likewise, less rigorous IA techniques (i.e. experiential IA) are not always 
bad IA techniques.  The quality of IA results ultimately indicates if the IA techniques 
applied were sufficient or good enough. 
 

 
Figure 4.4:  Rigour of IA techniques and tasks (from Figure 2.15) 

Figure 4.4 shows IA through requirement traceability relationships as the most 
rigorous technique.  This method enables systematic (and often automated) searches 
for the effects of changes from high-level product functionalities to software detail 
designs.  In theory, similar results can be obtained through manual searches through 
documentation.  However, requirement traceability relationships may capture 
additional, secondary design dependencies than referenced explicitly in 
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documentation.  Thus, manual methods may not include such comprehensive 
searches. 
 
Dependency IA may provide less thorough searches for possible change impacts 
and, hence, is less rigorous than traceability IA.  Requirement and software design 
models or software architecture and code dependencies (between variables, logic, 
modules, etc.) may not necessarily connect the detail design with overarching system 
functionalities, resulting in a limited search space.  Specifically, requirement and 
software design models abstract away from high-level requirements of product 
designs, and interdependencies due to mechanical or physical constraints may be lost 
in the resulting decomposition.  Software code may contain even less information to 
determine the implications of changes on the high-level system design than these 
models.  Thus, Figure 4.4 places dependency techniques involving models at a higher 
level of rigour than dependency analyses using software architecture and code. 
 
Experiential IA is classified at the lower-end of the rigour scale.  Although expert 
judgement can provide the best form of IA in a situation through tacit knowledge of 
dependencies not captured by documentation, models, or code, this method for 
searching possible change impacts is often more ad hoc.  Consequently, emergent 
changes can occur using this IA technique, and the rigour of experiential IA is lower 
than traceability and dependency IA.  However, by increasing the number of experts 
or individuals performing the IA, IA rigour may increase given that the 
thoroughness of the search can theoretically improve.  The systematic discussion of a 
design with a variety of relevant stakeholders, such as through review meetings, may 
further increase IA rigour.  Similarly, reviewing captured design rationale to support 
performing more systematic analyses (Section 2.5.3) can enhance the rigour of these 
experiential IA techniques.  Hence, the scale of experiential IA in Figure 4.4 
corresponds to this order.   
 
Figure 4.4 also suggests the relationship between IA techniques and tasks in terms of 
rigour.  In theory, an IA task should be performed exactly as prescribed by the IA 
technique.  However, influences can shape the application of these techniques in 
practice, as described in the next section.  In effect, the relative rating scale of IA 
techniques does not imply that these techniques are more or less rigorous in practice.  
For example, design reviews may provide a more thorough search for potential 
changes than incomplete requirement or software design models. 
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4.4 INFLUENCES ON IMPACT ANALYSIS TECHNIQUES AND TASKS 
None of the literature found related to IA thoroughly discusses the reasons or 
rationale for the difference between the prescribed and practised IA (Section 2.7).  
However, the empirical studies suggest that the disparity between prescribed IA 
techniques and practised IA tasks can depend upon many influences.  The responses 
from interviewees have been categorised into technique and task influences.  Technique 
influences affect IA rigour or prohibit the actual application of an IA technique 
through design or change procedures or methods, while task influences inhibit the 
IA result quality across IA techniques through the context of the technique 
application.  In other words, technique influences can systematically and repeatedly 
affect the performance of IA techniques, and task influences affect specific incidences 
of applying IA techniques, independent of the processes implemented.  For instance, 
the lack of procedures to update traceability relationships can lead to incompleteness 
of these captured traces and, in turn, reduce the search space for potential change 
impacts and IA rigour, exemplifying a technique influence.  Designers even may not 
perform such traceability IA given the incompleteness of results, potentially leading 
to disuse of the technique.  In contrast, as an example of a task influence, a lack of 
information, resources, or time to perform traceability IA in a certain instance can 
also yield poor quality IA results.  These influences can also simultaneously inhibit 
forms of dependency and experiential IA as well. 
 
The factors affecting IA cited in the empirical studies were grouped into the high-
level themes of technique and task influences by analysing and coding interview 
transcripts and memos.  In turn, these high-level themes were constructed from a 
hierarchy of key sub-themes.  Figure 4.5 and Figure 4.6 give an overview of the 
coding analysis results in terms of these key sub-themes through the code map 
developed using the HyperRESEARCH software application (Section 3.1.2).  The key 
sub-themes presented correspond with the specific factors described in the IA 
influences characterisation, summarised in Figure 4.7.  For instance, partitioning and 
synchronisation are two key sub-themes identified in the coding process and, hence, 
are two IA technique influences discussed in the IA influences characterisation.   
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Figure 4.5:  Code map of IA technique influences 
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Figure 4.6:  Code map of IA task influences 

 



4 ::  IMPACT ANALYSIS CHARACTERISATIONS 
 

87 

 

 

 
Figure 4.7:  Influences on IA techniques and tasks (from Figure 4.5 and Figure 4.6) 

4.4.1 TECHNIQUE INFLUENCES 
The following section describes the technique influences summarised in Figure 4.7 
through examples from the empirical studies. 

4.4.1.1 PARTITIONING 
Partitioning can affect IA rigour if system or software designers cannot analyse the 
implications of changes on both the system and software designs; system designers 
may be limited in their search for potential change impacts on the software design, 
and vice versa.  Systems and software engineers particularly may not have processes 
in place to effectively share information with which to perform IA on both domains 
(Section 2.6.1).  A single designer may make decisions on design changes affecting 
both areas using incomplete IA results due to such constraints.  
 
Such partitioning of a design between system and software designers can influence 
IA rigour if software designers begin development prior to obtaining complete 
requirements from systems engineers.  In turn, IA may only be applied to part of the 
design.  A software engineer (I-3) stated: 
 

As we were coding, we would spot changes or have questions on the requirements and how 
exactly (a system designer) wanted it implemented.  A lot of time (the system designer) had to 
do some modelling or speak to (a stakeholder).  In the meantime, we went off on a path and 
made a decision to continue on.  But, (the stakeholder) would come back, and we would have 
to revise.  There were revisions going on all the time. 
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As such, some of the coping strategies for designing under compressed development 
schedules can account for this partitioning (Section 3.4.3).  Specifically, IA can be 
performed on complete, but reused designs (I-13).  Such methods may mitigate the 
effect of design partitioning and improve IA rigour. 
 
Within the aerospace empirical studies, some interviewees also recognised the lack of 
IA across the functional areas of the system design (I-15).  A systems engineer (I-30) 
said: 
 

I’ve got little visibility of that (effect on other system functions).  Now if that information was 
(in the integrated software requirement model), we’d be able to pull out the links immediately 
of the (system) functions that we would need to consider the impact of any changes of those 
(system) functions, but those links don’t exist at the moment. 

 

This designer suggests that information-sharing and updating processes restrict the 
rigour of the IA technique.  This effect can also occur similarly between design areas 
in software models, causing emergent software changes (I-28, I-40).  Furthermore, 
this interviewee implies that company procedures largely do not support IA 
techniques examining changes across multiple functional areas.  Therefore, if an area 
of the system design contains elements decoupled from other functions, then 
performing localised IA may be sufficient.  However, if the decomposition of the 
system design causes coupling between areas, then partitioning may have more of an 
influence on IA rigour. 
 
Furthermore, partitions among system and software design teams can limit the IA 
search space.  For instance, designers working on an instance of a product platform 
may not necessarily have coordinating processes to share and update information 
with the team enhancing and maintaining the platform (I-21).  Changes may not be 
systematically investigated across designs and, in turn, knock-on effects across these 
designs may not be recognised, potentially decreasing IA rigour. 

4.4.1.2 SYNCHRONISATION 
Synchronisation of modifications also can be difficult due to the distribution of design 
work among systems and software engineers.  Multiple changes from different 
stakeholders can affect a single functional area or design work product, and, in some 
cases, these modifications can compound or contradict each other (Section 2.3).  
When such changes affect a design area, the synchronisation of these modifications 
determines the search thoroughness for potential knock-on effects, influencing IA 
rigour and the potential for rework.  In turn, procedures and processes supporting 
the timely sharing of information, such as change packaging, can mitigate this 
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synchronisation influence, particularly for the timing of implementing software 
modifications initiated by system design (I-22). 
 
As an example of the synchronisation influence, a system designer (I-30) discussed 
the coordination of functional area designs, each requiring the input of the others: 
 

There are too many stakeholders (system designers).  There are so many people talking and so 
many different links.  As soon as you turn your back, somebody has changed something, and 
you’re back to square one… The only way we are going to come together is through an 
iterative process… There is no way we are going to get it right the first time, but there is 
certainly room for improvement. 

 

This designer indicates that many changes from different system designers require 
synthesis for the design to progress.  Given that IA tasks performed by system 
designers may not account for the upcoming changes being simultaneously analysed 
by other system designers with dependent designs, improving information-sharing 
processes in terms of timing could reduce the iterations necessary and enhance IA 
rigour. 
 
Similarly, the synchronisation of IA across software functionality designs and the 
software architecture or code structure design could also reduce rework and 
unexpected, emergent changes.  A software engineer (I-28) explained: 
 

Generally, we find that the software architecture and software design are done in parallel, and 
we generally find that once the (software) review has taken place that there are architecture 
changes.  And, then there is a knock-on effect on the (software) design.  We try and cut time 
scales… Of course, there are associated risks with that. 

 

As such, this particular influence of concurrent development can be addressed 
through procedures to improve participation in design reviews to share critical 
information.  Design reviews can find design faults and incongruence early during 
the design process and provide means to increase the thoroughness of the search for 
potential change propagation.  Furthermore, capturing such information during 
reviews through documenting design rationale can improve later applications of IA 
(Section 2.5.3). 

4.4.1.3 METHOD DEFINITION 
Method definitions, describing procedures for implementing IA techniques within a 
design process, may not exist or be well defined in some cases.  Fundamentally, if 
designers do not delineate or agree on a process for performing IA, IA techniques 
may not be used in practice.  Providing procedures to implement IA techniques 
increases the likelihood of their application and, in turn, improves the search 
thoroughness for potential change impacts and increases IA rigour. 
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In the aerospace empirical studies, defining methods to allow for the implementation 
of IA techniques was elicited as an area for improvement.  For instance, in the context 
of describing IA through requirement traceability, a systems designer (I-22) said: 
 

The other thing that we are generally bad at or poor at is defining processes early on in the 
project and being strong and forceful in enforcing those processes.  We generally just have 
very woolly processes, and we don’t think about those things like traceability… We just let the 
mass of people kind of build and tease their own way to get there. 

 

In order to promote the application of such IA by designers, procedures for using IA 
techniques and tools must be defined and integrated into the design process.  
Another engineer (I-19) confirmed the lack of a defined process for implementing 
requirement traceability: 
 

I found out about the (requirement traceability IA) tool yesterday… If I don’t know what the 
capability of the tool is; if I am not educated on part of the tool; if nobody makes it part of the 
process; if I run the tool and it throws up lots of errors (when performing IA), then what do I 
do?  Ideally we would have all the time in the world to fix it, but the reality is we don’t.  So, 
we don’t run the tool. 

 

As such, this designer indicates that the lack of a defined method to perform this 
traceability IA has lead to the disuse of the technique.  In contrast, on another project 
within the company, an interviewee (I-16) reported that the same traceability tool 
was used successfully because they defined an implementation procedure and 
stated:  
 

I know that the experience (on a specific project) has been very good because they know what 
they want to do and have set what the process is going to be for managing requirements before 
implementing the tool. 

 

Thus, the definition of a method to apply IA within a design process influences the 
use of IA techniques in practice. 
 
Similarly, the definition of a process to implement IA should also be unambiguous in 
order to promote application.  For instance, an engineer (I-15) reported on different 
methods for updating a data dictionary with design information.  Some designers 
revised the information in real-time, while others updated stale information only 
after major design iterations.  The ambiguity in this update process affects the 
consistency of the information within this tool, and, consequently, the search 
thoroughness for potential change impacts and IA rigour across its application. 

4.4.1.4 PROCESS CONFLICTS 
Process conflicts occur when defined methods for implementing IA contradict other 
prescribed procedures or compete with applying other IA techniques.  In a couple of 
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instances in the empirical studies, company prescribed procedures or policies 
influenced IA rigour.  For example, configuration management procedures inhibited 
traceability IA rigour, as described by a manager (I-23) and confirmed by another 
interviewee (I-39).  Prescribed configuration management processes required that 
only formally accepted changes could be entered into a traceability database.  Hence, 
the traceability relationships captured were not always up-to-date since change 
authorization can require a significant amount of time and the design may have 
progressed in the meantime.  The actual traceability relationships may differ from 
the captured relationships in the database, potentially causing low IA rigour when 
using the database.  Similarly, delays in updating models or code used in 
dependency IA can affect IA rigour.  As such, designers may lack confidence in such 
IA techniques and their results, leading to the disuse of these techniques. 
 
In another instance, the company policy of resource allocation for design projects 
inhibits effective design reviews and potentially other forms of experiential IA.  A 
systems engineer (I-19) explained: 
 

There is an inherent problem.  The problem is that, if you look at a V-diagram, there is a 
systems job passed to hardware and software, which breaks down into a smaller V-cycle.  
Then, they have their integration and testing, and we have our systems test up here.  If you 
want to flatten that out into a line and if you were (a manager), you wouldn’t resource these 
people (testing and integration) earlier, which leaves the problem – who does the review? 

 

If testing, verification, and validation team members are not hired or allocated to a 
project and, in effect, do not review the requirements and design, system and 
software design work products may need to be revised unexpectedly upon later IA.  
Without testing, verification, and validation stakeholders present to perform 
experiential IA, the thoroughness of the search for change impacts is compromised.  
Thus, the policy of only allocating these resources later in the design process limits 
the rigour of IA performed early in development. 
 
Different IA techniques may also compete with each other.  Designers may have 
multiple means or tools to perform IA, causing a conflict in when to apply the 
techniques available.  A systems designer (I-13) described the future plans for 
integrating the information among IA tools: 
 

The dependencies between requirements will be handled in (a dependency tool) models… 
Whilst this helps in some way, that can arguably be another level of complication because you 
have your requirements stated in (the dependency tool) models; You have them stated in 
English in (a traceability tool); Then, in some sense, you have them represented in (another 
dependency tool).  You could arguably have three things.  Now how you ensure consistency 
between those things is a big issue. 
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Storing traceability information in several tools can allow for a more complete 
analysis by converging different representations and providing an increase in 
traceability and dependency IA rigour.  However, multiple methods of 
implementing traceability and dependency IA can also obfuscate the appropriate or 
best means of IA.  Designers often may choose their favourite IA technique, leading 
to disuse of the alternative IA techniques.  Their preferred method of implementing 
IA, therefore, limits their application of other IA techniques.  In addition, if the 
information is not consistent across IA techniques, only using their preferred IA can 
limit IA rigour. 
 
Furthermore, short-cut procedures in the design process to speed-up product 
development also influence IA rigour.  These procedures can conflict with idealised 
processes for implementing IA.  For instance, tacit acceptance of procedures or even 
management strategies pressuring designers only to update traceability relationships 
and requirements after “hard” work products, such as models and code, have been 
completed affect IA rigour (I-14, I-29, and I-40).  Without well-maintained 
information available for IA techniques, IA rigour decreases. 

4.4.1.5 OVER-EXTENSION 
Over-extension of tools, or using tools for conflicting purposes, also can systematically 
affect IA rigour.  For example, the influence of configuration management on 
performing traceability IA (mentioned in the process conflicts influence, Section 
4.4.1.4) is also affected by the tool implementation for managing traceability 
relationships.  The procedure for capturing and managing the configuration of 
design traceability within one database tool, in effect, influences IA rigour.  
Alternative processes to maintain these dependencies in a separate tool or database 
in real-time and without configuration management could potentially increase IA 
rigour. 
 
In another example from the aerospace empirical studies, the tool implementation of 
the integrated software requirement model (Table 3.1) required design updates from 
the software requirement models of functional areas.  A systems designer (I-4) 
explained: 
 

The problem is that the (integrated software requirement) model is only as good as the rest of 
the system.  Your (integrated software requirement) model is built up from all of the models 
you have of the whole system… the problem is at the moment that the (integrated software 
requirement) model is always out-of-date.  So, you actually want something that you have 
today and it takes a finite period of time that it is caught up with reality. 
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Given that the integrated model worked with stale information from the functional 
area models, the IA may not completely search for potential change impacts, leading 
to its disuse by designers.  As opposed to another tool implementation of such an 
integrated model, which worked well in a different project (I-16), the extension of the 
functional-area modelling tool from its original purpose limits IA rigour.  Thus, 
defining multiple purposes for tools used for IA can influence IA rigour.  

4.4.1.6 ADMINISTRATION 
Administration of some tools to implement IA techniques may require substantial 
effort.  Tools may involve customisation or dedicated resources for constant 
maintenance in order for use.  In these instances, the overhead cost of the tools may 
outweigh the usefulness of the IA, leading to disuse of the tools and IA techniques (I-
39).  For example, a system designer (I-17) said: 
 

We would have to do a lot of rework to use the tool.  It’s just not cost-effective.  So, we just left 
it behind.  (The requirement traceability IA tool) does not have much benefit unless you have 
big teams and are doing a lot of change.  We don’t have a big team, and we don’t do a lot of 
change.  You can just use (a spreadsheet), and it’s a lot cheaper. 

 

In this case, the IA tool was abandoned because of the high maintenance cost and 
replaced with a more cost-effective means of performing a similar analysis.  The 
administration procedures of this tool limited its value and, thus, implementation.  
System and software designers (I-3 and I-15) also suggested that administration 
procedures of tools can limit the access to IA techniques.  For instance, a lack of 
software tool licenses, due to their high cost, may reduce the application of the 
associated IA techniques. 
 
In summary, technique influences can systematically affect IA rigour (e.g. partitioning, 
synchronisation, process conflicts, and over-extension) and preclude the 
implementations of IA techniques (e.g. method definition and administration).  In 
turn, the quality of IA results can also be influenced. 

4.4.2 TASK INFLUENCES 
The following section details the task influences summarised in Figure 4.7 through 
examples from the empirical studies. 

4.4.2.1 LACK OF INFORMATION 
Lack of information, regarding changing work products, was cited by designers to 
complicate implementing traceability, dependency, and experiential IA.  Without 
sufficient requirements or detail design information, many different change impacts 
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are possible since the design modification is essentially undefined.  In turn, this 
uncertainty of the scope of the change can lead to poor quality IA results. 
 
Designers (I-4, I-13, and I-40) suggest that lack of information about requirements can 
be due to customers or stakeholders not knowing exactly what they want.  A lack of 
information can also occur from within the design team in that system and software 
designers may not share detail design information with each other either 
unknowingly or not in a timely manner.  A system designer (I-13) stated: “So, you 
can effectively end up fire fighting the entire time because the wrong thing is there or 
you are working with incomplete data.  Everything is in a state of flux”.  This 
engineer suggests that a lack of information can cause IA tasks to produce low-
quality results, leading to emergent changes. 
 
The response to this lack of information in terms of IA can vary.  For example, 
designers may wait for more information about the requirements before beginning 
any design work (1-17) and only perform IA when the relevant information becomes 
available in order to ensure sufficient IA result quality.  Alternatively, if work begins 
before the requirements are finalised due to scheduling constraints, the designers 
may reuse old design work products and develop multiple potential design solutions 
(Section 3.4.3).  These strategies attempt to compensate for the lack of information 
and effectively manage of changes once information becomes available.  In this case, 
IA results may be more thorough given that they are grounded in requirements, 
models, and code already developed. 

4.4.2.2 AMBIGUITY OF INFORMATION 
Ambiguity of information in requirements or detail design work products can cause 
similar difficulties in performing IA since the areas affected by the modification are 
difficult to pinpoint based on the information represented.  If IA is implemented, the 
results may be incomplete or unclear.  For instance, ambiguous requirements can 
cause traceability IA to yield meaningless or unhelpful results.  A systems engineer 
(I-17) stated: 
 

They (requirements) are not detailed enough…  There are extensions to requirements at lower 
levels.  You can’t tell until you look at the code…  As a systems engineer, you tend to get a 
feeling of what you can believe and where you have to go to the code…  What we call ‘woolly’ 
requirements. 

 

If requirements are written at a very high level, which may be appropriate since 
requirements should not necessarily contain all design information, they may not 
clearly and unambiguously reflect the detail design dependencies.  As such, 
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manually performing traceability IA can miss indirect design dependencies, affecting 
the IA results obtained. 
 
The empirical studies also indicate that ambiguous information represented in detail 
design work products can influence IA result quality.  A software engineer (I-12) 
cited that software design models including ambiguous variable names often can 
mislead designers and cause inaccurate IA results; alternatively, multiple, different 
representations of information within a single model or across several models of a 
single design can be deceptive. In addition, designers (I-2 and I-3) indicated that 
some ambiguities were often caused by human error.  Typos in models or code, 
oversight during design reviews, or forgetting to update information in databases 
can all lead to degradation in IA quality. 
 
Moreover, ambiguous information communicated between designers during 
meetings has caused inaccurate experiential IA (I-3).  In several cases, designers have 
implemented a course of work perceived as agreed-on during an integrated product 
team meeting.  However, no meeting minutes or further communication ensued, 
and, once completed, the detail design work did not exactly meet the other’s 
expectations.  Thus, IA results can be highly dependent on the clarity of information 
available. 

4.4.2.3 VOLATILITY OF INFORMATION 
Volatility of information, due to frequent or unanticipated changes to requirements or 
detail design information, also can affect the quality of IA results.  A system designer 
(I-13) stated: 
 

I think a key attribute for requirements ought to be ‘volatility’ or ‘likelihood of change’ or 
something.  There are so many things that are dependent…  Since we’re designing something 
that’s such a complicated beast… it should be acceptable to have uncertainty. 

 

Similarly, another systems engineer (I-12) noted that frequent changes to information 
used as a input to the software detail design most often occurred in highly coupled 
functional areas and described these areas as “volatile”.  As such, the current state of 
system or software designs, given the uncertainty of information used as a basis for 
requirements and detail design, may be difficult to track by designers.  In turn, 
designers must perform traceability, dependency, and experiential IA by considering 
the compound impact of many changes with the anticipation of further, unexpected 
modifications, and, given this context of information volatility, these IA techniques 
can produce low quality of results. 
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Volatility due to sudden, unexpected changes also can produce inaccurate IA results.  
As opposed to many modifications in highly coupled design areas, a relatively 
independent design can be subject to a single, unanticipated change that requires 
significant rework.  A designer (I-5) remarked on the high number of “late changes” 
requiring such rework.  In effect, IA tasks may not identify the full scope of the 
modifications necessary due to the uncertainty of the information provided and 
produce low-quality IA results. 

4.4.2.4 MAGNITUDE OF INFORMATION 
Magnitude of information, in contrast to the lack of information influence discussed 
(Section 4.4.2.1), was pointed to by designers as a factor decreasing the IA result 
quality.  Given many interdependent work products or design functional areas, the 
search space for possible change impacts can be large for a single initiating change.  
Even with the help of automated IA tools, a designer may not be able to rigorously 
search through all of the dependencies within a reasonable amount of time (I-3, I-40).  
The knock-on effects of making a change can be difficult to identify in this case, and, 
consequently, the IA results may not be complete. 

4.4.2.5 LACK OF TIME OR RESOURCES 
Lack of time or resources, in terms of a lack of time to do a design change or people to 
perform or have input into a design change, also can affect the quality of IA results.  
The time pressure of completing a design can cause a rush to simply implement 
changes without performing any IA or only quickly using engineering judgement 
and intuition.  A systems designer (I-15) said: 
 

We have a bit of a tendency to run and go fix it and then go screw something else up.  We 
don’t understand the way that a high-level requirement fans out or how it horizontally 
impacts other components.  So, it’s probably fair to say that we go - ‘blink’ - I’ve got a fix. 

 

Without rigorously implementing IA, knock-on effects can be missed.  Thus, the need 
to quickly produce design work under time pressure can lead to poor IA quality. 
 
Similarly, the number of changes occurring can also influence the quality of IA 
results.  A system designer (I-17) stated: “If you’ve got 100 (changes) to work with, 
things get through.  They are bound to get through”.  A large number of changes can 
cause designers to be under time pressure to perform IA.  In such a situation, IA may 
not be as rigorously applied and not account for all of the knock-on changes, 
producing inaccurate results. 
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Other designers (I-14, I-29, and I-40) discussed the time pressure experienced during 
the design process and indicated having to choose between producing models and 
code as opposed to other “soft” design artefacts, such as documentation (as cited 
within the process conflicts influence in Section 4.4.1.4).  This focus on models and 
code can cause a scarcity of other design artefacts used for IA.  Thus, traceability IA, 
specifically, may be of low quality due to these artefacts being incomplete or out-of-
date. 
 
Similarly, designers indicated that a lack access to stakeholders limits the IA results.  
Without understanding the perspectives of all stakeholders on a design change, any 
IA performed may be incomplete.  In turn, documenting the links between 
arguments in design rationale and the concerns of different stakeholders can 
improve these IA results.  Nevertheless, if stakeholders are not frequently included 
in design change decisions or their design rationale is not captured (I-13 and I-19), 
then knock-on effects can be easily overlooked.  Another designer (I-30) stated: 
 

One of the biggest failings, I believe, is that we have lost a lot of person-to-person 
communication with the customers.  For me, it is absolutely paramount to understand what 
the customer wants.  You don’t get that through communicating via email or the web and so 
on.  When you sit down with a real person on a table, you come to an understanding.  You 
tend to improve your understanding and gain agreement on what you’re doing. 

 

Gaining a mutual understanding of design changes can help the stakeholders 
individually assess the knock-on changes to their design areas, potentially producing 
higher quality IA results. 

4.4.2.6 ANALYSIS EDUCATION 
Analysis education, or training on IA techniques or tools, is a potential source for poor 
IA result quality.  Training may not be delivered at all or not in a timely manner.  In 
the aerospace empirical studies, a designer (I-19) did not know that the traceability 
IA tool existed and generally commented on the lack of training on requirements 
engineering, and other designers did not understand IA using data dictionaries 
(Section 3.4.4).  Without educating designers on the IA techniques available, these 
techniques cannot be implemented in practice.  In turn, IA may not be performed 
across some design areas as rigorously as possible, affecting the IA results obtained. 
 
Similarly, a lack of education on processes related to implementing IA techniques can 
cause a reduction in IA quality.  For instance, if designers do not understand 
traceability management procedures, then they may not update the traceability 
information in a timely manner.  In turn, other designers may perform IA using stale 
traceability links, producing incomplete IA results.  In one case at the aerospace 
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company, designers had to stop all design work for a couple of weeks in order to 
input all traceability information into a database because not all of the designers had 
been updating the traceability database while designing (I-22).  In effect, the lack of 
education on implementing appropriate processes for IA can potentially lead to 
incomplete and inaccurate IA results. 
 
In summary, despite these factors that can decrease the quality of IA results, task 
influences do not always preclude the implementation of some type of IA.  IA can 
still be performed even with imprecise or some unavailable information.  For 
instance, experiential IA does not require significant resources or training.  The 
perception that these influences halt the implementation of some IA techniques is not 
always the case; there may only be degradation of result quality. 

4.5 EVALUATION OF THE IMPACT ANALYSIS CHARACTERISATIONS 
Theories developed from empirical studies, such as the IA characterisations 
presented, are difficult to prove applicable in other contexts.  In order to substantiate 
the IA characterisations developed from the empirical studies, the characterisations 
are compared with literature published on software development practices (Section 
4.5.1), and the responses from 3 interviewees (I-2, I-16, I-39) asked to comment on the 
characterisations are presented (Section 4.5.2).  This later approach, known as member 
validation, can be applied within the grounded theory research methodology used 
(Section 3.1) and relies on the experience of interviewees to judge the “adequacy” of 
the characterisations (Bloor 1997). 

4.5.1 COMPARISON OF THE CHARACTERISATIONS WITH LITERATURE 
The IA characterisations developed correspond with literature published on IA and 
software practice.  The characterisation differentiating IA techniques and tasks 
(Figure 4.1) and the IA quality (Figure 4.2) and rigour (Figure 4.3 and Figure 4.4) 
characterisations depict the variation in prescribed and practised IA denoted in the 
literature review (Section 2.5 and Section 2.6).  Although literature focusing on IA 
does not describe the breadth of reasons for the difference between prescribed and 
practised IA, as done by the IA influences characterisation (Figure 4.7), literature 
highlighting factors affecting software development in general corresponds with this 
classification.  Table 4.1 and Table 4.2 introduce and compare such literature with the 
IA technique and task influences, respectively.  As such, software literature supports 
the IA characterisations and suggests that the IA influences characterisation 
embodies general properties typically affecting software development practice. 
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Table 4.1:  Mapping of literature to the IA technique influences characterisation 

Technique 
Influence References Mapping to Characterisation 

System and software architecture literature highlights 
the decomposition or partitioning of designs.  
Developing modular designs essentially provides for 
maintenance as changes can be isolated to design areas 
and propagation can be reduced (Maier and Rechtin 
2000). 

de Micheli and Gupta (1997) note that system design 
partitioning affects design team operation and cite that 
communication of information between designers 
highly affects the design process. 

Strens and Sugden (1996) discuss improving impact 
analysis though the effective sharing of information 
between designers. 

Partitioning 

Beecham et al. (2003) characterise the partitioning of 
design teams as a barrier to process improvement since 
information is not effectively communicated.  

This literature suggests design 
partitioning affects IA in that 
appropriately decomposed designs 
can reduce latent design 
dependencies, which IA can miss.  
Furthermore, the partitioning of 
teams influences the information 
available for design work as well as 
IA. 

de Micheli and Gupta (1997) highlight that the 
scheduling of tasks performed by designers, given the 
design information available for input to these tasks, 
must be taken into account during design partitioning.   

Synchronisation 
Sengupta and Abdel-Hamid (1996) assess the dynamics 
of sharing information in software projects.  They 
indicate that having enough information available to 
make decisions can allow for process improvement. 

Synchronisation, just as partitioning, 
influences IA given that IA is 
dependent on information provided 
by others. 

Ramesh (1998) cites ad hoc processes as an impeding 
characteristic for implementing requirement 
traceability. 

Rainer and Hall (2003) indicate procedure definition as 
factor that provides for process improvement. 

Method 
Definition 

Olson (2006) emphasises that defining useable 
processes and allowing access to process 
documentation enables prescribed processes to be 
implemented. 

This literature indicates that method 
definition can allow for prescribed 
procedures to be implemented in 
practice.  Thus, a lack of process 
definition to implement IA can affect 
IA in practice. 

Ramesh (1998) discusses conflicts in performing 
requirement traceability when also used for 
performance appraisal in that the traces captured can 
have a degradation in quality. 

Process Conflicts Bush (2004) indicates that organisational processes can 
conflict with problem or error detection through peer 
reviews.  Organisational processes specifically can 
blame designers, which leads to a conflict when 
performing reviews. 

Process conflicts can take a variety of 
forms, but similarly affect the 
processes used in practice.  The 
processes applied to implement IA 
are no exception. 

Ramesh (1998) characterises the compatibility of tools 
as a means to improve requirement traceability 
practices. 

Over-Extension 
Olson (2006) discusses how process documentation and 
tools for using such documentation can be over-
extended for too many purposes, leading to disuse. 

This literature suggests additional 
examples of over-extension and its 
influence on design practice.  IA 
tools are another such instance. 

Ramesh (1998) cites treating requirement traceability as 
overhead costs rather than necessary costs as a barrier 
to implementing requirement traceability. 

Administration Beecham et al. (2003) characterise the implementation 
of tools and technology as a barrier to software process 
improvement initiatives, and discuss how keeping 
tools used in process improvement strategies up-to-
date requires resources. 

Administration of tools used to 
implement process improvement 
strategies similarly can be a barrier 
to IA.  Not supporting process 
initiatives through the necessary 
administration can dissolve the 
potential for improvement. 
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Table 4.2:  Mapping of literature to the IA task influences characterisation 

Task 
Influence References Mapping to Characterisation 

George and Bohner (2004) indicate that dependencies 
between design elements may not be captured and, in 
turn, can affect IA results. 

Stephenson and McDermid (2005) characterise no 
information as well as incomplete and inconsistent 
information as factors affecting the ability to cope with 
requirement change. 

Lack of 
Information 

Kettunen (2003) highlights the importance of capturing 
software design information across project teams and 
describes its impact on managing change. 

Lack of information can influence 
the ability to manage change and, 
more specifically, affect IA results 
through latent, unrecognised 
dependencies. 

George and Bohner (2004) suggest that dependencies 
may be initially ambiguous and become clearer as the 
design develops, influencing IA results. 

Weinberg (2003) notes that an information storage 
infrastructure can improve the understanding of design 
information and develop the foundation for change 
management. 

Ambiguity of 
Information 

Stephenson and McDermid (2005) characterise 
ambiguous information as an influence on the ability to 
cope with requirement change. 

This literature implies that 
ambiguous information can also 
affect change management and IA 
using unclear dependencies. 

Takahashi and Kamayachi (1989) conclude from 
empirical studies that the frequency of changes 
suggests the quantity of software errors made. Volatility of 

Information 
Curtis et al. (1988) discuss frequent requirement 
changes influencing design process cost and duration. 

This literature suggests that volatile 
information can affect IA results in 
that more errors (i.e. missed 
changes) may occur.   In turn, 
volatile information and its influence 
on IA can lead to higher costs and 
longer process durations. 

Weinberg (2003) indicates that information storage 
infrastructures allows designers to cope with large 
quantities of information used for change management. Magnitude of 

Information Stephenson and McDermid (2005) suggest that too 
much information, as a factor, can affect the ability to 
cope with requirement change. 

Providing means to manage large 
quantities of information allows for 
effective change management.  In 
turn, IA can be improved through 
managing and interpreting large 
magnitudes of information to 
determine relevant dependencies. 

Baddoo and Hall (2003) characterise time pressure and 
the lack of resources as factors detrimental to process 
improvement. 

Lack of Time or 
Resources Humphrey et al. (2007) indicate that providing the time 

and resources for process improvement is essential to 
enable such strategies.  Designers must participate to 
enact strategies in order for process improvement to 
occur. 

Lack of time or resources can affect 
prescribed strategies for IA to 
mitigate unexpected changes similar 
to how other process improvement 
initiatives can be affected by these 
factors. 

Rainer and Hall (2003) classify training as a factor 
affecting process improvement initiatives. 

Humphrey et al. (2007) stress that implementing 
process improvement strategies requires staff training. 

Analysis 
Education 

Beecham et al. (2003) characterise the training of 
designers as a barrier to process improvement 
initiatives. 

Training or providing education to 
designers allows for the realisation 
of process improvement strategies.  
As such, educating designers on IA 
can influence the implementation of 
IA in practice. 
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4.5.2 EVALUATION OF THE CHARACTERISATIONS BY INTERVIEWEES 
As discussed by Bloor (1997), member validation is not without faults.  The 
perspective of participants, which can change over time, can highly affect their 
response to the theories presented (i.e. the IA characterisations).  Bloor suggests 
viewing responses, which are produced by different methods than the data collection 
process used to develop the theories (Section 3.1), as additional data points that can 
support the theories constructed.  As such, member validation is a form of evaluation 
rather than a rigorous approach to validation. 
 
Nonetheless, as discussed by Bacharach (1989) and Patton (2002: 577-581), eliciting 
interviewees’ responses to theories can indicate their falsehood and utility.  Patton 
(2002: 581-584) also suggests that interviewees can suggest their transferability, 
extrapolating from theories presented to support their generality.  In turn, the 
interviewees were prompted to comment on the IA characterisations using these 
criteria.  Specifically, interviewees were asked to respond verbally to the following 
questions about the characterisations (Figure 4.1, Figure 4.2, Figure 4.3, Figure 4.4, 
and Figure 4.7): 
 

• Falsehood: Do the characterisations reflect the state of IA?  If so, why do you 
agree?  If not, what other contexts or attributes are not captured? 

• Utility: Do the characterisations explain the state of IA?  Do the characterisations 
provide reasonable predictions for the state of IA in other contexts?  If so, why do 
you agree?  If not, how should they be modified?28 

• Transferability: Do the characterisations apply to other contexts or attributes of 
IA not mentioned?  If so, describe these other contexts or attributes.  If not, why 
are they specific to the empirical studies conducted? 

 

Three evaluators (I-2, I-16, I-39), a manager and two process engineers, were selected 
from the aerospace and telecommunications companies to reflect on the 
characterisations.  These interviewees were chosen because of their overview of the 
system and software design processes implemented in their respective companies as 
well as experience managing process improvement strategies.  The manager holds a 
senior-level role in the aerospace company’s control group, while the process 
engineers interviewed drive process improvement initiatives at each of the 
companies.  This selection of interviewees also allowed the results of the empirical 
studies to be delivered to the appropriate individuals in the companies with the 
capabilities to potentially induce changes in these organisations.  The following 
sections discuss the responses of these evaluators to the characterisations. 

                                                        
28 The interpretation of utility in terms of explaining and predicting practice is derived from Bacharach 
(1989). 
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4.5.2.1 FALSEHOOD 
All interviewees (I-2, I-16, I-39) agreed with the notion that IA influences (Figure 4.7) 
account for the difference between IA techniques and tasks (Figure 4.1), affecting the 
IA quality of results (Figure 4.2) and rigour (Figure 4.3 and Figure 4.4), and focused 
on scrutinising the IA influences characterisation.  At the aerospace company, the 
evaluators (I-2, I-16) indicated that the IA influences characterisation is a good 
summary of issues affecting IA.  For instance, the process engineer (I-16) gave several 
examples from his work supporting the IA influences characterisation.  He stated:  
“I’m surprised at how many of these (IA influences) line up with what we’ve been 
doing for (an internal process improvement project)”.  This interviewee also 
commented that he believed that “lack of experience and wrong attitude” were the 
primary barriers in getting project teams to implement IA techniques.  The project 
teams cannot envision the potential benefits of implementing IA techniques and 
viewed them as burdens on resources.  Based on the conversation, these attributes 
can also be interpreted through the IA influences characterisation as analysis education 
and administration, respectively. 
 
At the telecommunications company, the process engineer evaluator (I-39) stated:  
“All of these things (IA influences) resonate with (the telecommunications 
company)”.  This interviewee described the recognition by the telecommunication 
company the need to constantly and quickly implement design changes; finding and 
scoping necessary changes are central to their design projects.  As such, he indicated 
that several of the IA influences characterised (Figure 4.7) have directly driven the 
shift to implementing agile development processes.  Specifically, their agile processes 
target the partitioning, lack of information, ambiguity of information, and lack of time and 
resources influences. 
 
In turn, the evaluation of the characterisations by the interviewees against the 
falsehood criteria suggests that the characterisations reflect IA practice and 
correspond with their experience on implementing process improvement initiatives. 

4.5.2.2 UTILITY 
For the IA influences characterisation (Figure 4.7), the interviewees from the 
aerospace company (I-2, I-16) agreed that these issues were useful in highlighting 
and predicting barriers to implementing IA in practice.  The manager (I-2) noted his 
interest in the over-extension of tools influence.  He discussed the over-extension of 
the requirements traceability tool (Table 3.1) in the past and reminded himself during 
the interview to discuss the use of IA tools with a colleague.  As such, the 
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presentation of the IA influences characterisation provided a useful reminder of 
potential difficulties in applying IA.  The manager also discussed the administration 
influence and commented: “The appreciation of project managers for impact analysis 
is an optional thing rather than part of the project”.  In turn, he indicated that he 
believed that administration was the most significant barrier to improving IA 
practice in the aerospace company and suggested that it was useful to have the 
breadth of IA influences co-located. 
 
At the telecommunications company, the process engineer interviewee (I-39) 
indicated the predictive ability of the IA influences characterisation and said: “I think 
they all fit perfectly and resonate with what I have found in the past”.  This evaluator 
also discussed the utility of viewing process improvement through an IA 
perspective.  He stated: “(The characterisations are) interesting stuff – a different way 
of digging into the things we’re trying to resolve and change the way we are working 
in the company at the moment.  It is nice to see it from a different angle”. 
 
Although the interviewees (I-2, I-16, I-39) agreed with the notion that different IA 
techniques can be implemented more or less rigorously depending on context and 
can deliver IA results of varying quality levels (Figure 4.2 and Figure 4.3), they all 
discussed usefulness of determining the optimal set of IA techniques to product high 
quality IA results based on problem type or change characteristics.  For instance, 
certain types of experiential IA may be more suitable for some changes, while 
traceability IA through requirement dependencies may produce higher quality 
results for others.  Variations of the scale in Figure 4.4 could be developed for these 
different contexts.  The aerospace company interviewees (I-2, I-16) suggested that 
further investigation of this point would require in-depth analysis of the IA used 
across each functional design area of their product platform.  Different functional 
areas tend to experience different types of changes and volatility levels.  As such, 
guidelines could be developed for designers of specific functional areas.  Section 9.3 
discusses this extension of the characterisation as future work. 
 
Consequently, the interviewees suggest that the characterisations are a useful 
perspective on implementing process improvement and can serve as a reminder for 
or predict potential limitations for implementing IA.  Moreover, the rigour 
characterisation (Figure 4.4) provides a framework to map IA implementation 
policies given a problem type or change characteristics. 
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4.5.2.3 TRANSFERABILITY 
The evaluators proposed that the categories of the IA influences characterisation also 
encompass additional factors not specifically discussed during the empirical studies.  
The manager from the aerospace company (I-2) suggested that “over-optimism” as a 
cause of the administration influence.  Project managers often do not acknowledge the 
extent of rework necessary during development and, thus, may not allocate effort 
into implementing and managing IA tools.  Similarly, the evaluator from the 
telecommunications company (I-39) indicated that the difference between cultures as 
a factor within partitioning.  From his experience in outsourcing software 
development overseas, he noted that designers from other cultures do not always 
openly share information about upcoming design changes or problems they discover 
and only discuss such issues when they are later acknowledged by others.  As such, 
early IA often misses the knock-on effects to these unannounced problems.  In turn, 
the IA influences characterisation appears transferable to other contexts and can 
accommodate other specific factors to IA within software development. 
 
In addition, the interviewees (I-2, I-16, I-39) implied that the IA characterisations also 
apply beyond the systems engineering and software design domains.  In particular, 
the evaluators from the aerospace company (I-2, I-16) suggested that the disparity 
between IA techniques and tasks also occurs within the mechanical and hardware 
design processes for their product line and that the influences characterisation is 
similarly appropriate.  However, they noted that these other design areas do not 
catalogue or analyse change information as rigorously as done within the software 
design.  The design process engineer (I-16) described beginning work to share means 
to capture change information with these other design teams.  This interviewee also 
proposed that he did not think the characterisations are limited to the products 
produced by the aerospace company.  The evaluator from the telecommunications 
company (I-39) likewise stated: “I would imagine these would apply to 
manufacturing or production”.  Hence, this evaluation suggests that the IA 
characterisations encompass generic properties of IA applied across a variety of 
design processes.  

4.6 SUMMARY 
The IA characterisations describe the disparity between prescribed and practised IA.  
The introduction of the characterisation nomenclatures of IA techniques, tasks, and 
quality emphasises this difference.  In turn, the IA rigour characterisation builds on 
these definitions and classifies traceability, dependency, and experiential IA 
techniques in terms of their search space for identifying potential change impacts.  
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Finally, the IA influences describe reasons for why prescribed and practised IA does 
not yield the same rigour and result quality.  Although these characterisations are 
fundamentally based on the empirical studies, they correspond with literature on 
software development practice and conform to the perspectives of experts 
interviewed.  Chapter 5 uses these characterisations as a basis to further investigate 
IA practice and improvement strategies specifically within the aerospace company. 
 
The IA characterisations also address research questions 2 (Figure 1.8) and 3 (Figure 
1.9).  In practice, IA is recognised as a means to manage design changes within the 
companies participating in the empirical studies (Section 3.4.4), and a range of IA 
techniques and tools are supported within these firms.  However, the application of 
IA can vary in practice and, in turn, determine the risk of unanticipated, emergent 
changes.  The definitions of IA techniques and tasks highlight these effects, and, 
more specifically, the IA quality and rigour characterisations delineate the control of 
emergent changes through IA in practice.  The search space for potential change 
impacts and the inputs to the IA (e.g. information, resources, and time) affect the IA 
result quality, based on the IA technique and task influences.  As such, this 
decomposition of terminology addresses how IA affects managing emergent changes 
in research question 2. 
  
In turn, the IA influences characterisation accounts for the disparity between IA 
techniques and tasks.  As observed in the empirical studies, these influences 
challenge the theoretical application of IA and can cause the degradation of IA rigour 
and result quality.  Hence, the classification of the IA influences responds to research 
question 3.   
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A detailed examination of IA practice at the aerospace company was also conducted 
in the second phase of the empirical studies.  This study aimed to investigate the 
range of IA techniques typically applied by the system and software designers within 
a project group and the quality of the associated results.  As opposed to the IA 
characterisations developed (Chapter 4), focusing on the frequency of design changes 
handled using particular IA techniques depicts IA practice specifically within the 
aerospace company.  The IA characterisations alone yield insight into how prescribed 
IA techniques can differ from practised IA in general.  This analysis of IA practise 
was only conducted at the aerospace company since no access to a specific project 
team at the telecommunications company could be obtained. 
 
In order to ensure that the spectrum of IA practised by the aerospace project team 
was covered in the empirical study, an elicitation method was developed and 
employed (Section 3.1.4).  The IA implemented by interviewees was systematically 
captured by discussing specific changes handled by designers and the associated IA 
tasks.  As such, this chapter first describes the development of this elicitation method 
and outlines its implementation (Section 5.1).  The data collected on IA practice is 
then analysed, and key observations from this investigation are made and correlated 
with the IA characterisations (Section 5.2).  Elicited IA improvement strategies are 
also assessed based on the IA characterisations and these observations of IA practice 
at the aerospace company (Section 5.3), and practical IA improvement strategies 
from this firm are extracted (Section 5.4).  This chapter concludes the discussion of 
the empirical studies by revisiting the research questions (Section 5.5) and refining 
the fourth research question (Section 5.6) to pursue further investigation of process 
improvement through IA.  Specifically, IA improvement strategies are evaluated 
against other process improvement strategies to analyse their efficacy (Chapter 7 and 
Chapter 8). 



5 ::  THE APPLICATION OF IMPACT ANALYSIS IN PRACTICE 
 

107 

 

 

5.1 AN ELICITATION METHOD FOR IMPACT ANALYSIS PRACTICE 
Two primary observations (Figure 5.1) during the exploratory empirical study 
formed the basic structure of the elicitation method.  Firstly, the exploratory study 
indicated that some interviewees had difficulty pinpointing the IA techniques they 
used when prompted.  Occasionally, a designer would give conflicting responses by 
reporting that he never used a particular technique and then later discussing his 
application of the very same technique.  However, more typically, designers could 
easily recall their application of IA for specific changes.  As a result, the IA study at 
the aerospace company employed an elicitation method to capture IA practice by 
discussing particular modifications and the associated IA tasks with designers. 
 
Secondly, another observation from the exploratory study was that the IA techniques 
applied depend on the type of change (Section 3.4.4), which can be characterised by 
the roles of the stakeholder(s) and designer(s) involved in requesting and 
implementing the change.  For instance, system designers may deal with high-level 
changes, while software designers may be more concerned with detail design 
modifications.  In turn, software designers may perform different IA techniques on 
changes requested by system designers than other modifications from within 
software design.  High-level changes may require software designers to perform 
traceability and dependency IA across multiple work products, while low-level 
changes may only require dependency IA within software code. 
 

Observation 1: 
Designers can easily describe their application of  

IA techniques for specific changes. 
 

Observation 2: 
The IA techniques applied depend on the type of change, which 
can be characterised by the stakeholders or designers requesting 

and implementing the modification. 
 

Figure 5.1:  Observations forming the elicitation method structure 

Consequently, the elicitation method works on the premise that eliciting a spectrum 
of different types of design changes and discussing the related IA techniques 
implemented systematically delineates the range of IA technique(s) applied in 
practice.  As such, the elicitation method is employed by discussing many instances 
of changes in interview sessions with different designers.  If only certain types of 
modifications are discussed, then the full range of IA used may not be covered. 
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In turn, Section 5.1.1 details the development of the elicitation method, and Section 
5.1.2 discusses the classification of changes types used to cover the spectrum of IA 
practised.  The application of the elicitation method is then described in Section 5.1.3. 

5.1.1 DEVELOPMENT OF THE ELICITATION METHOD STRUCTURE 
The initial structure or model for the elicitation method was formed through 
combining the second observation from the exploratory empirical study (Figure 5.1), 
acknowledging the relationship between the request and implementation of changes, 
with the general questions: Who? What? Where? When? How? Why?  As such, 
answering the questions in Figure 5.2 can characterise the essential aspects of a 
design change, which can be correlated with the IA techniques implemented. 
 

 
Figure 5.2:  Initial questions for the elicitation method structure 

These questions were further refined or eliminated based on observations made 
during the exploratory empirical study, simplifying the structure for the elicitation 
method (Figure 5.3).  
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Figure 5.3:  Refined questions for the elicitation method structure 

The first question (Who requested the change?) and the second question (Who 
implemented the change?) clearly reflect the second observation from the exploratory 
empirical study, stated in Figure 5.1, in that system and software designers request 
and implement different types of changes than each other, influencing the IA 
performed.  As such, these two questions remain in the final structure of the 
elicitation method. 
 
The level at which changes are implemented (i.e. the work products requiring 
modification) also affects the IA selected.  For instance, software designers use 
different IA techniques to modify high-level specification documentation as opposed 
to design models and code.  In effect, the language of question 6 (Where was the 
change implemented?), as opposed to question 5 (Where was the change requested?), more 
appropriately characterises the IA applied in practice.  More in-depth IA tends to 
occur during change implementation and uses a variety of techniques, while prior to 
the implementation of design changes only superficial IA may be performed to 
gauge the scope of the modification.  Thus, question 5 is eliminated because it does 
not reflect the range of IA techniques applied to identify specific artefacts needing 
modification. 
 
Question 3 (What was the change requested?) and question 6 (Where was the change 
implemented?) may be synonymous when the work products modified in a particular 
design area correspond to the initially expected changes (i.e. the work products 
indicated on the change request).  The IA used during implementation, encompassed 
by question 6, should cover the range of IA applied in this case.  In contrast, if a 
change request impacts many design areas (i.e. high-level product or system 
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behaviour changes), then these two questions can differ in that question 3 can reflect 
the IA employed to determine the broad, knock-on effects to various detail designs 
(e.g. using integrated product team meetings to determine the consequences of 
changes).  Hence, question 3 remains in the model structure along with question 6.  
However, question 4 (What was the change implemented?) is eliminated since it 
essentially reiterates question 6.  The work products changed should align with the 
modification actually made to the product functionality or behaviour.  This 
distinction in language does not definitively characterise IA practice. 
 
For question 7 (When was the change requested?) and question 8 (When was the change 
implemented?), the timing of the request and implementation of changes are both 
relevant.  The range of IA techniques applied can vary at different points in time 
based on the information available regarding other changes.  If high-level changes 
and low-level changes are related, different types of IA may be performed depending 
on when the relationships are identified.  Thus, these questions are re-written as: 
“When was the change occurring in the context of related changes?” 
 
Question 9 (How was the change requested?) suggests that the process of requesting a 
change can influence the IA technique selected.  Documented change requests can be 
implemented through formal change processes, which include review processes to 
ensure knock-on modifications are identified and, thereby, require the use a variety 
of IA techniques.  In contrast, modifications occurring through informal processes 
may be implemented without review and may only be analysed using minimal IA 
(Section 3.4.2.2).  Thus, the formality of change processes affects the range of IA 
applied.  However, question 10 (How was the change implemented?) does not distinctly 
relate the nature of the design change with the IA implemented.  Retaining this 
question creates a tautology by implying that the change implementation process 
affects the IA performed during implementation.  Thus, question 10 is eliminated. 
 
Finally, question 11 (Why was the change requested?) and question 12 (Why was the 
change implemented?) are not included in the elicitation method structure since the 
answers can vary greatly and are difficult to deterministically classify.  Nevertheless, 
they should be asked during interviews in that they can provide the context of the IA 
implemented. 
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5.1.2 CHANGE ATTRIBUTES FOR IMPACT ANALYSIS TECHNIQUE ELICITATION 
Questions A – F in Figure 5.3 of the elicitation method structure each indicate an 
attribute of a change, and the elicitation method includes ranges or scales for the 
potential answers to these questions.  Accordingly, different types of changes are 
characterised by different permutations of answers for each attribute.  Eliciting a 
variety of combinations of attribute ratings on these scales (i.e. different types of 
changes) can cover the range of situations in which IA techniques are practised.  An 
initial scale for each attribute was developed after the exploratory study, and the 
collection of many examples of changes during the aerospace IA study supported the 
refinement of the scale descriptions, eliminating unessential middle categories.  As 
such, given that the scales defined are based on observations, they are intended only 
to conceptualise the range of attributes, as opposed to universally define the entire 
scale. 
 
Two diagrams (Figure 5.4 and Figure 5.5) visually represent the elicitation method 
through the defined scales of the change attributes.  The elicitation method does not 
categorise the IA associated with certain permutations of attributes or classify IA 
according to change types since the IA performed depends on the IA techniques 
available for use; different companies have different IA methods and tools. 
 
The first diagram for the elicitation method (Figure 5.4) responds to questions A, B, 
C, and D (Figure 5.3) through the attributes of change source, direction, and level.  
Questions A and B are reflected by the source and direction attributes, respectively, 
while questions C and D are both represented by the level attribute.  The following 
discussion describes the scale used in the diagram. 
 

 
Figure 5.4:  Scale for source, direction, and level attributes 
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Source of Change: Who requested (i.e. was the source of) the change?  External and internal 
stakeholders were observed in the empirical studies to request changes in the system 
and software designs.  External stakeholders may be customers, suppliers, other 
subsystem designers, or even business and marketing managers, while internal 
stakeholders primarily consisted of system and software designers.  External 
stakeholders tended not to perform IA based on software design change requests.  
Instead, systems and software designers were the primary stakeholders to 
implement a variety of IA techniques to determine the effects of design changes.  As 
discussed in Section 3.4.1, verification and validation teams can be considered 
external stakeholders from this perspective on the source attribute since they were 
observed to request software design changes and did not determine the causes of 
errors found or investigate the necessary corrective design changes. 
 
Given that systems and software engineers tended to reflect the IA techniques 
applied based on their role (Section 5.1.1), the scale of the source attribute (i.e. external 
stakeholder, system designer, and software designer in Figure 5.4) highlights these 
stakeholders.   In turn, the scale of the source attribute does not distinguish between 
the potential external stakeholders because they had little influence on the IA 
performed within the aerospace company.  Furthermore, defining a generic scale can 
be difficult since these stakeholders can vary greatly between projects and 
companies.  Nevertheless, interviews using the elicitation method should cover a 
variety changes from different external stakeholders.  External stakeholders can 
request both high and low-level changes, and system and software designers can 
respond with different types of IA. 
 
Direction of Change: Who implemented the change? Designers only identified a couple of 
instances in which external stakeholders performed modifications in their 
requirements or designs in response to a software design change.  In these rare cases, 
the external stakeholders effectively determined the IA techniques applied for 
change requests.  As a result, given that system and software designers select the IA 
techniques performed for most changes, the scale of the source attribute also applies 
to the change implementer and, thus, should be used for the direction attribute.  
However, instead of reiterating the scale of the source attribute, Figure 5.4 captures 
the relationship between these roles through the arrow illustrated in that changes 
typically are requested by external stakeholders and are implemented by system and 
software designers. 
 



5 ::  THE APPLICATION OF IMPACT ANALYSIS IN PRACTICE 
 

113 

 

 

Level of Change: What was the change requested?  Where (i.e. on what level) was the change 
implemented?  The level attribute scale applies to both questions C and D since they 
both can be answered in terms of the artefacts modified in change processes.  The 
scale selected (i.e. product or high-level requirement, system requirement, software 
specification, software detail design, and software code in Figure 5.4) is based on the range 
of changes observed in the empirical studies.  Specifically, external stakeholders 
often initiated product or high-level requirement changes modifying the system 
behaviour, while system and software designers primarily generated lower-level 
changes.  These lower-level changes typically involved design artefacts, such as 
system requirement and software specification documentation, software detail 
design work products (e.g. design models or other documentation), and software 
code.  As such, these observations from the empirical studies also suggest a pattern 
between the source and level attributes.  The corresponding shading in Figure 5.4 of 
the source and level attributes visually depicts this relationship.  Furthermore, the 
overlap of the arrow denotes that product-level changes are often absorbed by the 
software design. 
 
The second diagram for the elicitation method (Figure 5.5) addresses questions E and 
F (Figure 5.3) through the attributes of change timing and formality, respectively. 
 

 
Figure 5.5:  Scale for formality and timing attributes 

Formality of Change: How was the change requested?  Change formality essentially refers 
to the process by which modifications are performed.  The formality of changes acts 
independently from the pattern highlighted between the source, direction, and level 
attributes in that product-level changes as well as software detail design changes can 
be implemented through either formal or informal processes.   
 
The stakeholders involved, communication, and information available in change 
processes reflect the formality of these process.  Formal or official change requests go 
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through administrative procedures involving selected stakeholders as means to 
document and communicate the changes necessary, while less formal, verbal 
directions from external or internal stakeholders may initiate immediate action to 
implement changes.  In this later case, not all stakeholders may be involved and little 
or no documentation may initially exist, only following after implementation and 
reflecting the IA previously applied (Section 2.4.2).   
 
As such, the scale in Figure 5.5 is based on the form of documentation and 
communication between stakeholders as observed in the empirical studies.  At one 
extreme, accepted change requests by a CCB may have pre-defined procedures, 
timelines, and documentation to follow.  However, informal change processes may 
not go through such a change authority and involve more informal documentation 
and communication (Section 3.4.2.2).  In turn, verbal communication may be solely 
relied on during change processes (Section 3.4.3 and Section 3.5.3).  Finally, 
completely ad hoc change process can also occur at the other extreme.  In this 
scenario, designers or stakeholders may make changes without any documentation 
and may not even inform others about the modification.  These later change 
processes not based on configuration management can influence the IA techniques 
used.  For example, if communication is only relied upon, then only experiential IA 
may occur.  Alternatively, a lack of documentation, in some cases, can limit the 
usability of traceability and dependency IA results.  Thus, the formality attribute can 
reflect influences or barriers to certain IA techniques (Section 4.4). 
 
Timing of Change: When was the change occurring in the context of related changes? 
Especially within large project teams, multiple changes often affect a single 
functional area, and the potential coupling or dependencies between changes must 
be initially identified in order for the range of relevant IA techniques to be applied.  
Thus, an artefact of synchronising changes and IA implementation is the 
identification of the coupling between changes.  At one extreme, if no coupling 
between changes exists, they are synchronous, and the IA techniques applied are 
sufficient to determine the scope of the changes.  If interdependencies between 
changes do exist, then, at best, they can be planned for and synchronised in their 
implementation, and the range of IA used supports identifying any knock-on effects 
and reduces the risk of rework.  The identification of all or partial couplings without 
planning does not necessarily provide for implementing changes as synchronously.  
Implementing interdependent changes singularly only promotes performing IA 
specific to a change, potentially missing emergent changes and resulting in the later 
use of additional IA techniques.  Finally, unknown dependencies between changes 



5 ::  THE APPLICATION OF IMPACT ANALYSIS IN PRACTICE 
 

115 

 

 

can also occur at another extreme with the risk of requiring additional rework and 
implementing further IA.  Hence, the timing attribute can estimate the 
comprehensiveness of the spectrum of IA techniques applied to interdependent 
changes and also suggests the number of further design iterations and associated 
applications of IA required. 
 
In theory and as indicated by the shading in Figure 5.5, more formal change 
processes allow for the planning of the implementation of interdependent changes.  
In contrast, less formal processes can lead to unknown coupling between changes.  
However, “no coupling between changes” is not affected by the formality of the 
change process and primarily depends on the partitioning of the system and 
software designs. 

5.1.3 APPLICATION OF THE ELICITATION METHOD 
Elicitation of IA practice in the aerospace IA study occurred through discussing 
specific instances of changes with system and software designers.  These designers, 
as opposed to external stakeholders, were targeted since they implemented the IA 
tasks.  The interviewees discussed changes they worked on implementing, and, thus, 
the interviewees can be considered experts on the details of these design 
modifications.  During the interviews, all of the questions within the elicitation 
method were covered for each change discussed, and the associated IA techniques 
applied were noted.  Designers were asked to walk through the steps to making a 
change to systematically cover the IA applied.  The interviewer classified the 
responses regarding the type of change alone according to the scales in the diagrams 
(Figure 5.4 and Figure 5.5)29 in order to reduce the time required of the interviewee to 
explain each of the scales and then perform the ratings.  Given that the scales 
presented are intended to be notional, detailing of the scales in terms of specific 
external stakeholders, relevant artefacts, and change formality levels is envisioned to 
occur for different change processes.  However, broader application of this method in 
additional companies has not occurred to date. 
 
After performing several interviews, the types of changes collected with a variety of 
attribute permutations were analysed in terms of the range of attribute combinations 
possible, suggesting the breadth of the IA covered in the interviews.  Given that 
certain attribute combinations did not occur, they were inquired about in subsequent 
the interviews.  Specific questioning revealed many of the interviewees considered 

                                                        
29 Note that the direction of change attributes should be rated according to the source of change scale, as 
described in Section 5.1.2. 
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some permutations non-existent given the structure of the aerospace company (e.g. 
software designers typically do not directly interact with or receive changes from 
external stakeholders), eliminating the total number of possible attribute 
combinations.  Extreme attribute ratings for formality and timing also did not occur 
during the discussions and were specifically prompted for by the interviewer.  
However, these design changes with such extreme attributes could not be found.  
Not many changes occurred without any or with perfect formality or 
synchronisation.  As such, this elicitation method presented does not necessarily 
ensure capturing these extreme cases, but systematically encompasses the range of 
IA techniques typically applied for certain change types.  Without such a method, 
interviews may unintentionally focus on certain IA techniques rather than covering 
the breadth of change situations and the associated IA applied. 

5.2 IMPACT ANALYSIS IN PRACTICE AT THE AEROSPACE COMPANY 
The elicitation method (Section 5.1) was applied at the aerospace company during 
the IA empirical study, allowing for the discussion of many changes and IA tasks.  
Section 5.2.1 describes this information collected and also a data collection exercise 
performed in conjunction for rating other factors dealing with the IA applied.  Based 
on an analysis of this data in Section 5.2.2, key observations on typical IA practice are 
identified and are compared with the IA characterisations (Chapter 4), leading to 
insights when reflecting on elicited IA improvement strategies from the aerospace 
company (Section 5.3). 

5.2.1 DATA COLLECTION 
In total, 42 change cases30 were volunteered by interviewees as examples and 
discussed in detail (50% from systems engineers and 50% from software engineers).  
The attributes of these changes were often classified between the intervals in the 
scales of the elicitation diagrams (Figure 5.4 and Figure 5.5) because the changes 
included elements of adjacent attribute scale descriptions.  In turn, each attribute was 
given a rating of high, medium, or low to account for this variation.  The breakdown 
of the high-medium-low scores corresponds to the elements in the elicitation method 
diagrams as depicted in Figure 5.6.  The division in the source, direction, and level 
attributes into high, medium, and low ratings is based on the roles of the system and 
software designers in the aerospace company and their responsibility for work 

                                                        
30 These changes were discussed for a current, on-going project at the aerospace company, while the 
design modifications extracted from the change database (Section 6.4 and Appendix D) were from a 
completed project.  The 42 modifications discussed occurred through informal change processes 
(Section 3.4.2.2) and were not yet captured within such a database.  Future work (Section 9.3) could 
correlate the discussions of the 42 changes with the actual modifications implemented through this 
upcoming database. 
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products.  The timing and formality partitioning is created based on the extremes of 
these attributes as elicited in the interviews. 

 
Figure 5.6:  High-medium-low rating scale for elicitation method as applied 

As suggested in Section 5.1.3, not all of the high-medium-low combinations exist 
given the organisational structure between systems and software engineering.  
Specifically, only 4 combinations for the source, direction, and level attributes 
typically occurred as follows: 
 

1. An external stakeholder requested a systems engineer to make a system design change 
2. A systems engineer requested a software engineer to make a software design change 
3. A software engineer requested another software engineer to make a software design change 
4. A software engineer requested a systems engineer to make a system design change 
 

Interestingly, systems engineers seldom asked other systems engineers to implement 
changes.  This behaviour can be attributed to the functional area partitioning of the 
system design (Section 3.4.1).  Systems engineers primarily interact only when their 
functional areas are coupled.  Thus, this lack of interdependency can be beneficial to 
divide the workload.  In addition, a specific type of change was found as an 
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exception to these combinations.  For variable value changes within the software 
code, external stakeholders directly email new values to the software engineers.  
While the systems engineers are also included on this email, the software designers 
can independently determine when these changes are implemented, virtually 
circumventing IA performed by systems engineers on these changes (Section 3.4.4).  
Interviewees also noted that the change process for variable values in the software is 
an anomaly (I-15, I-19). 
 
Nine possible combinations for the formality and timing attributes exist given the 
high-medium-low scale.  However, as discussed in Section 5.1.2, the formality and 
timing attributes are dependent to some extent.  More formal processes tend to allow 
for the improved synchronisation of changes.  As such, combinations of high-low 
ratings for these attributes were not elicited, leaving 7 permutations remaining.  Yet, 
each of the 4 combinations for the source, direction, and level attributes elicited were 
not associated with all of these 7 permutations for the formality and timing 
attributes.  Specifically, the extreme attribute ratings (i.e. high-high or low-low 
combinations) for formality and timing did not always occur, even though 
interviewees were questioned for these extreme combinations (Section 5.1.3).  
However, either extreme or near extreme ratings (i.e. high-medium or medium-low 
combinations) were given for the formality and timing attributes for all of the 4 
combinations of the source, direction, and level attributes. 
 
Figure A in Appendix B displays in detail the attribute rating results for the 42 
changes described by interviewees as examples and the associated IA techniques 
applied.  Each change is given a unique id number in the form “C-id#”, and Figure A 
categorises these techniques according to the traceability, dependency, and 
experiential classification (Section 2.5 and Table 3.1).  These findings are summarised 
here in Table 5.1. 
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Table 5.1:  Summary of change attribute and IA data collected (detailed in 
Appendix B) 

Information Elicited Frequency of Occurrence 

IA Techniques Used 

The 42 changes elicited were analysed: 
 
57% of the time through traceability IA 
69% of the time through dependency IA 
79% of the time through experiential IA  

Traceability IA was performed: 
 
83% of the time by manually analysing software requirement documentation 
17% of the time by manually analysing software design documentation 

Dependency IA was performed: 
 
65% of the time using software requirement models 
28% of the time using software UML models 
7% of the time using software code 

Specific IA Techniques 
Used 

Experiential IA was performed: 
 
60% of the time through informal discussions 
14% of the time through formal design reviews 
14% of the time through integrated product team meetings 
12% of the time through individual engineering judgement 

Source-Direction-Level 
Attribute Combinations 

45% of changes were from an external stakeholder requesting a system design change 
25% of changes were from a systems engineer requesting a software design change 
25% of changes were from a software engineer requesting a software design change 
5% of changes were from a software engineer requesting a system design change 

 
During this empirical study, each interviewee was also asked to rate the quality of 
results for the IA technique or suite of IA techniques applied for a couple of specific 
changes, as mentioned in Section 3.1.4.  This estimation consisted of first scoring the 
result quality of the IA as high, medium, or low (i.e. no emergent changes expected, 
some emergent changes expected, a significant number of emergent changes 
expected, respectively) and, secondly, giving the information, resource, and time 
availability used for the IA techniques implemented a rating of high, medium, or low 
(e.g. no missing information, some missing information, or little information 
available, respectively).  The information, resource, and time parameters were chosen 
since they were the primary elements of the IA task influences cited by designers 
during the exploratory study (Section 4.4).  The interviewees were asked to give a 
rationale for each of the ratings, and, in turn, the IA technique influences invariably 
also were mentioned, even though the interviewer did not explicitly question for 
them.  The empirical studies focused on quantifying the task influences, as opposed 
to the technique influences, since asking designers to identify and rate information, 
resources, and time were deemed straightforward and easy to understand.  Unlike 
simply coding the interview transcripts to develop the IA characterisations (Chapter 
4), this rating exercise provides for estimating the typical IA techniques and task 
influences occurring in practice over a range of change types. 



5 ::  THE APPLICATION OF IMPACT ANALYSIS IN PRACTICE 
 

120 

 

 

The interviewees were then prompted to provide ratings for several hypothetical 
scenarios.  The information, resources, and time parameters were each individually 
changed from their original scores to high ratings (if they were not already scored as 
high), inducing additional ratings of the IA result quality by the designers.  Finally, 
all of the parameters were then set to high, and the interviewees provided a rating 
for the expected IA result quality and their rationale in this optimal scenario.  These 
hypothetical scenarios also gave designers a chance to further respond regarding 
technique and task influences and, in some cases, propose mitigation strategies. 
Figure E in Appendix B displays this rating data for the changes discussed. 
 
In total, 23 changes were rated for IA quality during the IA empirical study.  Not all 
of the initial 42 changes were covered because this number of ratings would take a 
considerable amount of time for each interview.  Changes were selected that 
included the broadest range of IA techniques reportedly implemented by the 
interviewee.  Occasionally, interviewees suggested replacement changes to cover 
different IA techniques or contexts.  The information, resources, and time parameters 
were rated, and then the change type attributes and the IA performed of these 
substitute changes were elicited.  These additional changes were not included in the 
original set of 42 changes since they were not always discussed as thoroughly as this 
initial set. 

5.2.2 KEY OBSERVATIONS OF IMPACT ANALYSIS PRACTICE 
Using the data collected, insights were made into IA practice at the aerospace 
company.  The four categories of information collected, including (1) the IA 
techniques provided for by the company, (2) the IA techniques applied, (3) the 
change attribute ratings, and (4) the IA quality and information-resource-time 
availability ratings, were compared against each other and trends within the data 
were found to make observations.  Four permutations of these categories led to four 
key observations: 
 

1. The IA techniques provided for by the company vs. the IA techniques applied (Section 5.2.2.1) 
2. The IA techniques applied vs. the change attribute ratings (Section 5.2.2.2) 
3. The IA techniques applied vs. the IA quality ratings (Section 5.2.2.3) 
4. The change attribute ratings vs. the IA quality ratings (Section 5.2.2.4) 

 

The other potential combinations do not yield helpful insights.  More specifically, the 
IA techniques prescribed can only be usefully compared to the IA applied in practice.  
In turn, the four combinations listed above cover the range of possible data 
permutations. 
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5.2.2.1 OBSERVATION 1:  SEVERAL IA TECHNIQUES ARE NOT IMPLEMENTED IN 
PRACTICE 

As suggested previously (Section 3.4.2.2 and Section 3.4.4), designers reported not to 
implement some of the IA techniques available within the aerospace company.   The 
IA influences characterisation (Section 4.4) also highlights this lack of use of some IA 
techniques.  However, analysing the IA techniques implemented as elicited from the 
full range of change types, as opposed to focusing on specific interviewees describing 
or rationalising the lack of use, distinguishes the number of designers potentially not 
implementing or rarely applying such IA techniques.  Based on the elicitation 
exercise data, the engineers frequently did not apply IA through the integrated 
software requirement model, requirement traceability tool, or data dictionaries 
(Table 3.1).  Even though each designer was questioned if he used these IA 
techniques during the aerospace IA study (Section 3.1.4), no designer had used the 
integrated software requirement model; only one systems engineer said that he had 
used the requirement traceability tool for IA; and, only one other systems engineer 
stated that he used the system data dictionary.  As such, this data indicates that these 
IA techniques are widely not implemented in practice.  Designers may not use these 
techniques because they do not know they exist or because they favour other 
techniques.  Some designers also noted that these tools required dedicated 
administrators.  Consequently, defining methods for making these techniques part of 
the change process, providing resources to administer these forms of IA, and 
educating designers on these techniques and their implementation processes can 
support the application of these techniques, contributing to IA rigour and result 
quality improvement. 
 
Furthermore, the changes elicited show that systems engineers did not consult the 
software specifications, UML models, or code, developed by the software engineers, 
on changes to the functionality of the system design.  The partitioning of the design 
work between system and software designers influences this application of IA, as 
highlighted in the next section. 

5.2.2.2 OBSERVATION 2:  SYSTEM AND SOFTWARE DESIGNERS RELY ON DIFFERENT 
IA TECHNIQUES 

By categorising the IA elicited according to the changes attributes, patterns of the IA 
typically applied by systems and software engineers can be identified, as shown in 
Figure 5.7.   
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Figure 5.7: IA performed by systems and software engineers 

Firstly, the changes discussed with systems engineers were split into two groups 
according to their source, direction, and level attribute rating (i.e. system design 
changes requested by external stakeholders or software designers), covering 2 of the 
4 possible combinations for these attributes (Section 5.2.1).  These modifications were 
then grouped according to their formality and timing ratings.  One group consisted 
of changes with low-low or low-medium rating combinations for formality and 
timing, and the remaining cases were placed into another group with higher 
formality and synchronicity.  The medium-medium ratings were placed into the 
higher category since these changes are often well managed, even though they may 
not be perfectly documented or synchronised.  Figure 5.8 illustrates the general 
results of this grouping, and Figure C in Appendix B displays the detail results for 
the changes elicited. 
 

Changes from  
External Stakeholders 

Changes from  
Software Designers 

Traceability 
Dependency 
Experiential 

Experiential 

 

More Formal and More 
Synchronous Changes 

Less Formal and Less 
Synchronous Changes 

Traceability 
Dependency 
Experiential 

Experiential 

 
Figure 5.8:  IA practised by systems engineers according to attribute ratings 
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By cross-referencing the changes across this grouping structure, observations can be 
made on IA practice.  For instance, systems engineers primarily only used 
experiential IA for informal, asynchronous design modifications originating from 
software designers.  In contrast, systems engineers performed traceability IA by 
manually tracing requirement documentation, dependency IA through software 
requirement models, and all forms of experiential IA for formal, synchronous 
changes requested by external stakeholders (Table 3.1).  For the other two 
combinations, the changes elicited do not clearly indicate what IA technique is 
preferred.  However, experiential IA may be relied upon when traceability and 
dependency IA cannot be performed.  Figure 5.9 displays these patterns of the IA 
techniques typically applied by systems engineers. 
 

 
Figure 5.9:  IA techniques practised by systems engineers (from Figure 5.8) 

The changes elicited from software engineers were similarly analysed.  The changes 
were first grouped according to the two other possible sources (i.e. software design 
changes requested by systems engineers or other software designers).  The same 
criteria for dividing the changes by formality and timing attributes were used.  
Figure 5.10 depicts the general results from this division, and Figure D in Appendix 
B shows the detail results from the changes elicited. 
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System Designers 

Changes from  
Software Designers 

Traceability 
Dependency 
Experiential 

Dependency 

 

More Formal and More 
Synchronous Changes 

Less Formal and Less 
Synchronous Changes 

Dependency Experiential 

 
Figure 5.10:  IA practised by software engineers according to attribute ratings 

Although software designers implemented traceability, dependency, and 
experiential IA to some extent within each of the attribute groupings, Figure 5.10 
depicts the dominant forms of IA used.  For instance, for changes initiated by 
software designers that were more formal and synchronous, designers performed 
dependency IA using the software requirement and UML models as well as software 
code in all but two changes; traceability and experiential IA were used less 
frequently.  In general, the changes elicited indicate that dependency IA may be 
relied upon more than the other forms of IA.  Figure 5.11 shows the patterns for how 
software engineers applied IA. 
 

 
Figure 5.11:  IA techniques practised by software engineers (from Figure 5.10) 
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Software designers most frequently performed dependency IA for formal, 
synchronous changes requested either by system or software designers.  Even 
though traceability and experiential IA were applied for changes initiated by system 
designers, dependency IA may be applied more regularly since this technique 
provides the detail information required for software design and code changes.  
Interestingly, few changes could be elicited that occurred informally or 
asynchronously within software design.  The changes that were elicited in this 
category included variable value changes (C-19), modifications to the real-time 
scheduling for all areas of the software design (C-28), and changes to an area of 
software code that is dependent on most other areas of the software design (C-42).  
The later two design areas notoriously change frequently and require significant 
stakeholder input.  In turn, experiential IA may be relied upon to perform informal, 
asynchronous modifications initiated by system designers.  However, this is only 
substantiated by two changes.  More significantly, given that few changes under 
these conditions could be found, few also may exist in light of the aim to decouple 
the software design areas. 
 
Notably, software engineers performed traceability IA through system requirements 
and software specifications as well as implemented dependency IA through software 
requirement and UML models (Table 3.1).  As such, the IA elicited suggests that 
software engineers tend to perform a wider variety of the IA techniques available 
than system designers (Section 5.2.2.1).  However, software designers also focus on 
the detail design and tend to rely on dependency IA (Figure 5.11), and the IA 
practised by system designers may cover more of the high-level design dependencies 
through traceability, dependency, and experiential IA (Figure 5.9).  Given the 
combination of the work between a team of system and software designers working 
within a functional area, the culmination of the IA techniques can be very rigorous in 
that the IA performed can effectively search through the high-level and low-level 
dependencies of the software design (Section 4.3).  Nevertheless, the sharing of IA 
results between these engineers must be implemented in a timely manner in order 
for this rigour to be achieved (i.e. addressing the partitioning and synchronisation 
influences) since knock-on effects and upcoming changes must be accounted for in 
the subsequent IA applied. 

5.2.2.3 OBSERVATION 3:  IA TECHNIQUE AND TASK INFLUENCES MAY EQUALLY 
AFFECT IA RESULTS 

Both IA technique and task influences can theoretically affect IA result quality 
(Section 4.4).  The information, resource, and time availability ratings support this 
characterisation and further indicate that these two general types of IA influences 
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may equally affect the IA results obtained within the aerospace company.  All of the 
IA influences were mentioned in this rating exercise as affecting the IA results 
produced, except for the process conflicts technique influence and the analysis 
education task influence.  Moreover, most of the changes discussed did not produce 
perfect-quality IA results (i.e. not in the hypothetical scenarios elicited) and further 
iterations were expected, suggesting that addressing these influences could 
potentially lead to less rework. 
 
Out of the 23 changes rated, designers designated that techniques influences 
primarily affected the IA results of 10 changes (Figure D in Appendix B).  In most of 
these instances, high ratings for information, resources, and time produced mediocre 
IA results and were frequently affected by partitioning and synchronisation 
technique influences.  However, in a few cases, high quality results were still 
obtained, and the designers discussed how they overcame or mitigated these IA 
influences.  The remaining 13 changes discussed were primarily affected by task 
influences, including insufficient information, resources, or time available to perform 
IA.  Designers most frequently cited task influences dealing with information as 
limiting factors.  Given the concurrent nature of the design process at the aerospace 
company (Section 3.4.3), the change ratings fit this expectation of information 
availability.  Even though a relatively small number of changes were rated, the 
outcome of this rating exercise suggests that both IA technique and task influences 
can equally play crucial roles in IA result quality. 

5.2.2.4 OBSERVATION 4:  LESS THAN IDEAL IA RESULTS TEND TO OCCUR IN 
CHANGES REQUESTED ACROSS INTERFACES 

As illustrated by Figure D in Appendix B, the changes discussed during the rating 
exercise for IA quality primarily occurred across interfaces (i.e. the source and level 
attribute ratings differ).  Given that most of these changes produced less than ideal 
results based on the IA influences (i.e. not in the hypothetical scenarios elicited), 
changes requested by external stakeholders tended to cause system designers 
difficulties in performing IA, and modifications between system and software 
designers tended to challenge these engineers.  As indicated in Observation 3 
(Section 5.2.2.3), these changes were often linked to the partitioning and 
synchronisation technique influences and task influences dealing with information.  
Only one change (C-33) across an interface did not include these specific technique 
and task influences.  Consequently, improving the practices of obtaining, sharing, 
and updating information across these interfaces can address these primary 
technique and task influences to support effective IA (Section 4.4).  Although other 
changes were occasionally discussed that could be implemented smoothly (not 
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shown in Appendix B), the data collected indicates that the changes initiated across 
interfaces are prone to IA difficulties.  This change data does not suggest a 
correlation between the formality and timing attributes and the quality of the IA 
results. 

5.3 IMPACT ANALYSIS IMPROVEMENT STRATEGIES 
As described in Section 3.1.4, interviewees in the aerospace IA empirical study were 
asked to describe strategies to improve IA results.  Improvement strategies were also 
generally discussed with designers at the telecommunications company.  Some of the 
designers could not propose specific means to make such improvements on-spot 
during the interviews, and others felt as if the IA techniques available were 
sufficient.  However, designers suggested IA improvement strategies, which fall into 
three categories: 
 

1. Including more IA within change processes (Section 5.3.1),  
2. Improving the input quality to IA (i.e. information, resource, and time) (Section 5.3.2), and 
3. Advancing the IA techniques performed (Section 5.3.3).   

 

The following discussion analyses these improvement strategies through the IA 
characterisations (Chapter 4) and the four observations of IA practice within the 
aerospace company (Section 5.2.2).  These IA improvements are also contextualised 
within the more general process improvement strategies of the aerospace and 
telecommunications companies (Section 3.4.5 and Section 3.5.5) and through the costs 
and benefits of implementation.  This analysis leads to the proposal of practical IA 
improvement strategies (Section 5.4). 

5.3.1 INCLUDING MORE IMPACT ANALYSIS WITHIN CHANGE PROCESSES 
When queried on how to improve the quality of IA task results, interviewees (I-2, I-4, 
I-13, I-15, I-16, I-17, I-19, I-21, I-26) recommended performing “more” IA.  These 
suggestions occurred in the context of performing traceability or dependency IA 
more frequently or in addition to relying on other IA techniques.  Other strategies 
elicited include improving the design review process, entailing more frequent and 
less formal reviews, focusing on finding potential design faults, or having more 
stakeholders or experts review the design earlier in the development process.   
 
These suggestions essentially imply the application of more rigorous IA techniques.  
Using traceability or dependency IA techniques above and beyond current IA 
practice and mandating more design reviews with participation from a broader 
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range of stakeholders increases the search thoroughness for potential change 
impacts, and, thus, IA rigour.  As suggested by the first observation (Section 5.2.2.1), 
including more IA can demand defining processes to implement additional IA 
techniques, providing resources to administer the associated tools, and educating 
designers on these processes. 
 
In addition, the observations of IA practice at the aerospace company indicate that 
addressing other IA influences may be necessary.  In particular, the second 
observation (Section 5.2.2.2) suggests that system and software designers must 
effectively share information from traceability and dependency IA to obtain rigorous 
IA results, while the fourth observation (Section 5.2.2.4) points out that system and 
software designers may face challenges in transmitting such information used for IA 
across this interface in a timely manner.  As such, the methods for sharing IA results 
in time (i.e. addressing the partitioning and synchronisation influences), allowing for 
appropriate changes to be made synchronously, may require improvement in order 
to realise the benefits of including more IA. 
 
Within the aerospace company’s process improvement strategy to provide for 
requirement reuse (Section 3.4.5), a standardised, reusable requirement traceability 
matrix and integrated requirement model are being developed.  Upon the launch of 
this strategy, the product development process prescribed in terms of work products, 
schedules, and resources will be modified to focus on the customisation of the 
platform for the creation of another product.  In turn, the change processes and the 
application IA techniques can also change.  This shift can create the framework for 
changing the typical IA performed by designers to include more IA with defined 
implementation processes.  Consequently, this IA improvement strategy elicited may 
be poised for implementation within the aerospace company.  In contrast, specifically 
implementing more IA within the telecommunications company across all projects 
may be more difficult since design processes are not intended to be controlled or 
standardised across projects, and the current company strategy for design process 
improvement does not entail addressing the application of IA techniques (Section 
3.5.5).   
 
In either company, implementing this IA improvement strategy inevitably can incur 
costs for defining and administering the processes to use the IA techniques available 
and training the engineers in these methods.  However, more rigorous IA can help to 
reduce the risk of emergent changes late in the design process.  Since identifying and 
implementing design modifications early is less costly than finding and making 
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changes due to design errors late, this IA improvement strategy can potentially 
reduce development costs.  Nevertheless, while more rigorous IA can make the 
search process for potential change impacts more systematic and reduce such costs, 
this improvement strategy alone may not entirely reduce the risk of emergent 
changes.  All other IA influences within a particular change process may also need to 
be addressed in conjunction with including more IA to benefit from this potential 
increase in IA rigour. 

5.3.2 IMPROVING THE INPUT QUALITY TO IMPACT ANALYSIS 
Alternatively, designers interviewed in the IA empirical studies proposed that the 
quality of information used for IA primarily affects the quality of results.  They 
specifically suggested that timely communication between stakeholders could 
improve the information available for IA (I-14, I-29, I-30, I-42, I-43).  For example, if 
systems and software engineers work asynchronously, details of changes can be 
forgotten if not documented, and the IA performed later may not be of high quality.  
Alternatively, IA performed and documented at the time of a change request can 
become out-of-date as the design progresses, leading to unaccounted knock-on 
effects if the change request is later implemented without additional IA.  
Implementing just-in-time IA using current design information can capture such 
unanticipated consequences.  Furthermore, the communication of IA results and 
upcoming changes to other relevant stakeholders can eliminate knock-on effects for 
other IA tasks performed.  In addition, designers also suggested that allowing more 
time and resources for IA tasks can improve IA results (I-13, I-17, I-19).  For instance, 
rushing designs for a software release in order to meet planning milestones can lead 
to a known degradation of design quality.  IA may not be applied thoroughly and 
software errors may not be fixed due to the lack of time and resources in this case. 
 
This IA improvement strategy primarily addresses the IA task influences and also 
suggests confronting process conflicts in terms of resource allocation.  However, 
other technique influences can still arise in implementations of systems engineering 
or agile software development design processes, causing emergent modification to 
occur.  As such, the third observation of IA practice within the aerospace company 
(Section 5.2.2.3) indicates that this strategy may not completely improve the IA 
results in practice, given that approximately half of changes can primarily be affected 
by IA technique influences.  Nevertheless, this improvement only through task 
influences may be significant.  The telecommunications company may be inclined 
solely focus on such a tactical strategy of improving IA through agile development 
methods.  For instance, direct and regular communication between stakeholders, as 
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supported by agile processes, can improve the quality of information and resources 
available for IA.  Such a focus on IA improvement may only incur costs related to the 
time put in by stakeholders.  Alternatively, the aerospace company could use such a 
strategy in conjunction with other process improvement methods given its outlook 
on process improvement through requirement reuse. 

5.3.3 ADVANCING THE IMPACT ANALYSIS TECHNIQUES PERFORMED 
Finally, some interviewees suggested advancing specific techniques and tools used 
for traceability and dependency IA (I-15, I-16, I-21, I-22).  These improvements 
primarily included building larger and more detailed databases or models of the 
system and software designs.  More data on traceability relationships could be 
captured (e.g. design rationale31), or more information could be included in the 
models of the high-level system functionality.  Alternatively, different modelling 
styles were proposed. 
 
These proposals essentially focus on increasing IA rigour and eliminating some of 
the task and technique influences.  Larger and more detailed databases and models 
can specifically address partitioning.  For instance, an all-encompassing database or 
model could describe an entire product at a high and low-level of granularity for 
both systems and software engineers.  Improving the ability of tools to capture and 
share information can also take into account the information perceived to be 
unavailable, ambiguous, or not required and manage the magnitude of information 
(i.e. addressing the synchronisation technique and information-related task 
influences).  However, such advanced IA techniques can still have limitations due to 
other IA influences, and these influences also must be addressed. 
 
In addition, the cost of developing supporting software as well as any other data 
population and infrastructure to implement such innovative IA can be costly, and the 
benefits should be weighed against the existing IA techniques.  Addressing the 
fourth research question (Figure 1.10) suggests the relative benefit of improving IA 
through such methods.  Nonetheless, this improvement strategy can primarily help 
to address the difficulties of applying IA across interfaces, as depicted by the fourth 
observation in the aerospace company (Section 5.2.2.4).  By developing advanced 
traceability and dependency IA techniques, communication between external 
stakeholders, systems engineers, and software designers may improve by means of 
common information and models.  Given that most of the changes across such 

                                                        
31 Capturing design rationale could also be used in and to improve experiential IA, as discussed in 
Section 2.5.3. 
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interfaces elicited encountered imperfect IA, the benefits of advanced IA techniques 
can be significant. 
 
Since such advanced IA techniques can require significant costs due populating and 
maintaining large databases and models, the telecommunications company may be 
less inclined to implement such a strategy through agile development (Section 2.5.1).  
In turn, the aerospace company could incorporate such IA improvement strategies as 
a long-term vision alongside its goal of developing processes and tools for 
requirement reuse. 

5.4 EXTRACTION OF PRACTICAL IMPACT ANALYSIS IMPROVEMENT 
STRATEGIES 

The discussion of the observations at the aerospace study indicates specific technique 
and task influences to focus on for IA improvement (Section 5.2.2).  Although all IA 
influences ideally should be addressed, the IA improvement strategies elicited imply 
that addressing all influences may not be simple and require multiple tactics.  As 
such, practically improving IA can constitute focusing on the technique and task 
influences identified as problematic in practice.  Given that the strategies elicited 
address the influences pinpointed in the aerospace IA study, they may be sufficient 
from this perspective.  However, other strategies handling these same influences can 
also allow for IA improvement.  In turn, based on the observations and elicited 
strategies from the aerospace IA study, practical improvement of IA can occur 
through three primary means: 
 

• Delineating the use of existing or new IA techniques, providing resources to 
administer these techniques, and educating designers on these techniques can 
increase IA rigour and quality, addressing the method definition, administration, 
and education influences. 

• Defining processes for sharing and updating information used in IA techniques 
and tools can improve IA rigour and quality, handling the partitioning and 
synchronisation technique influences as well as the information-related task 
influences. 

• Providing sufficient resources and time for IA can improve IA quality and 
address these task-related influences.  More importantly, IA must be viewed as a 
worthy and crucial part of change processes to confront the process conflicts 
caused by resource allocation, in turn, allowing for increases in IA rigour. 

 

Strategies that specifically address these elements may more simply increase IA 
quality than other potential strategies within the aerospace company, which 
uniformly attempt to mitigate all of the IA influences through many different tactics.  
By targeting these primary barriers to obtaining high-quality IA results, IA 
techniques can be applied more rigorously and frequently.  The fourth research 
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question (Figure 1.10) examines the effectiveness of implementing these strategies as 
opposed to other process improvement initiatives, and the refinement of this 
question specifies the means of investigation (Section 5.6). 

5.5 REVISITING THE RESEARCH QUESTIONS 
The empirical studies provide insights into the first three research questions.  For the 
first research question (How are change processes and impact analysis prescribed at the 
system and software engineering interface within industry?), the empirical studies 
indicate that both formal and informal change processes can occur within systems 
engineering and agile development processes.  In both of these contexts, the 
companies do not specify or prescribe the application of IA techniques, but make a 
range of techniques available.  No literature suggests this lack of process definition 
affecting IA implementation (Section 3.6).  Consequently, the elicited IA 
improvement strategies to define methods for implementing IA and processes for 
sharing information during change processes to use in IA techniques and tools fills a 
gap in literature and industry practice (Section 5.4). 
 
The second research question (Does impact analysis influence the management of 
emergent changes in practice?  If so, how?) is addressed through the definitions of IA 
techniques and tasks and the IA quality and rigour characterisations (Section 4.6).  
These IA definitions and characterisations distinguish between prescribed and 
practised IA and delineate how, depending on the IA techniques applied and the IA 
influences active, the search thoroughness for potential change impacts and inputs 
available for IA can vary, thereby, affecting the risk of unidentified, emergent 
changes.  Although the empirical studies indicate that IA is recognised as a means to 
manage design changes (Section 3.4.4), the observations of practice at the aerospace 
company suggest that commitment to performing IA may not be consistent based on 
the observed the lack of resources and time available for IA.  As such, addressing the 
resource-related process conflicts and viewing IA as a crucial part of change 
processes can improve IA quality and the emergence of unexpected modifications 
(Section 5.3.2). 
 
The classification of the IA influences contributes to the third research question (What 
are the challenges in using impact analysis to manage emergent changes at the system and 
software engineering interface?).  As particularly observed in changes analysed (Section 
5.2.2.3), IA technique and task influences can equally affect the IA rigour and result 
quality.  However, within these general categories, particular influences can 
dominate.  Given that IA improvement strategies cannot simply eliminate all of these 
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influences, pinpointing certain influences to address can lead to practical IA 
improvement (Section 5.4). 
 
Although IA improvement was found to have support within the companies 
participating in the empirical studies, the relative consequences of this improvement 
on the design process compared to other improvement strategies cannot be 
intuitively estimated based on the two empirical studies conducted.  The fourth 
research question (Figure 5.12) confronts this need to determine the context of IA 
improvement and is refined through additional research questions in the following 
section. 

5.6 RESEARCH QUESTION REFINEMENT 
In order to address the fourth research question (Figure 1.10 and restated in Figure 
5.12), two approaches could be taken.  Firstly, additional empirical studies could be 
conducted on the relative consequences of IA and other design process improvement 
strategies (e.g. improving design task scheduling or requirement management).  
Given the timescale of this research project, at most, only a few additional empirical 
studies could be conducted.  Based on these few, potential data points, the effects of 
IA improvement may be difficult to generalise and cannot provide complete insight 
into this research question.  Secondly, a theoretical analysis of IA improvement could 
be conducted.  Modelling and simulation provides a means to perform such an 
investigation and meets the intent of the fourth research question to explore a variety 
of scenarios for process improvement32.  Through this approach, IA improvement 
strategies could be investigated in more detail, and even the consequences of IA on 
specific design processes could be predicted.  However, the simulation implemented 
only demonstrates or indicates the potential effects of IA improvement in that some 
of the parameter values are not calibrated to specific empirical data.  Nevertheless, 
given the potential thoroughness of such analysis, this research project focuses on 
examining IA improvement through modelling and simulation.  Figure 5.13 displays 
the refinement of the fourth research question to focus on this aim. 
 

Can the application of impact analysis  
improve the design process?  If so, how? 

 
Figure 5.12:  Research question 4a (from Figure 1.10) 

                                                        
32 Kellner et al. (1999) detail the benefits of modelling and simulating as a means to investigate process 
improvement, strategic management, planning, and control and operation management. 
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Can modelling and simulation demonstrate the effects of impact 
analysis improvement on the design process?  If so, how? 

 

Figure 5.13:  Research question 4b, refinement of research question 4a 

As discussed in Section 3.4.3, change packaging is associated with IA improvement 
and the necessary rework within design processes.  Given the interest in pursuing 
further investigation of change packaging by the aerospace industrial partner, the 
modelling and simulation work also investigates this element within the context of 
IA improvement.  Figure 5.14 depicts this extension of the fourth research question. 
 

Does change packaging affect impact analysis  
improvement?  If so, how? 

 
Figure 5.14:  Research question 4c, extension of research question 4a 

The remainder of this dissertation focuses on modelling and simulating IA 
improvement and change packaging within the aerospace company to address the 
fourth research question (Figure 5.12) and its extension (Figure 5.14).  This 
investigation provides a means to specifically evaluate and compare the effectiveness 
of the practical IA improvement strategies elicited (Section 5.4) and change 
packaging policies (Section 7.5) for this firm.  Based on this analysis, high-level 
heuristics for when these strategies and other process improvement strategies should 
be employed are derived (Section 8.2). 

5.7 SUMMARY 
This chapter outlines an elicitation method for IA practice in terms of the attributes of 
changes and examines the results of applying this method within the IA empirical 
study at the aerospace company.   Interviewees were queried for specific instances of 
changes actually occurring within a design project and quantitative ratings of the IA 
inputs and outputs.  This data collected is analysed, producing four key observations 
into IA practice, which are correlated with the IA characterisations (Chapter 4).  
Specific IA improvement strategies elicited from aerospace designers are then 
discussed in terms of the IA characterisations, these key observations, the process 
improvement strategies from the aerospace and telecommunications companies, and 
their potential costs and benefits.  By bringing together these insights, several 
practical means for IA improvement are identified.  Finally, this chapter concludes 
by revisiting the research questions through the empirical studies and refining the 
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fourth research question on the effects of IA improvement strategies on the design 
process (Figure 5.12).  The remainder of this dissertation focuses on addressing this 
research question through modelling and simulation (Figure 5.13) and extending the 
investigation to determine the effects of change packaging (Figure 5.14). 



 

 

 
 
 
 
 
 
 

6 :: INVESTIGATING THE IMPLICATIONS OF                                            
IMPACT ANALYSIS IMPROVEMENT 

 
In order to understand the benefits of implementing IA improvement strategies and, 
in turn, address the fourth research question (Figure 5.12), the subsequent modelling 
and simulation work aims to compare IA improvement with other possible process 
improvement initiatives.  As suggested by interviewees (I-2, I-16, I-23) in the 
empirical studies, IA improvement strategies may be viewed as secondary to process 
improvement to increase work productivity, including optimising design task 
scheduling or developing better requirement management practices.  Investigating 
the potential consequences of IA improvement through modelling and simulation 
allows managers to systematically analyse the trade-offs in implementing strategies 
to improve the design process and demonstrates the significant effects IA 
improvement can have on product development. 
 
Literature provides insights into the modelling and simulation of design processes, 
and research in system dynamics and software process dynamics specifically describes 
previous modelling efforts and simulation results, suggesting methods for executing 
the analysis of IA improvement strategies.  In turn, the adaptation of the rework cycle 
model developed by Cooper (1993a; 1993b; 1993c) is shown to meet the requirement 
to investigate IA improvement against other process improvement strategies (Section 
6.1).  Using this model, a system dynamics method for modelling and simulation 
(Section 6.2) is implemented, as described in the remainder of Chapter 6 as well as 
Chapter 7.  Given that the adapted rework cycle model describes design processes at 
a high-level, Chapter 8 derives high-level heuristics for implementing process 
improvement strategies using the simulation results. 

6.1 LITERATURE ON ANALYSING DESIGN PROCESS IMPROVEMENT 
As indicated by Browning et al. (2006) in an extensive review of process modelling 
practices across a variety of disciplines, system dynamics (Section 6.1.1) provides a 
means to understand the behaviour of product development processes at a high-level 
and analyse policy changes, unlike other modelling methods.  Task details and 



6 ::  INVESTIGATING THE IMPLICATIONS OF IMPACT ANALYSIS IMPROVEMENT 
 

137 

 

 

interdependencies within design processes are not typically captured in system 
dynamics models, and, in some cases, entire design processes may only be 
represented by a few key elements.  However, in order to investigate the overall 
effects of IA improvement strategies on design processes (Figure 5.12), the 
granularity of a detailed, task-based design process model is not required if the key 
factors are still included (as discussed in Section 6.1.1).  As such, system dynamics 
literature provides an appropriate basis for the modelling and simulation of IA in 
this research project, and searches for relevant references to the dynamics of change 
processes were performed in textbooks and the System Dynamics Review journal.  
Pertinent citations within these primary sources were also reviewed, supplementing 
the literature search. 
 
Other disciplines, not mentioned by Browning et al., are related to system dynamics, 
including software process dynamics and operations research.  The field of software 
process dynamics (Section 6.1.2) stems from system dynamics and focuses 
specifically on software development processes.  As such, this research project also 
logically draws from literature in this field.  In turn, operations research (OR)33 
focuses on analysing the coordination of activities, including business and design 
processes (Hillier and Lieberman 1995: 3).  This field often concentrates on applying 
mathematics to analyse management decisions and, as argued by Ackoff (2001), takes 
a narrower perspective to analyse process behaviour than system dynamics in that 
emphasis is placed on the type of systems investigated and the associated 
mathematics used.  Although the mathematics behind models is relevant, system 
dynamics does not focus on these details.  In turn, the construction of the model used 
in this research project to depict IA within a design process draws from system 
dynamics and software process dynamics literature.  However, OR literature was 
also reviewed through references in these two disciplines for relevant mathematics to 
model design processes. 

6.1.1 SYSTEM DYNAMICS 
The fundamental concepts of system dynamics originate from Jay Forrester’s work at 
MIT in the 1960s.  Forrester applied feedback control theory to his research in 
industrial dynamics, later termed system dynamics, in order to understand the 
management of industrial processes and then social systems, such as urban 
population growth (Ford 1999; Lane 1994).  With this foundation, the System 

                                                        
33 OR is also referred to as management science in some texts (Hillier and Lieberman 1995), and the field of 
industrial engineering, also known as operations management, promotes the application of operations 
research in practice (Bailey and Barley 2005). 
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Dynamics Society (2007), the principle organisation for the system dynamics 
community, defines “system dynamics” as: 
 

a methodology for studying and managing complex feedback systems, such as one finds in 
business and other social systems. In fact it has been used to address practically every sort of 
feedback system.  

 

As such, product design and change processes feature in the systems investigated 
within this literature discipline.  The System Dynamics Society (2007) also suggests 
the examination of system behaviour through iterating between six analysis phases; 
this methodology: 
 

• Identifies the problem, 

• Develops a dynamic hypothesis explaining the cause of the problem, 

• Builds a computer simulation model of the system at the root of the problem, 

• Tests the model to be certain that it reproduces the behaviour seen in the real world, 

• Devises and tests in the model alternative policies that alleviate the problem, and 

• Implements this solution. 

 

After defining the scope and elements of the problem to be modelled, literature in 
system dynamics typically represents the relationships between model parameters 
through two types of diagrams, causal loop and stock and flow diagrams (i.e. depicting 
the “dynamic hypothesis” stated in the second bullet point above).  Appendix C 
discusses the notation of these diagrams and their interpretation.  Accompanying 
these diagrams is an associated set of time-dependent equations and even numerical 
data look-up tables from empirical information, forming the system model.  Such 
models can be simulated with given initial conditions through taking time steps 
(Sterman 2000).  In turn, perturbing the model parameters can indicate the effect of 
management policy changes.  Sterman (2000: 86) and Ford (1999: 171-179) both 
propose similar methodologies, examining each phase in detail, and Section 6.2 
discusses the application of these investigation techniques for this research project. 
 
System dynamics literature reveals a key model that highlights the dynamics of 
change processes.  Cooper (1993a; 1993b; 1993c) developed the rework cycle model to 
describe the impact of additional, unknown design effort required on product 
development processes.  Figure 6.1 depicts the rework cycle through a stock and flow 
diagram (detailed in Appendix C) in which work products are produced, revised, 
and completed. 
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Figure 6.1:  The rework cycle  

As represented by Figure 6.1, at the start of a project or design process, all work 
required to complete the project resides in the stock of work to be done.  As the design 
process begins, quantities of work are shifted from this stock or reservoir of work to 
do, and work products are developed at a rate based on the work being done flow, 
which is affected by the people available and productivity of this staff.  Such work is 
executed at less than perfect quality in that the work products produced contain 
unknown errors.  This quality, which is represented by a fractional value, determines 
the portion of work that enters the stock of work really done and the stock of work 
requiring rework.  Thus, the quality of work variable does not affect the rate of work 
done, but rather distinguishes that some work products implemented have no errors 
and others require rework.  In turn, a circle, instead of a valve marker (Appendix C), 
denotes the quality of work in Figure 6.1.   
 
Quantities of rework (i.e. initially unknown or unidentified errors contained in work 
products) are first held in the stock of undiscovered rework.  The rework discovery flow 
indicates the rate of identification of such errors in work products and determines 
the shift of undiscovered rework into the stock of known rework.  This known rework 
is then incorporated into the flow of work being done, and work products are revised 
to eliminate errors. 
 
Arguably, the rework cycle lends itself to conceptualising change processes.  Cooper 
(1993b) discusses undiscovered rework in terms of “errors”, and such errors in work 
products require associated changes.  Consequently, the feedback loop in the rework 
cycle generally depicts change processes in the context of a generic design process, 
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represented by the feed-forward part of the loop.  In addition, the rework discovery 
flow parameter allows for the conceptualisation of IA in that the scoping of changes 
is distinguished within the model34. 
 
Cooper and his colleagues also extend the rework cycle35 to model additional 
influences on design processes and specifically include factors affecting the people, 
productivity, and quality of work variables (Lyneis et al. 2001).  Figure 6.2 shows the 
effects36 of key variables, including the work quality to date, availability of prerequisites, 
out-of-sequence work, schedule pressure, morale, skill and experience, organisational size 
changes, and overtime, on design processes through a causal loop diagram (detailed in 
Appendix C). 
 

 
Figure 6.2:  The extended rework cycle model (Lyneis et al. 2001) 

 
 
 
 
 
 
 

                                                        
34 Section 6.3 further interprets IA within the rework cycle model. 
35 The obsolescence of work modelled in Figure 6.2 is further discussed with respect to Figure 6.14. 
36 Section 8.2.1 discusses the polarity of these relationships represented in the extended rework cycle 
model. 
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Lyneis et al. (2001) further indicate additional feedback loops exist beyond those 
depicted in Figure 6.2, including other parameters, such as:  
 

• Baseline design quality (clarity of initial specifications and pre-requisite design), 

• Availability and quality of procured design and/or products, 

• Availability of customer-furnished information and/or equipment, 

• Adequacy of supervision, 

• Space constraints, 

• Management concern for quality, and 

• Managerial continuity and experience. 

 

In turn, including such additional variables provides a broader context for the basic 
rework cycle model (Figure 6.1) and allows for the investigation of the effects of a 
range of design process improvement strategies.  For instance, optimising the 
scheduling of design tasks, as focused on by interviewees in the empirical studies 
and cited in the introduction to this chapter, corresponds with the out-of-sequence 
work variable in the extended rework cycle model (Figure 6.2) in that effective 
planning can improve productivity and the quality of work.  As such, this process 
improvement strategy can be examined by estimating the magnitude of the increases 
in productivity and the quality of work variables and determining the consequences 
on the basic rework cycle model (Figure 6.1).  Given that the other variables included 
in the extended rework cycle model (Figure 6.2) can be used to similarly represent 
other process improvement strategies, these strategies also can be compared by 
establishing the magnitudes of their improvements to the people, productivity, and 
quality of work variables and analysing their relative effects on the basic rework 
cycle.  Analysing perturbations in the basic rework cycle model variables can 
illuminate the consequences of a range of process improvement strategies. 
 
In turn, the rework cycle provides a framework to compare IA improvement 
strategies with other design process improvement initiatives, meeting the 
requirement to address the fourth research question (Figure 5.12) in that: 
 

• The rework cycle allows for the conceptualisation of IA through the rework 
discovery variable, and 

• The relative magnitudes of the key variables in the basic rework cycle, including 
people, productivity, quality of work, and rework discovery, can estimate the 
consequences of implementing IA and other process improvement strategies. 
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As such, this research project adapts the rework cycle to include IA (Section 6.3) just 
as other models have been developed on the premise of the rework cycle (Ford and 
Sterman 1998).  Two other key change process models found in system dynamics 
literature include additional elements to the rework cycle.  Ford and Sterman (1998) 
focus on the quality of work depicted within the rework cycle model and model 
additional factors influencing this variable.  Similarly, Park and Peña-Mora (2003) 
extend the rework cycle to model elements specific to construction project changes.  
In both of these instances, additional insights through simulation were gained by 
extending the rework cycle model (Ford and Sterman 2003a; Ford and Sterman 
2003b; Taylor and Ford 2006).  Instead of developing another, new model, adapting 
the rework cycle model to include IA can build on its successful application to many 
projects in a variety of industries, including software development (Cooper 1993b). 
 
Furthermore, the simplicity of the rework cycle enhances the communication of the 
model analysis and simulation results to industry.  Using a detailed model, such as 
those developed within software process dynamics research (Section 6.1.2), may not 
lead to results that can be easily understood in that the complexity of the model can 
obfuscate how the results arise and are justified.  Although high-level models, such 
as the rework cycle, do not capture the task details of design and change processes, 
the results are to some extent measurable and can demonstrate the effects of process 
improvement strategies. 
 
Moreover, other models specifically delineate and investigate software inspection 
tasks, a type of experiential IA (Section 2.5.3), within design processes.  However, 
these models also confine such IA within a section of large design process models 
(Madachy 2008: 275-289; Raffo and Kellner 1999b; Thelin et al. 2004).  In turn, the 
influence of other IA techniques is lost.  As opposed to the adapted rework cycle 
model (Section 6.3), modelling a variety of individual IA techniques within a detailed 
design process is an alternative approach.  However, this approach is impractical 
since IA techniques can often be applied by designers at will and do not necessarily 
occur according to defined processes in practice (Section 4.4).  In turn, the high-level 
rework cycle model is fit-for-purpose and can contribute to advising the industry 
collaborators on the relative effects of IA and other process improvement strategies. 
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6.1.2 SOFTWARE PROCESS DYNAMICS 
Abdel-Hamid pioneered the application of system dynamics to analyse software 
processes (Abdel-Hamid and Madnick 1991).  His model of software development 
projects uses a continuous, time-based simulation with over 138 variables and 237 
equations to investigate management policies to improve project performance (Ruiz 
et al. 2001).  Further work has employed this model framework to suit specific 
purposes, including planning, operational management, process improvement, and 
technology adoption (Raffo and Kellner 1999a).  As Abdel-Hamid developed his 
model based on system dynamics, Kellner began creating the first state-based 
simulation of software development.  Kellner’s work was followed by additional 
research into such models and simulation, notably by Raffo and Madachy (Kellner et 
al. 1999; Raffo and Kellner 1999a).  This initial research into software process 
simulation has given rise to the field of software process dynamics (Madachy 2008).  
Software process dynamics draws from the methodology of system dynamics, but 
includes (1) state-based, (2) discrete, and (3) hybrid models of software processes 
(Madachy 2007; Wakeland et al. 2004).   
 

• State-based models use events to trigger transitions in the model state.  For 
instance, the beginning of software coding can spawn the development of test 
plans.  This representation provides a means to easily model parallel events. 

• Discrete models can depict sequences of activities across a time period.  
However, unlike continuous models in system dynamics, time is only updated in 
simulations when particular events occur.  As such, discrete models are typically 
used to represent queues and delays associated with events. 

• Hybrid models combine state-based, discrete, and continuous system dynamics 
models to denote relevant aspects of software development processes. 

 

Discrete models fit to investigating change packaging (i.e. a prioritised queue) and, 
thus, meet the need to address research question 4c (Figure 5.14).  In turn, the rework 
cycle model is adapted to model change packaging and implemented through a 
discrete simulation (Section 6.3).  However, other model structures to represent 
change packaging were also investigated. 
 
Although no research directly related to change packaging was found in the 
literature search, two discrete models to date, as noted by Pfahl et al. (2007), simulate 
software release packaging (i.e. the packaging of features for upcoming software 
versions).  No other varietals of packaging have been found to date in literature.  For 
the first model, Höst et al. (2001) analyse the incorporation of new requirements into 
a series of software releases.  In their discrete model, requirements are prioritised 
and packaged for a software release, and the appropriate extensions are made to the 
software design accordingly.  As such, this framework assumes that all requirements 
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are completely known and that no rework is required.  This requirement-packaging 
model fundamentally differs from the adapted rework cycle (Section 6.3), which 
assumes not all rework is known and depicts the discovery of unanticipated errors 
and the associated emergent changes.  Furthermore, in the model by Höst et al., new 
requirements are prioritised and implemented in order based on their arrival time 
(i.e. late requirements are incorporated into the design late).  The adapted rework 
cycle model does not prioritise changes as such and packages early and late changes 
together (Section 7.5).  Figure 6.3 depicts the structure of the model by Höst et al., 
showing the rearrangement of requirement priority between releases.  This model 
does not show rework, iteration, or IA tasks between the elicit, select, or construct 
development phases or between releases. 
 

 
Figure 6.3:  Model structure of requirement prioritisation (Höst et al. 2001) 

Höst et al. note that this prioritisation model can be improved, but specify that such 
improvements are out of the scope of their research.  They focus on applying queuing 
theory37 from operations research (Hillier and Lieberman 1995: 661-714) to model the 
allocation of resources to implement new requirements.  Given the purpose of 
modelling staffing allocation, this research project does not draw from this model 
structure and adapts the rework cycle to include change packaging instead (Section 
6.3), allowing for the comparison of change packaging strategies with IA and other 
design process improvement strategies and addressing the refined fourth research 
question (Figure 5.14). 
 
Pfahl et al. (2007) present a second model on release packaging, extending the 
concepts developed by Höst et al. to a more detailed level.  They specifically 

                                                        
37 Given that the simulation of the adapted rework cycle does not explicitly model resources, queuing 
theory is not used (Section 6.3). 



6 ::  INVESTIGATING THE IMPLICATIONS OF IMPACT ANALYSIS IMPROVEMENT 
 

145 

 

 

incorporate modelling of resource allocation to specific design tasks (e.g. design, 
implementation, test).  However, unlike Höst et al. and the adapted rework cycle 
(Section 7.5), this model requires actual stakeholders to input prioritisation levels in 
order to perform simulations (Saliu and Ruhe 2005).  Although a variety of 
prioritisation scenarios can be evaluated through this method, the modelling 
framework does not allow for the representation of rework or IA improvement 
strategies. 

6.2 MODELLING AND SIMULATION METHOD AND DISCUSSION 
STRUCTURE 

As suggested in Section 6.1.1, system dynamics entails performing modelling and 
simulation through a defined method.  The methodology proposed by Sterman 
(2000: 86) details the standard steps of such investigations, which also apply to 
software process dynamics research (Kellner et al. 1999).  Figure 6.4 accordingly 
articulates these steps as applied to the modelling and simulation of the adapted 
rework cycle (Section 6.3): 
 

Step 1 
 

(Section 6.3 and 
Section 6.4) 

Problem Articulation and Model Formulation 
• Delineate the problem and model boundaries/limitations 
• Define the key parameters 
• Map the parameter relationships (e.g. through a stock and flow diagram) 
• Evaluate model formulation 
• Determine the reference modes (i.e. the intended model behaviour over time) 

Step 2 
 

(Section 7.1 and 
Section 7.2) 

Simulation Development 
• Specify the simulation structure 
• Estimate the parameter values and set initial conditions 

Step 3 
 

(Section 7.3) 

Simulation Testing 
• Compare the simulation results against the reference modes 
• Determine the simulation behaviour under extreme conditions 
• Analyse the sensitivity of the simulation results to parameter estimations 

Step 4 
 

(Section 7.4 and 
Section 7.5) 

Policy Design 
• Define policy designs to assess (i.e. IA quality improvement and change packaging) 
• Represent the policy designs through simulation scenarios 
• Analyse the simulation results in terms of the policy designs 

Figure 6.4:  Steps of the modelling and simulation method applied 

Given that data from the aerospace company (Appendix D) is used to develop the 
reference modes (Section 6.4), parameter values, and initial conditions in the 
modelling and simulation performed, the simulation results obtained can be used to 
compare and evaluate the practical IA improvement (Section 5.4) and change 
packaging strategies derived (Section 7.5) for this firm.  As suggested in Section 6.1.1, 
this examination entails perturbing the basic rework cycle parameter values (Figure 
6.1) based on the improvement strategy investigated and comparing the simulation 
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results.  However, analysing these results in terms of the extended rework cycle 
(Figure 6.2) also leads to the suggestion of more general IA improvement and change 
packaging heuristics (Section 8.2), which highlight the trade-offs between different 
process improvement strategies. 
 
Consequently, the discussion structure for the remainder this dissertation develops 
the adapted rework cycle model and defines its behaviour for the aerospace 
company’s design process (Chapter 6), simulates and compares the aerospace 
company’s IA and change packaging strategies using this model (Chapter 7), and 
derives heuristics for process improvement strategies based on these simulation 
results (Chapter 8).  Figure 6.5 outlines these aims for the remaining chapters. 
 

 
Figure 6.5:  Modelling and simulation discussion structure 

6.3 MODELLING THE DESIGN PROCESS VIA THE ADAPTED REWORK 
CYCLE 

As discussed in Section 6.1, the rework cycle provides the basis to model IA 
improvement and change packaging, and Figure 6.6 illustrates the adapted rework 
cycle, highlighting these modifications made.  The following sections discuss each of 
these adaptations in detail to define the model used for the simulation, as outlined in 
Step 1 of the modelling and simulation method applied (Figure 6.4). 
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Figure 6.6:  The adapted rework cycle 

6.3.1 REWORK DISCOVERY TIME DELAY 
As originally modelled, the rework discovery flow rate is parameterized as a single 
value.  Cooper (1993b) connects increasing this flow of work through discovering 
errors in work products or rework earlier in the design process (e.g. before system 
testing commences).  In this case, the time delay at which this flow of rework begins 
is reduced.  Cooper also discusses improving the rate of rework discovery through 
decreasing the time delay between discovering errors in work products or rework.  
Figure 6.7 illustrates these two forms of rework discovery improvement. 
 

 
Figure 6.7:  Rework discovery time delay improvement 

However, identifying more rework at a time can also improve the rework discovery 
flow rate in that errors are interdependent and rework can lead to additional, knock-
on rework.  Figure 6.8 shows this type of improvement of the rework discovery flow. 



6 ::  INVESTIGATING THE IMPLICATIONS OF IMPACT ANALYSIS IMPROVEMENT 
 

148 

 

 

 
Figure 6.8:  Rework discovery improvement through identifying knock-on rework 

In turn, if treating this model as a discrete system, two parameters can influence the 
rework discovery flow rate.  The rework discovery time delay specifies the points in time 
at which the valve opens to allow the stock of work to flow and errors are identified, 
while IA quality determines how many interdependent, knock-on errors are found 
while the valve is open.  This model interpretation indicates that rework is identified 
at distinct time intervals.  As such, the discrete rework discovery time delay parameter 
essentially corresponds with the times of IA application to discover rework. Notably, 
more than one IA technique (Section 2.5) can be used in combination for these 
applications of IA.  Consequently, the rework discovery flow accounts for the result 
of using IA techniques of varying rigour, but does not distinguish IA rigour (Section 
4.3) within the model.  This conceptualisation of IA suggests that the stock of rework 
can be modelled as discrete changes38.   
 
For the adapted rework cycle model, reducing the rework discovery time delay shifts 
the applications of IA uniformly earlier in time, corresponding with one of Cooper’s 
intentions for improving the rework discovery flow (Figure 6.7).  However, the 
rework discovery time delay does not reduce the time intervals between performing 
IA.  This definition would couple the rework discovery time delay to the IA quality 
parameter, as suggested in Section 6.4.139.  Nevertheless, uniformly shifting the 
applications of IA is representative of a policy shift to defining when and how IA 
should be used during design processes. 
 
 
 

                                                        
38 These changes can be due to “errors”, as done by Cooper (1993b) and Lyneis et al. (2001), but also can 
be generically classified as “initiated” and “emergent” changes, as suggested by Eckert et al. (2004) 
(Section 1.3).  Section 6.3.4 makes this distinction. 
39 IA quality improvement depends on the span of changes over time throughout the design process.  
Consequently, modifying the time interval between changes can misconstrue the results of increasing IA 
quality. 
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6.3.2 IMPACT ANALYSIS QUALITY 
IA quality represents the scope of related rework identified per application of IA and 
can be interpreted through the identification of sets of changes, including an 
initiating40 change and its associated knock-on changes.  An initiating change is the 
first modification that is identified in the set, and knock-on changes modify the 
design to correspond with and fulfil this change.  Increasing IA quality indicates 
identifying knock-on changes during earlier applications of IA with other associated 
modifications in the set.  Figure 6.9 portrays IA quality improvement for a change 
set. 
 

 
Figure 6.9:  IA quality improvement for a change set 

As defined by the IA characterisation in Figure 4.2, IA quality can be interpreted 
through the completeness, correctness, and clarity of IA results.  However, the IA 
quality parameter in the adapted rework cycle only focuses on the completeness of IA 
results (Limitation 1 in Table 6.1) in that increasing IA quality identifies a more 
comprehensive set of changes. 
 
Distinguishing the size of such sets of related modifications provides a means to 
measure IA quality improvement; without delineating the rework that could 
potentially be found earlier, the IA quality parameter has little meaning.  As such, 
the number of modifications included within change sets influences the IA quality 
parameter interpretation.  IA quality can represent finding direct, first-order, knock-
on effects if only using a small number of modifications to form sets of related 
changes.  Allocating a larger number of modifications within change sets could 
model indirect, higher-order, knock-on modifications41.  As interpreted within the 
change database from the aerospace company (Appendix D) used to quantitatively 
depict the behaviour of adapted rework cycle for this firm (Section 6.4), only changes 

                                                        
40 Initiating changes differ from “initiated” changes defined by Eckert et al. (2004). 
41 Section 2.5.1 also highlights the order of knock-on effects in terms of completeness. 
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stemming from a specific design area within a functional area (Section 3.4.1) are 
considered for classification into change sets.  Limiting the potential scope of sets of 
changes confines the analysis to first-order, knock-on changes.  The simulation of the 
adapted rework cycle (Section 7.1) similarly represents IA quality through small 
change sets (Limitation 2 in Table 6.1). 
 
In order to capture a larger scope of knock-on effects occurring to more than one 
design area, the adapted rework cycle would require the input of a specific model of 
functional and design area dependencies.  Given that functional and design areas are 
coupled to different extents, this model could more accurately account for the 
potential scope of knock-on changes.  By assuming the limited scope for initiating 
and knock-on changes in the simulation of the adapted rework cycle (Section 7.1), 
such a model is not required since an estimation can be made on the scope of the 
change sets within design areas (Limitation 3 in Table 6.1).  However, these 
simulation results only indicate how improving IA for first-order changes affects the 
design process.  Nevertheless, this simulation suggests the potential consequences of 
IA improvement to address the fourth research question (Figure 5.12), and 
incorporating a product model into the simulation is left for future work (Section 
9.3). 
 
The IA quality parameter, which has a fractional value, depicts the scope rework 
identified per application of IA through the number of modifications identified in the 
change sets.  An IA quality value of 1 indicates that all changes in the set are 
identified, while an IA quality value of 0.5 represents that half of the remaining 
changes necessary in the set is found during each application of IA.  Figure 6.10 
depicts these example parameter values. This fractional definition of IA quality 
corresponds with the description of the quality of work42 parameter by Cooper 
(1993b) in that both indicate that the output of either implementing work or 
identifying changes is always partial (i.e. due to procedures, resources available, etc.).  
Interviewees at the aerospace company (I-2, I-12, I-15, I-16) also corroborate this 
definition by their description of finding portions of remaining necessary changes 
during each IA application.  Notably, the same calculation of the value for IA quality 
applies to different scopes of initiating and knock-on changes, but, as suggested, 
these values for IA quality have different meanings (i.e. for first, second, or third 
order knock-on changes). 
 

                                                        
42 Only fractions of rework identified and re-implemented enter the stock of work really done.  The 
remaining fraction of rework implemented contains errors and is completed during subsequent 
iterations around the rework cycle. 
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Figure 6.10:  Examples of IA quality parameter values 

This definition of IA quality in terms of the number of changes assumes that 
identifying more modifications proportionately increases the amount of rework 
discovered (Limitation 4 in Table 6.1) and, in turn, the rework discovery flow (Figure 
6.6).  However, the granularity of the changes within sets affects this flow.  Changes 
could be defined at a low level, and change sets could consist of many modifications 
requiring little rework, such as the correction of spelling mistakes or the modification 
of a specific line of code.  In contrast, high-level changes can include incorporating 
new functionality into the product design, and such a modification could include 
many unspecified detail changes and have a large amount of associated rework.  Sets 
containing both high and low-level changes can misconstrue the interpretation of the 
IA quality value since more rework may be associated with identifying some changes 
than others.  In the data analysis depicting the adapted rework cycle behaviour 
(Section 6.4), the sets of changes include modifications with different “functional 
impact” values, which estimate the amount of rework required (Appendix D).  
However, given that these changes are not defined at extremely high or low levels, 
representing IA quality according to the number of changes found can approximate 
the increase in rework found.  Alternatively defining IA quality according to the 
amount of rework identified (i.e. through the functional impact values) could limit 
the investigation of IA improvement.  For instance, identifying half of the remaining 
rework due to an IA quality value of 0.5 could limit this amount of rework to certain 
changes that sum to the value of half the total functional impact of the change set.  In 
turn, the simulation of the adapted rework cycle (Section 7.1) uses a similar 
functional impact distribution for changes as the data analysis and depicts IA quality 
improvement through identifying changes. 
 
In summary, given the IA quality parameterization, the implementation of work 
products generates a stock of work really done and sets of related changes (Figure 
6.11). 
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Figure 6.11:  Changes spawned during the implementation of work 

In turn, a fraction of each change set, depending on the IA quality value, is 
discovered during an application of IA (Figure 6.12). 
 

 
Figure 6.12:  Changes discovered through IA 

These identified changes are then implemented as rework.  Some of this rework 
performed enters the stock of work really done, while the other fraction includes 
design errors, denoted by the quality of work parameter.  In turn, this erroneous 
work spawns additional changes (Figure 6.13). 
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Figure 6.13:  Implementation of changes 

These spawned changes are assumed to be independent of the original sets of 
modifications initiated.  If they were to be considered knock-on changes to these 
change sets, then the quality of work variable is effectively coupled to the IA quality 
parameter since the quality of work affects the size of the change sets, which 
influences IA quality.  Notably, the rework discovery time delay parameter also is 
not considered to influence IA quality.  Smaller rework discovery time delays can 
occur without a degradation of IA quality.  It is assumed that associated knock-on 
changes can be discovered after finding an initiating change, defining the size of the 
change set.  In turn, this decoupling of the rework discovery time delay, IA quality, 
and quality of work parameters limits the scope of initiating and knock-on change 
sets.  Using large sets can invalidate these assumptions since errors occurring during 
work could be included as knock-on changes after early applications of IA, varying 
the size of the change sets and when changes could be discovered (Limitation 5 in 
Table 6.1). 

6.3.3 CHANGE PACKAGING 
Given the discretization of the rework cycle model, modelling change packaging 
becomes possible (Section 6.1.2).  As illustrated in the adapted rework cycle model 
(Figure 6.6), the change packaging valve regulates the flow of rework into the stream of 
work being done.  The stocks of work to be done and known rework can both 
influence the planning of work.  In particular, a change to a design artefact may be 
packaged with other work to be done on the same artefact or delayed upon expecting 
additional, related rework.  Less rework is expected to occur with effective change 
packaging, as indicated by the empirical studies (Section 3.4.3), since the interaction 
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among design work is better understood and fewer errors occur.  The simulation of 
the adapted rework cycle embodies this perspective in that fewer changes are 
spawned due to the quality of work from packaged modifications (Section 7.5). 
 
As suggested in the discussion of IA quality (Section 6.3.2), the change packaging 
implemented in the simulation of the adapted rework cycle does not rely on a model 
of functional or specific design areas dependencies, and packaging only occurs for 
changes within functional areas.  Given the limited scope of the initiating and knock-
on changes modelled, these modification sets are assumed to equally occur 
throughout all functional areas (Limitation 6 in Table 6.1).  As such, the simulation of 
the aerospace company’s design process randomly assigns changes to functional 
areas according to the volatility of each functional area, as depicted by the change 
database analysed (Appendix D).  More volatile areas are assigned a larger portion of 
all changes.  The change packaging policies simulated groups changes within these 
functional areas. 

6.3.4 LIMITATIONS 
Even though the adapted rework cycle is simplistic, this model depicts sufficient 
parameters to suit the research questions and examine the consequences of IA 
improvement (Figure 5.12) and change packaging (Figure 5.14) strategies on design 
processes.  Specifically, the practical IA improvement strategies (Section 5.4) can be 
investigated in that the rework discovery time delay and IA quality parameters 
provide a means to model performing more IA through a defined method (i.e. 
improving the rework discovery time delay and IA quality), improving IA through 
better information sharing (i.e. improving IA quality) and allocating more resources 
and time to IA (i.e. improving the rework discovery time delay and IA quality) 
(Section 7.4.1).  Perturbing the values of these parameters and simulating the adapted 
rework cycle model indicates the relative effects of these strategies, as suggested in 
Section 6.1.1. 
 
However, as described by the modelling and simulation method applied (Step 1 in 
Figure 6.4), the limitations of the adapted rework cycle also must be defined in order 
to fully articulate the model and facilitate the interpretation of the simulation results.  
Although several limitations have been described in conjunction with the description 
of the adapted rework cycle model in this section, additional limitations exist beyond 
these previously mentioned.  For instance, this model does not explicitly depict the 
specific interplay between design and change processes through design task 
dependencies, task durations, resource allocation, or information availability 
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(Limitation 7 in Table 6.1) as other models (Browning et al. 2006).  Nevertheless, the 
adapted rework cycle can indicate the high-level consequences of IA improvement 
on design processes and does not intend to forecast the specific effects of IA 
improvement and change packaging on a particular software development project. 
 
The adapted rework cycle also does not account for changes stemming from “added” 
and “obsoleted” work, as described by Lyneis et al. (2001) and Sterman (2000: 58-59).  
The addition of new customer requirements or, more generally, “initiated” changes 
from Eckert et al. (2004) (Section 1.3), can cause stock from work really done to 
require rework during development processes.  Such obsolescence can lead to an 
additional feedback loop, shown in Figure 6.14. 
 

 
Figure 6.14:  The rework cycle with the addition and obsolescence of work 

Given this perspective on initiated changes, “emergent” changes as defined by Eckert 
et al. (2004) correlate with the “errors” flowing into the feedback loop described in 
the rework cycle (Section 6.1.1).  The associated modifications of these errors can be 
considered emergent changes since they stem from the state of the design.  Notably, 
these changes do not correspond with the knock-on changes described by the IA 
quality parameter (Section 6.3.2).  The IA quality parameter distinguishes between 
sets of related changes in order to conceptualise IA quality improvement.  In turn, 
the modelling of the addition of work in Figure 6.14 is discussed in regard to future 
work (Section 9.3) to account for IA occurring prior to extending the scope of 
projects. 
 
Given that the aerospace company’s design process does not involve the significant 
addition or obsolescence of work and the associated product platform is relatively 
stable, the simulation (Section 7.1) focuses on the principal feedback loop depicted by 
the adapted rework cycle model (Figure 6.6).  Consequently, the results obtained do 
not account for changes due to obsolescence (Limitation 8 in Table 6.1).  Additional 
data to develop reference modes (Section 6.4) should be collected to appropriately 
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investigate and validate the response of the adapted rework cycle model to dual 
feedback loops in future work.  Moreover, as simulated, the adapted rework cycle 
does not model the stock of work to be done.  The simulation only represents the 
changes or rework within the design process (Limitation 9 in Table 6.1) since most of 
the work done at the aerospace company is to implement changes to adapt the 
product platform functionality.  Consequently, the results of the simulation of the 
adapted rework cycle are indicative when the workflow through the feedback loop is 
greater than the workflow directly from the stock of work to do.  Finally, the 
simulation of the adapted rework cycle does not model the people and productivity 
parameters and assumes that such resources do not restrict the workflow (Limitation 
10 in Table 6.1).  In future work, additional data should be used to appropriately 
model the rate of work implementation for changes within specific functional areas.  
Table 6.1 reviews the limitations of the adapted rework cycle model and simulation 
discussed thus far. 
 

Table 6.1:  Summary of limitations of the adapted rework cycle 

Limitation Reference Affecting Description 

1 Section 6.3.2 Model 
The application of IA associated with the IA quality 
parameter is assumed to produce correct and clear, but 
possibly incomplete results. 

2 Section 6.3.2 Simulation 
Implementation 

For the IA quality parameter, sets of initiating and knock-
on changes are scoped within a specific design area. 

3 Section 6.3.2 Model  
The interdependencies within the product design are not 
modelled, limiting initiating and knock-on changes sets 
to small scopes. 

4 Section 6.3.2 Model The IA quality parameter assumes that the number of 
changes identified corresponds to the amount of rework. 

5 Section 6.3.2 Model 
The scope of initiating and knock-on change sets cannot 
be large to ensure that rework discovery time delay, IA 
quality, and quality of work parameters are decoupled. 

6 Section 6.3.3 Simulation 
Implementation 

For the change packaging flow, the portion of changes 
within each functional area is estimated. 

7 Section 6.3.4 Model 
The adapted rework cycle does not model task 
dependencies, task durations, resource allocation, or 
information availability for a specific design process. 

8 Section 6.3.4 Simulation 
Implementation 

The addition of new work and obsolescence of work are 
not simulated.   

9 Section 6.3.4 Simulation 
Implementation 

The simulation only captures the implementation 
progress of changes or rework. 

10 Section 6.3.4 Simulation 
Implementation 

People and productivity do not restrict the flow of work 
as simulated. 

 
Despite these limitations of the adapted rework cycle, the modelling and simulation 
implemented can suggest the potential consequences of IA improvement on the 
aerospace company’s design process.  Limitation 1 through 5 in Table 6.1 primarily 
define the appropriate interpretation of the IA quality parameter and do not restrict 
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the applicability of the conclusions drawn from the modelling and simulation results.  
In turn, Limitation 6, Limitation 8, and Limitation 9 are reasonable assumptions in 
that they do not affect the fundamental characteristics of the aerospace company’s 
design process and, thus, do not significantly influence the trends observed through 
simulation.  As such, the adapted rework cycle implemented does not intend to 
forecast or predict concrete improvements to the aerospace company’s design 
process simulated and focuses on analysing the high-level trade-offs between the 
modelled parameters.  Limitation 7 is also acceptable given that a high-level model 
and analysis is appropriate to address the research questions to investigate IA 
improvement (Section 6.1.1).  Finally, Limitation 10 restricts the simulation to the 
trade-offs between the rework discovery time delay, IA quality, and quality of work 
parameters.  However, these parameters are sufficient to evaluate and compare 
different IA improvement strategies for the aerospace company against each other 
through simulation since the implementation of software changes is not primarily 
limited by the people available or this staff’s productivity in that a backlog of 
software design work does not occur in practice due to such a lack of resources.  
Even though the people and productivity parameters are not simulated, the 
influences of these variables are accounted for in the heuristics for process 
improvement developed (Section 8.2), which depict the trade-offs between IA 
improvement and other process improvement strategies.  As such, the other 
simulation implementation assumptions (Limitation 2, Limitation 6, Limitation 8, 
and Limitation 9 in Table 6.1) are also addressed when developing these heuristics, 
and the refinements of these assumptions are discussed as future work (Section 9.3). 
 
Accordingly, the adapted rework cycle meets the requirements to address the 
research questions in that the high-level trade-offs between process improvement 
strategies can be investigated, and the limitations of the adapted rework cycle are 
reasonable and handled within the conclusions drawn from the modelling and 
simulation results. 

6.3.5 EVALUATION OF THE ADAPTED REWORK CYCLE MODEL 
As shown within the modelling and simulation method applied (Step 1 in Figure 
6.4), evaluation of system dynamics and software process dynamics models is 
required in order to determine their applicability to policy making.  Like other 
model-based methodologies, evaluating these models involves both informal and 
formal aspects, as depicted by Barlas (1996).  Specifically, Barlas describes informal 
model validity as “usefulness with respect to some purpose”.  As discussed in 
Section 6.3.4, the adapted rework cycle includes the necessary parameters to 
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investigate the research questions derived from industry (Section 5.6) and, thus, 
meets this requirement. 
 
In turn, Barlas (1996) categorises the formal validation to include “direct structure 
tests”, “structure-oriented behaviour tests”, and “behaviour pattern tests”.  Direct 
structure tests involve comparing the model structure against the real system, 
providing for evaluating the model formulation in the modelling and simulation 
method applied (Step 1 in Figure 6.4).  In particular, each dependency in a stock and 
flow diagram should be analysed individually using knowledge about these 
relationships in reality.  As such, given that the rework cycle has been validated 
across many companies and industries (Cooper 1993b), the modelling of IA quality 
and change packaging in the adapted rework cycle only needs to be reflected on 
against industry practice.  In turn, discussions with industry interviewees and 
academics familiar with the rework cycle confirm that the modelling of these 
parameters is logical and fits with practice.  Specifically, individuals at the aerospace 
company (I-2, I-12, I-15, I-16) confirm that IA quality fits with their experience in 
practice (Section 6.3.2), and interviewees (I-2, I-16) at this company also accept the 
modelling of change packaging.  Additionally, an interviewee at the 
telecommunications firm (I-39) interpreted the relationships represented in the 
adapted rework cycle for both systems engineering and agile development processes 
and indicated that the relationships held for both contexts.  In turn, a system 
dynamics professor indicated the usefulness of including IA quality, but also 
encouraged the extension of the model to depict the coupling of change sets 
(Limitation 3 in Table 6.1 and Section 9.3).  Finally, Cooper, who developed the 
rework cycle (Section 6.1.1), encouraged the application of the rework cycle to 
include change packaging. 
 
The testing of the adapted rework cycle simulation in the modelling and simulation 
method applied (Step 3 of Figure 6.4) encompasses validation through structure-
oriented behaviour tests, which focus on comparing model behaviour against specific 
expected results (Barlas 1996).  Behaviour pattern tests, which determine the 
accuracy of the model to represent the system as a whole, could also be performed on 
the simulation, but are left as future work since these tests focus on predictive 
models that indicate specific, numerical improvements (Section 9.3).  The adapted 
rework cycle simulation does not produce such results since some model parameters 
are not included in the simulation (Table 6.1).  Table 6.2 suggests potential empirical 
data sources that could be used to perform behaviour pattern tests on a predictive 
model. 
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Table 6.2:  Potential empirical data sources for a predictive model 

Model Parameter Source Data 

Rework Discovery Time Delay Change Database – The rework discovery time delay can be estimated by 
correlating the logged times of initiating and related knock-on modifications. 

IA Quality Change Database – IA quality can be approximated by mapping the distributions 
of knock-on changes logged across time. 

Quality of Work 
Change Database and Designers’ Time Reporting – The quality of work can be 
assessed by cross-referencing the amount of time used for rework with the 
amount of time used for work. 

People Designers’ Time Reporting – The people working on a project can be analysed 
using the time logged by employees for work hours. 

Productivity 
Designers’ Time Reporting – Productivity can be estimated by comparing the 
amount of time worked and the amount of work produced (e.g. size of work 
packages). 

 

6.4 BEHAVIOUR OF THE ADAPTED REWORK CYCLE 
Given the description and evaluation of the adapted rework cycle model (Section 
6.3), the behaviour of this model over time can now be examined to fulfil the model 
articulation for Step 1 in the modelling and simulation method applied (Figure 6.4).  
Reference modes capture the intended behaviour of a system modelled and are used as 
a means to calibrate and test the simulation results in Step 3 in the modelling and 
simulation method applied.  In turn, reference modes are typically depicted through 
graphs of relevant parameters across a period of time, or time horizon (Sterman 2000: 
160).  Such graphs often are constructed by analysing quantitative information 
available.  However, descriptions from empirical studies or even from literature can 
also be used to graph or describe the relevant parameters qualitatively (Kellner et al. 
1999). 
 
As such, the reference modes (Section 6.4.3) for the adapted rework cycle are 
developed from the qualitative behaviour of this model (Section 6.4.1), which is 
based on the original rework cycle behaviour depicted by Cooper (1993b), and from 
quantitative information from a software change database provided by the aerospace 
company (Section 6.4.2).  This change database holds the details of all the requested 
modifications submitted to the control group CCB (Section 3.4.2.1) for a recently 
completed project, which differs from the 42 changes for an on-going project 
discussed in Chapter 5.  Appendix D describes the fields of information captured in 
the database for nearly 1600 software changes. 
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6.4.1 QUALITATIVE BEHAVIOUR OF THE ADAPTED REWORK CYCLE 
Cooper (1993c) depicts the behaviour of the rework cycle (Figure 6.1) qualitatively as 
shown in Figure 6.15.  As illustrated in Figure 6.15 (left), the stock of work to be done 
decreases as design projects progress, and the stock of undiscovered rework 
increases.  As the stock of undiscovered work is identified, the stock of known 
rework increases.  Cooper indicates that the identification of the undiscovered 
rework stock tends to occur during “downstream” project phases, such as testing.  
As such, the known rework curve is delayed (i.e. positioned to the right) from the 
undiscovered rework curve.  The stock of known rework eventually is depleted 
based on the rate of work being done. 
 
Cooper further interprets this behaviour in terms of the percentage of work 
perceived and actually complete, as shown in Figure 6.15 (right).  The perceived 
percentage of work done for projects does not include the undiscovered rework.  As 
such, as more rework becomes known, the progress of perceived work complete 
slows.  The work really done curve in Figure 6.15 (right) accounts for the 
undiscovered rework and, thus, is always less than the perceived work done curve. 
 

 
Figure 6.15:  Behaviour of the rework cycle (Cooper 1993c) 

On this premise, the behaviour of the adapted rework cycle can be constructed 
qualitatively.  The adapted rework cycle introduces the rework discovery time delay 
and IA quality as parameters (Section 6.3), which influence the known rework curve 
in Figure 6.15 (left).  Figure 6.16 illustrates the expected shifts in this curve based on 
reducing the rework discovery time delay and increasing IA quality. 
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Figure 6.16:  Behaviour of the adapted rework cycle – known rework curve shifts 

Reducing the rework discovery time delay (Section 6.3.1) should shift the known 
rework curve earlier in the design process as shown in Figure 6.16 (left).  Identifying 
rework can occur earlier by actively performing IA earlier in product development.  
In turn, improving IA quality (Section 6.3.2) can increase the amount of rework 
found at each application of IA.  As depicted in Figure 6.16 (right), this improvement 
corresponds to finding more knock-on changes and the associated rework earlier. 
 
The transformation of the known rework curve due to increased IA quality in Figure 
6.16 (right) is notional and specifically depends on (1) the relative amount of rework 
within the sets versus the total amount of rework and the distribution of (2) initiating 
and (3) knock-on changes during a design process.  The total amount of rework is 
contained within independent changes (i.e. initiating changes with no knock-on 
effects) and modifications in change sets.  If change sets are a significant portion of 
all rework, then improving IA quality can shift a large percentage of knock-on 
rework earlier.  In turn, only a few change sets would negligibly influence the known 
rework curve. 
 
Assuming decoupled rework discovery time delay and IA quality parameters, as 
described within the limitations of the adapted rework cycle (Table 6.1), initiating 
changes from which knock-on modifications stem and independent changes cannot 
necessarily be found earlier due to IA quality improvement; only reducing the 
rework discovery time delay can affect the identification of these modifications.  
Hence, at best, all knock-on rework can be discovered at the time the associated 
initiating change is found due to improved IA quality.  If initiating changes occur 
mostly towards the onset of rework discovery and no initiating or independent 
changes occur at the end of the design process, then the duration for finding all 
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rework (i.e. the duration of the known rework curve) could be shortened by 
improving IA quality.  Alternatively, if initiating changes occur throughout product 
development, the process duration may not decrease significantly due to IA quality 
improvement.  Nonetheless, more rework can be found earlier in the design process 
through increasing IA quality. 
 
Finally, the distribution of knock-on changes after an initiating modification also 
affects the potential shift of the known rework curve due to IA quality improvement.  
If knock-on changes in a set occur nearly simultaneously at the end of a span of time 
from an initiating change, then increasing IA quality can readily decrease the time 
when most of the rework for the set is known.  Alternatively, if these knock-on 
changes are distributed more uniformly throughout the same span of time, then this 
mean time does not necessarily decrease as significantly.  Translating this behaviour 
to design processes suggests that the shape of the known rework curve can readily 
change due to IA improvement when knock-on changes occur close together in their 
sets.  However, if the time span for which knock-on changes occur from an initiating 
change is small, then the shift in rework may not significantly influence the known 
rework curve as such.  In turn, both the time span for knock-on changes and the 
distribution of knock-on changes during this time affect IA quality improvement. 
 
Reducing the rework discovery time delay can affect project duration and increase 
the rate of work done, as described by Cooper (1993b), since the “scheduling” of 
rework can be improved.  Similarly, since more rework is known earlier due to 
increasing IA quality, the scheduling of this rework also can be planned.  Figure 6.17 
illustrates this improvement in work progress. 
 

 
Figure 6.17:  Behaviour of the adapted rework cycle – work done curve shift 
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6.4.2 QUANTITATIVE BEHAVIOUR OF THE ADAPTED REWORK CYCLE 
This discussion of the adaptive rework cycle’s qualitative behaviour provides the 
basis to describe the quantitative behaviour of this model specifically for the 
aerospace company.  Through the analysis of a change data set (Appendix D) 
obtained from the aerospace company, potential shifts in the known rework curve 
due to IA quality improvement, qualitatively depicted in Figure 6.16, are explored.  
In turn, the investigation of these curve shifts leads to the development of the 
reference modes (Section 6.4.3) used in the calibration and testing of the simulation 
(Step 3 in the modelling and simulation method applied, Figure 6.4).  Shifts in the 
other curves describing the behaviour of the rework cycle in Figure 6.15 are not 
investigated given that the data available only captures information regarding found 
changes at the aerospace company and that the simulation focuses on the handling of 
rework (Limitation 9 in Table 6.1). 
 
For comparison with the change data set, the known rework curve shift due to 
increasing IA quality in Figure 6.16 can be translated into the qualitative graph in 
Figure 6.18. 
 

 
Figure 6.18:  Representation of known rework curve (from Figure 6.16) for data 

analysis comparison 
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In turn, the information in the change database (Appendix D) can portray Figure 6.18 
quantitatively, using the key variables in Table 6.3. 
 

Table 6.3:  Key variables used in data analysis (from Appendix D) 

Variable Value Format 
Time of Change Request Date 

Functional Impact of Change Scale Rating  
(No Impact, Minor Impact, Major Impact) 

Knock-On Change Boolean 

 
The change data set includes the time and functional impact of change requests, 
indicating the amount of work expected to implement the change.  However, the 
data set does not specify if changes stem from other modifications and are knock-on 
changes.  This parameter is necessary in order to estimate the potential increase in IA 
quality (Section 6.3.2).  In turn, first-order, initiating and knock-on change groups are 
determined from the other data set parameters for 3 specific design areas of the 
control system, as discussed in Appendix E, and all changes within these 3 design 
areas are assigned a Boolean value indicating if they are or are not part of such a 
knock-on change group.  Section 2.5.1 discusses this deterministic (as opposed to 
probabilistic) approach to classifying changes.  The changes within these 3 change 
data subsets are used to depict 3 example known rework curves, which are used to 
develop the reference modes (Section 6.4.3). 
 
In order to plot known rework curves for the example design area changes, 
analogous to that in Figure 6.18, the percent of known rework is interpreted as the 
percent of functional impact estimated at the time of each change request.  As such, 
the functional impact of each change is converted to a numerical value according to 
the scale43 in Table 6.4.  Table 6.5 uses this conversion to describe key characteristics 
of the 3 example design area changes.  Subsequently, these characteristics also enable 
the reference mode development (Section 6.4.3) and define the variables values used 
in the simulation (Section 7.2). 
 
 
 
 

                                                        
43 The trends observed in the example known rework curve shifts are insensitive to the numerical scale 
chosen. 
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Table 6.4:  Functional impact numerical value conversion 

Functional Impact Rating Numerical Value 
No Impact 0 

Minor Impact 5 

Major Impact 10 

 
 

Table 6.5:  Example design area descriptions 

Example  Design Area Changes Description 

1 

28 changes total, spans the first half of the change database duration (2.5 years) 
 
36% of changes are within change sets 
38% of the total functional impact is within change sets 
 
About 6 independent modifications per 1 change set 
2 knock-on modifications per change set on average 
25% of changes are knock-on changes 

2 

77 changes total, spans most of the change database duration (2.5 years) 
 
56% of changes are within change sets 
52% of the total functional impact is within change sets 
 
About 4 independent modifications per 1 change set 
3 knock-on modifications per change set on average 
42% of changes are knock-on changes 

3 

71 changes total, spans most of the change database duration (2.5 years) 
 
51% of changes are within change sets 
46% the total functional impact is within change sets 
 
About 4 independent modifications per 1 change set 
3 knock-on modifications per change set on average 
37% of changes are knock-on changes 

 
By plotting all changes in the each of the 3 example design area change sets, baseline 
known rework curves are formed.  The potential shifts in these curves due to 
increasing IA quality can be constructed by allocating the functional impact values of 
the knock-on changes to their respective initiating changes (Appendix E) and 
plotting all modifications except the knock-on changes.  This process represents 
finding more of rework earlier.  If all knock-on changes are analysed as such, this 
rearrangement of functional impact effectively corresponds to identifying the 
complete impact of every change at the first application of IA, and the IA quality 
parameter in the adapted rework cycle has a value of 1 (Section 6.3.2).  Figure 6.19 
show these maximum potential shifts in the known rework curves (from Figure 6.18) 
for each example data set (Table 6.5). 
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Figure 6.19:  Examples of known rework curve shifts due to increasing IA quality 

from change database 

As displayed in Figure 6.19, each example known rework curve has a distinct shape, 
which differs from the qualitative graph depicted in Figure 6.18.  As previously 
mentioned in the discussion of Figure 6.16, these different shapes can be attributed to 
the amount and distribution of initiating and knock-on changes.  Nevertheless, these 
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examples have consistent key features that are drawn on to develop the reference 
modes (Section 6.4.3), which, in turn, are used to calibrate and test the simulation in 
Step 3 of the modelling and simulation method applied (Figure 6.4). 

6.4.3 REFERENCE MODES FOR THE ADAPTED REWORK CYCLE SIMULATION 
Assuming that these 3 example known rework curve shifts, which depict the 
potential IA quality improvement, are representative of the aerospace company’s 
design process, the reference modes defining the intended simulation behaviour 
should embody their characteristics.  Using the characteristics of other known 
rework curve shifts can lead to different interpretations of IA quality improvement 
and of the consequences of IA improvement strategies.  The discussion of known 
rework curve shifts due to IA quality improvement specifies these characteristics 
(Section 6.4.1).  Specifically, (1) the relative amount of rework within the sets versus 
the total amount of rework and the distribution of (2) initiating and (3) knock-on 
changes during a design process indicate the potential shift in the known rework 
curve.  In effect, each of these characteristics as depicted by the example rework 
curves defines a reference mode for the simulation. 
 
Firstly, the simulation should generate modifications representative of the ratio of 
independent changes to change sets (Table 6.5) in order to depict the first 
characteristic of the known rework curve.  In particular, the estimated percentage of 
knock-on changes in the examples (Appendix E) should correspond with the 
simulation results.  Figure 6.20 displays this reference mode. 
 

Reference Mode 1: 
The simulation should generate changes with a ratio of independent 

modifications to change sets and percentage of knock-on changes 
representative of the data analysis (Table 6.5). 

 
Figure 6.20:  Reference mode 1 

Secondly, in all the example known rework curves (Figure 6.19), the distribution of 
initiating changes is consistent throughout the design process; initiating changes 
occur at the beginning and end of the design process, and the design process 
duration is not affected by the increase in IA quality.  Figure 6.21 describes this 
reference mode.   
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Reference Mode 2: 
The simulation should generate initiating changes  

throughout the design process. 

 
Figure 6.21:  Reference mode 2 

Thirdly, knock-on changes are assumed to have a uniform distribution after an 
initiating modification since increasing the IA quality of large change sets (e.g. 
example 2 in Figure 6.19) does not cause a significant change in concavity of the 
curves.  Furthermore, as observed in the data analysis (and demonstrated by the 
examples of Appendix E), knock-on changes for a change set can occur throughout 
the design process, either shortly after initiating modifications or within the last few 
changes implemented.  As such, the third reference mode (Figure 6.22) specifies that 
the distribution of knock-on changes should uniformly span the remainder of the 
design process for each change set. 
 

Reference Mode 3: 
The simulation should generate knock-on changes for each change set 

that uniformly span the remainder of the design process. 

 
Figure 6.22:  Reference mode 3 

Moreover, the distribution of all changes over the design process can affect the 
overall concavity of the known rework curve (Figure 6.18).  Changes increasingly 
occurring throughout the design process can cause shifts in this curve that differ 
from a decrease in modifications identified as development progresses.  As a result, a 
fourth reference mode calibrates the shifts in the known rework curve to the 
aerospace company’s design process through the distribution of changes.  Figure 6.23 
illustrates the distribution of changes and functional impact across the aerospace 
company’s design process.  Based on this data, the fourth reference mode (Figure 
6.24) assumes that changes occur at a constant baseline rate throughout the design 
process, but instances of increases in the number of changes are allowed from this 
baseline.  Specifically, the maximum number of changes in any given month is 
allowed to be roughly 7 times the baseline number of changes that occurs in other 
months.  (From the top histogram in Figure 6.23, the estimated baseline is 
approximately 20 changes with a maximum variation to about 140 changes.)  
Notably, the distributions in Figure 6.23 do not correspond with the patterns 
depicted by Eckert et al. in Figure 1.2.  Based on interviews at the aerospace 
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company, this project was affected by staffing and process changes.  Project 
milestones also may have influenced the pattern of these distributions.  As such, 
Figure 6.23 does not necessarily indicate a varying quality of work in that errors were 
generated more and less frequently, but rather suggests the processes for reporting 
design modifications changed. 
 

 

 
Figure 6.23:  Distribution of changes over time at the aerospace company 

 

Reference Mode 4: 
The simulation should generate changes at a constant rate  
throughout the design process, but instances of increases  

in number of changes are allowed. 

 
Figure 6.24:  Reference mode 4 
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Basing the simulation on these 4 reference modes to represent the aerospace 
company’s design process grounds the investigation of IA quality improvement.  By 
defining how the simulation generates changes, the characteristics of the known 
rework curves are determined, and, thus, the potential effects of IA quality 
improvement are scoped. 
 
Although the reference modes complete the model articulation for Step 1 of the 
modelling and simulation method applied (Figure 6.4), they only describe 
improvement in terms of shifts in the known rework curve.  The translations of this 
curve can be correlated with transformations in the work really done curve (Figure 
6.17) to establish the overall process improvement.  Cooper’s qualitative results from 
the rework cycle (1993b) suggest the implications of known rework curve shifts.  He 
specifically indicates that the perceived percent of work complete is exponentially 
related to the percent of work really done44 when the quality of work is low and 
provides the ranges of these relationships for several quality of work values based on 
his work across many projects.  Figure 6.25 generically represents this relationship.  
 

 
Figure 6.25:  Work really done conversion 

The percent of work perceived done is a function of the stocks of work to be done, 
known rework, and work really done, while the percent of work really done also 
factors in the stock of unknown rework with these elements.  Given that the data 
analysis does not account for the work to be done, the percent of work perceived 
done is essentially a function of known rework, and the percent of work really done 
is characterised by known and unknown rework.  In turn, the functional impact in 
the data set can describe the work perceived done, and, consequently, the work 
really done is related exponentially to the functional impact identified, as shown in 
                                                        
44 The functional impact values used in the data analysis do not directly reflect the work done since they 
only capture the expected rework, and additional, unanticipated and unreported rework also occurs in 
practice to implement change requests (Appendix D). 
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Figure 6.25.  In this case, the unknown rework represents the rework performed that 
is not captured in the change database. 
 
Consequently, the work really done curves for the 3 examples in the data analysis 
can be estimated using an exponential conversion.  Given a quality of work value of 
0.5 (approximately the value at the aerospace company, Section 7.2), the exponential 
relationship in Figure 6.25 is approximately x2, according to the simulations by 
Cooper (1993b).  As such, the baseline known rework curves of the examples (Figure 
6.19) can be translated to the corresponding exponential work really done curves.  
However, the improved IA curves with perfect IA quality are translated linearly to 
the associated work really done curves since no unexpected, emergent changes occur 
in these ideal cases.  Hence, all rework is known and implemented completely in the 
first instance, corresponding exactly with the work really done.  Figure 6.26 shows 
the potential process improvement due to increasing IA quality for the third example 
change set, which has a small shift in the known rework curve compared with the 
other examples (Figure 6.19). 
 

 
Figure 6.26:  Potential process improvement for example 3 (from Figure 6.19) 

As suggested by this data interpretation and shown by the gap between the curves in 
Figure 6.26, improving IA quality can have a significant effect on the work really 
done and more of the design can be completed earlier.  In theory, this improvement 
can reduce the necessary project resources and cut development costs.  However, the 
analysis of the IA improvement strategies investigated through simulation (Section 
7.4) does not include this effect due to the perceived and actual work really done.  
The simulation focuses on the relative shifts of known rework curves due to varying 
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the adapted rework cycle parameters to depict different IA improvement and change 
packaging strategies, and the results are interpreted in such relative terms. 
 
Furthermore, in this data analysis, the estimated work done and known rework 
curves are restricted in the time-axis since only knock-on changes are modelled to 
occur earlier.  Additional changes could be identified earlier since they may be 
spawned (due to the quality of work) by other modifications that also occur earlier 
(due to decreasing the rework discovery time delay or increasing the IA quality).  
Simulation can capture this effect by generating changes as necessary over time.  As 
such, the primary improvement investigated in the simulation is in shifts of the 
known rework curve due to finding changes earlier. 

6.5 SUMMARY 
Literature in system dynamics and software process dynamics provide the basis for 
the examination of the effects of IA improvement on design processes through a 
structured method and references to similar modelling and simulation research.  
Specifically, the rework cycle model, developed by Cooper (1993b), is adapted to 
model IA and change packaging in order to address the fourth (Figure 5.12) and 
refined research questions (Figure 5.13 and Figure 5.14).  Even though this model 
(Figure 6.6) provides an appropriate, high-level framework to address these research 
questions and compare a range of process improvement strategies, the adapted 
rework cycle model has limitations, as outlined in Table 6.1, which are, in turn, 
accounted for in the development of the reference modes (Section 6.4), simulation 
(Section 7.1 and Section 7.5), and process improvement heuristics (Section 8.2). 
 
This chapter concludes by developing reference modes to describe the intended 
simulation behaviour, completing the model formulation in Step 1 of the modelling 
and simulation method applied (Figure 6.27).  The reference modes are based on 
quantitative data from a change database obtained from the aerospace company.  In 
turn, satisfying these reference modes in the simulation effectively allows for the 
comparison of the consequences of the different IA improvement and change 
packaging strategies derived for the aerospace company’s design process.   
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Figure 6.27:  Progress in the application of the modelling and simulation method 

 



 

 

 
 
 
 
 
 
 

7 :: SIMULATING IMPACT ANALYSIS IMPROVEMENT 
 
Simulating the adapted rework cycle model (Figure 6.6) allows for the comparison of 
IA improvement and change packaging strategies.  Scenarios, involving perturbing 
the model variables to different extents, can demonstrate the outcome of and trade-
offs in modifying IA and change packaging practice (Section 6.1.1).  Variations in 
these parameters are investigated through Monte Carlo simulation similar to the 
implementation of other discrete software process dynamics models (Raffo and 
Kellner 2000). 
 
In order to perform this examination of improvement strategies or policies (Section 
7.4 and Section 7.5), the simulation structure of the adapted rework cycle is first 
defined (Section 7.1 and Section 7.2), and the simulation is then tested to assure its 
results are representative of the aerospace company’s design process (Section 7.3).  
This fulfils the remaining steps in the modelling and simulation method applied, 
summarised by Step 2, Step 3, and Step 4 in Figure 6.27. 

7.1 SIMULATION OF THE ADAPTED REWORK CYCLE 
As discussed in Section 6.3.4, the simulation structure of the adapted rework cycle 
(Step 2 in the modelling and simulation method applied, Figure 6.27) only represents 
the implementation of rework, as opposed to also the stock of work to be done.  
Similarly, the people and productivity parameters are not distinctly modelled, and 
the simulation accordingly makes an assumption on the rate of work done.  Figure 
7.1 highlights the parameters of the adapted rework cycle model represented in the 
simulation. 

7.1.1 SIMULATION DESIGN 
The simulation essentially captures rework through modelling the flow of changes 
through the adapted rework cycle.   Not only does this structure allow for the 
straightforward comparison of the simulation results with the reference modes 
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(Section 6.4.3), but also interpreting rework as changes fits with the concept of 
discretely45 applying IA to determine the rework discovery flow.  In turn, the 
simulation creates an initial stock of changes to represent unknown rework and 
models the discovery, execution, and completion of these modifications (Figure 7.2).  
Depending on the quality of work parameter, these changes can also generate 
additional modifications, depicting the fraction of rework really completed after 
implementation.  This creation of changes corresponds with errors that occur within 
rework performed. 
 

 
Figure 7.1:  The adapted rework cycle simulation parameters 

 

 
Figure 7.2:  Steps in the adapted rework cycle simulation 

                                                        
45 Section 6.1.2 and Section 7.1.2 discuss applying the rework cycle discretely due to the simulation of 
change packaging.  A continuous simulation would not allow for the analysis of change packaging.  
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In the simulation, modifications are modelled through change objects, which have 
associated attributes (Table 7.1).  These attributes are updated at each step of the 
adapted rework cycle simulation (Figure 7.2).  The update of each of the change 
object attributes depends on the input from other variables represented in the 
simulation, also described in Table 7.1.  The remainder of this section details the 
simulation structure in terms of these change object attributes. 
 

Table 7.1:  Attributes of change objects and associated input variables 

Attribute Description Associated Input Variable(s) 

Identification Number 

Integer identification numbers are assigned 
sequentially, starting from 1.  The initial 
stock of change objects are first assigned ID 
numbers and subsequent change objects 
generated are allocated numbers 
successively. 

--- 

Functional Area 

Functional areas, depicted by an integer 
identification number, are randomly 
assigned to change objects based on the 
inputted distribution of functional area 
volatility. 

• Number of functional areas 
• Distribution of functional area 

volatility 

Change Type 
Change objects are randomly generated as 
either independent or change sets, 
depending on the percentage split between 
these two categories. 

• Ratio of independent modifications 
to change sets 

Functional Impact 
Value(s) 

Independent change objects have a single 
functional impact value, while change sets 
have multiple functional impact values.  
Change objects are randomly assigned 
functional impact value(s) according to the 
percentage of changes in each functional 
impact category and, for change sets, the 
distribution of the number of changes within 
change sets. 

• Distribution of the number of 
changes within change sets  

• Categories of functional impact and 
their associated numerical values 

• Percentage of changes in each 
functional impact value category 

Generation Time 

Change objects are stamped with a 
generation time to indicate when they are 
created.  The generation times of the initial 
stock of change objects are identical, while 
change objects created through rework are 
given generation times equal to the 
completion time of the spawning change 
objects. 

• Quality of work mean and 
standard deviation 

Discovery Time(s) 

A discovery time indicates the simulation 
clock time at which functional impact 
value(s) within a change object can be found, 
depending on the IA quality.  Independent 
and initiating modifications in change sets 
are designated discovery times, and then a 
number of additional discovery times to 
identify knock-on changes in change sets are 
allocated. 

• Distribution of independent change 
discovery over time 

• Distribution of initiating change 
discovery over time 

• IA quality mean and standard 
deviation 

• Distribution of knock-on change 
discovery over time 

Implementation Time(s) 
An implementation time is associated with a 
functional impact value, indicating when it 
is found, and is set as a delay from a 
discovery time. 

• Rework discovery time delay mean 
and standard deviation 

Completion Time(s) 
A completion time is associated with a 
functional impact value and is set as a delay 
from the related implementation time. 

• Implementation delay mean and 
standard deviation 
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When change objects are created for the initial stock of modifications or generated 
from work being done (prior to rework discovery in Step 1 of Figure 7.3), they are 
given unique identification numbers and are randomly assigned to functional areas.  
The functional area assigned is used for change packaging (Section 6.3.3).  The 
change objects created are also defined as independent modifications (i.e. changes 
sets with a single initiating change and no knock-on rework) or change sets (i.e. 
including initiating and knock-on modifications).  As such, the functional impact 
values of change sets are generated differently from independent modifications.  
Change objects designated as change sets are given multiple functional impact values 
to represent multiple changes, while change objects representing independent 
modifications have a single functional impact value.  These functional impact values 
are placed into the same three categories (i.e. no impact, minor impact, major impact) 
and have the same numerical values as from the data analysis (Table 6.4).  When the 
initial stock of change objects is created or subsequent change objects are generated, 
they are also stamped with a generation time.  Figure 7.3 displays the timing of these 
attribute definitions, and Table 7.1 details the input parameter values used in their 
definition. 
 

 
Figure 7.3:  Change attributes defined prior to rework discovery 

In addition, discovery time(s) are created once a change object has been generated 
(prior to rework discovery in Step 1 of Figure 7.3).  A discovery time represents the 
time at which IA is performed and changes can enter the stock of known rework, 
and, in turn, functional impact value(s) within change objects can be discovered 
when the simulation time clock equals a discovery time (Step 1 in Figure 7.3).  An 
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independent modification has a single discovery time to find its single functional 
impact value, while a change set has multiple discovery times46 to detect fractions of 
the functional impact values within the change object.   
 
For the initial stock of change objects, discovery times for independent changes and 
the first modifications identified in change sets are randomly assigned according to 
their distributions across the design process.  Discovery times of knock-on changes47 
are subsequently designated for change sets after this first discovery time.  However, 
for change objects spawned from work being done (the generation of changes in Step 
4 of Figure 7.3), the discovery times for independent and initiating changes are set 
equal to their generation times, and knock-on changes in changes sets are given 
additional discovery times according to their distribution across the design process.  
Setting the generation and first discovery times equal allows the rework discovery time 
delay parameter (Figure 7.1) to completely characterise the delay between generating 
functional impact values and their discovery. 
 
When the simulation time clock equals a discovery time within a change object, then 
functional impact value(s) within the change object can be discovered and enter the 
stock of known rework.  In turn, the implementation times for a number of 
functional impact values can be set, as depicted in Figure 7.4, since it is assumed that 
changes are immediately scheduled for implementation.  For a change object of an 
independent change, the implementation time is set as a delay from its discovery 
time, and this delay corresponds with the rework discovery time delay model parameter 
(Figure 7.1).  Similarly, if a change object represents a change set, then at each 
discovery time a fraction of the functional impact values are assigned the same 
implementation time, according to the rework discovery time delay simulation 
parameter.  The fraction of changes discovered depends on the IA quality model 
parameter (Figure 7.1).  In turn, change packaging modifies this basic model to 
incorporate a planning delay between the change discovery and implementation 
times, and Section 7.5 details the modification of the simulation design for change 
packaging. 
 

                                                        
46 The first discovery time in a change set finds an initiating change as well as a portion of knock-on 
changes and leaves a remainder of knock-on changes to identify at later discovery times, according to 
the definition of IA quality (Section 6.3.2). 
47 The number of discovery times created for change sets depends on the IA quality and number of 
functional impact values in the change set.  Given that IA quality indicates the fraction of changes 
identified after each application of IA, the number of discovery times generated is calculated such that 
all changes can just be found.  Creating additional, unnecessary discovery times could allow functional 
impact values to be found earlier than intended. 
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Figure 7.4:  Change attributes defined at rework discovery 

IA quality is modelled as the probability of identifying each change in a set during an 
application of IA.  An IA quality variable value of 0.5 indicates that each functional 
impact value has a probability of 0.5 of being found at each discovery time, and 
approximately half of the functional impact values remaining in the set are 
discovered at such a time, as implemented using a random number generator.  As 
such, no specific functional impact value is assigned as the initiating change, and not 
all functional impact values may be discovered within the allocated number of 
discovery times.  In turn, if there are remaining functional impact values to be 
discovered, additional discovery times are created according to their distribution 
across the design process from the last discovery time. 
 
Hence, in this simulation structure, a smaller rework discovery time delay uniformly 
decreases all implementation times by a fixed amount, while improving IA quality 
does not change any of these times and only shifts the functional impact found 
between these points in time, corresponding with the defined behaviour of the 
adapted rework cycle (Section 6.4.1).  Consequently, in order to compare simulation 
results using different IA quality values, the same number of discovery times is 
generated for cases being evaluated (i.e. a baseline case with no IA improvement and 
another with IA improvement). 
 
Once an implementation time has been set for a functional impact value, the 
corresponding completion time can be set, as shown in Figure 7.5.  As previously 
mentioned in Section 6.3.4, the simulation assumes that the people and productivity 
levels can readily implement the changes found.  In turn, the completion time is 
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modelled as a variable delay from the implementation time of each functional impact 
value, effectively corresponding to the rate of work being done parameter (Figure 7.1).  
Notably, as modelled, this delay is independent from the amount of functional 
impact identified.  Given that the functional impact values only intend to depict 
changes that are marginally different in size, other factors (i.e. scheduling) have more 
of an influence on this implementation delay. 
 

 
Figure 7.5:  Change attributes defined at change completion 

When a functional impact value is assigned a completion time, it may or may not 
spawn additional change objects based on the quality of work parameter (Step 4 in 
Figure 7.5).  The simulation treats quality of work as a probability for generating 
another change object, similar to the IA quality variable.  For each functional impact 
value and given this probability, another change object can be generated with an 
identification number, functional area, change type, generation time, functional 
impact(s), and discovery time(s) (Figure 7.3).  This modelling of the quality of work 
directs rework proportionately through the number of change objects spawned. 
 
As such, the modelling of change packaging affects this generation of additional 
change objects.  Specifically, if functional impact values of independent changes or 
change sets are packaged together (i.e. are implemented concurrently), multiple 
changes may spawn fewer change objects than determined by the quality of work 
parameter (Section 6.3.3).  Section 7.5 discusses the modelling of the change 
packaging policies in more detail. 
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The steps outlined for the adapted rework cycle (Figure 7.2) are simulated discretely 
(Section 6.1.2).  Updates to the attributes of each change object occur at distinct time 
intervals in that the simulation time clock jumps between the discovery times and 
instantaneously assigns generation, implementation, and completion times.  In turn, 
like many other discrete simulations, an end condition is set in order to stop the 
continual generation and subsequent implementation of change objects.  The adapted 
rework cycle simulation stops generating changes at a specified time and finishes by 
giving outstanding functional impact values implementation times according to the 
rework discovery time delay from this specified time and another delay from a 
uniform distribution to a specified simulation end time.  These changes are then 
completed according to the implementation delay. 
 
Upon completion of the simulation, the attributes of the change objects generated can 
be analysed.  Specifically, the known rework curve (Figure 6.18), describing the 
behaviour of the adapted rework cycle (Section 6.4), can be plotted using the 
functional impact values in all the change objects and their associated completion 
times.  Two simulation cases implemented with different parameter values (Table 
7.1) can be compared by constructing their respective known rework curves and 
determining the time difference (∆t) between them, shown in Figure 7.6. 
 

 
Figure 7.6:  Representation of known rework curve (from Figure 6.18) for 

simulation result analysis 

The simulation results for the IA improvement (Section 7.4.2) and change packaging 
(Section 7.5.2) strategies report the mean time difference between such known 
rework curves of simulation cases using different variable values.  In turn, these time 
differences suggest the overall process improvement in that more of the design is 
completed earlier.  As such, fewer resources may be necessary, and downstream 
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processes (e.g. product testing) may be commenced earlier, reducing the total 
development process duration.  As described by Raffo and Kellner (1999a), 
performing analyses using such measured deltas in Monte Carlo simulations allows 
trade-offs to be illuminated.  However, this measured time difference and, thus, the 
heuristics derived from the simulation results (Section 8.2) assumes that design 
processes only end once all rework is complete.  As suggested by the evaluation of 
these heuristics (Section 8.3), in some situations, design work also may be halted and 
a product released when design errors are known to exist, but remain unfixed.  In 
turn, this assumption on the analysis of the simulation results is addressed in the 
heuristics evaluation. 

7.1.2 MATLAB IMPLEMENTATION 
Although system dynamics software tools, such as Vensim48, provide automated 
support to simulate models, this software generally does not provide for 
implementing discrete simulations.  These software tools specifically do not easily 
accommodate the flexibility required to simulate change packaging.  As such, 
MATLAB49 was used to implement the adapted rework cycle simulation, given its 
availability and built-in statistics and graphing capabilities. 
 
MATLAB captures simulation code within m-files, and partitioning code between m-
files can allow for the logical division of the simulation design.  In order to 
implement the adapted rework cycle in MATLAB, an m-file, called “wrapper”, 
initialises two sets of simulation variables (Table 7.1 and Section 7.2), depicting two 
cases to simulate.  Another m-file, called “simulate-and-analyse”, uses the variable 
values of these cases and calls the “simulate” and “analyse” m-files in sequence.  The 
“simulate” m-file implements the simulation for each case (Section 7.1.1), and the 
“analyse” m-file calculates the time difference between the known rework curves of 
these cases (Figure 7.6).  The “simulate-and-analyse” m-file repeats the simulation 
and analysis of the cases a number of times and collects relevant statistics, such as the 
mean time difference over all of the simulations performed.  Figure 7.7 illustrates this 
implementation of the adapted rework cycle simulation. 
 

                                                        
48 Information about Vensim® can be found at http://www.vensim.com. 
49 Information about MATLAB® can be found at http://www.mathworks.com. 
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Figure 7.7:  MATLAB implementation of the adapted rework cycle simulation 

The results of the simulation testing and of the IA improvement and change 
packaging strategies are based on 200 simulation runs (i.e. calling the “simulate-and-
analyse” m-file 200 times), unless otherwise noted.  This number of trials produces 
an acceptable standard error of 2.6 days on average in the time difference between 
cases (Figure 7.6).  The standard deviation of the time difference between cases is 
primarily influenced by the number of change objects generated and does not vary 
significantly across the cases simulated. 

7.2 SIMULATION VARIABLE VALUES AND INITIAL CONDITIONS 
In order to run the simulation design depicted in Figure 7.7, the variable values used 
in the simulated cases, which are summarised in Table 7.1, must be set in the 
“wrapper” m-file.  Some of these variables are held constant throughout the cases 
simulated (Table 7.2); other values are used to generate the initial set of changes to 
begin both simulation cases and specify the end condition to end these simulations 
(Table 7.3); and, finally, the another set of values are the key parameters used to 
compare and evaluate different IA improvement strategies (Table 7.4).  The 
parameters used to analyse the trade-offs of change packaging strategies are 
discussed with respect to the modification of simulation design in Section 7.5. 
 
The estimation of the values for the simulation variables is taken from the results 
from analysing the change database for key characteristics of the 3 example design 
area changes also used to develop the reference modes (Table 6.5) and from 
information provided by interviewees at the aerospace company.  In particular, the 
IA quality and quality of work variable values are drawn specifically from estimates 
by interviewees at the aerospace company (I-2, I-12, I-15, I-16), and the remaining 
variable values are derived from the examples in the change database.   
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The following tables indicate the baseline values for these variables used in the 
simulation testing (Section 7.3) and from which the IA improvement simulation 
results stem (Section 7.4).  Multiple baseline values are specified for the parameters 
used to compare strategies (Table 7.4) since they cover the range of the interviewees’ 
estimations and are used in the simulation testing.  Specifically, the permutations of 
IA quality and quality of work improvement are run for each test and the results are 
averaged.  The variables in Table 7.4 are perturbed to analyse the IA improvement 
strategies, and the values used in this analysis are discussed with respect to the 
simulation scenarios run (Section 7.4). 
 

Table 7.2:  Constant variable values 

Constant Variable (from Table 7.1) Value (from Table 6.5) 
Number of functional areas 12 

Distribution of functional area volatility 2/3 of changes within 4 functional areas, 
1/3 of changes within remaining functional areas 

Ratio of independent modifications to change sets  1 : 4 

Distribution of the number of changes within change 
sets Uniform distribution of 2 and 8 changes per set 

Categories of functional impact and their associated 
values 

No impact – 0 
Minor impact – 5 
Major impact – 10 

Percentage of changes in each functional impact value 
category 

No impact – 33% 
Minor impact – 55% 
Major impact – 12% 

Distribution of knock-on changes over time Uniform distribution from initiating change time to the 
time to end all change generation 

Implementation delay mean and standard deviation Mean – 31 days 
Standard deviation – 3.1 days 

 
 

Table 7.3:  Initial and end condition variable values 

Initial or End Condition Variable 
(from Table 7.1 and Section 7.1.1) Value (from Table 6.5) 

Simulation clock start time 1 January 2000 

Simulation clock time to end all change generation 1 January 2002 

Simulation clock time to end all change implementation 31 July 2002 

Number of change objects initially generated 50 

Distribution of independent change discovery over time Uniform distribution from simulation start time to the 
time to end all change generation 

Distribution of initiating changes discovery over time Uniform distribution from simulation start time to the 
time to end all change generation 
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Table 7.4:  Variable values used to compare strategies 

Comparison Variable (from Table 7.1) Value Range (Elicited from Interviewees) 

Rework discovery time delay mean and standard 
deviation 

Normal distribution with 
Mean – 93 days 
Standard deviation – 3.1 days 

IA quality mean and standard deviation 
Normal distribution with 
Mean – 0.4, 0.5, 0.6 
Standard deviation – 0.05 

Quality of work mean and standard deviation 
Normal distribution with 
Mean – 0.4, 0.5, 0.6 
Standard deviation – 0.05 

 
As such, this description of the simulation and its implementation (Section 7.1) as 
well as the variable values used in the simulation (Section 7.2) completes Step 2 of 
the modelling and simulation method applied (Figure 7.8). 

 
Figure 7.8:  Progress in the application of modelling and simulation method 

7.3 TESTING THE ADAPTED REWORK CYCLE SIMULATION 
To perform the simulation testing in Step 3 of Figure 7.8, the adapted rework cycle 
simulation should be tested (1) against reference modes, (2) under extreme 
conditions, and (3) by analysing the sensitivity of the results to variable values.  In 
turn, the testing of the simulation indicates that the chosen variable values produce a 
simulated design process representative of the aerospace company’s design process 
and suggests the effects of variable estimation.  Although the simulation focuses on 
trade-offs between parameters, as opposed to concretely predicting decreases in 
process duration as discussed in Section 6.3.4, these testing outcomes verify the 
interpretation of the simulation results for the aerospace company’s design process. 
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7.3.1 REFERENCE MODES 
The simulation produces results within the constraints of the reference modes 
derived from the aerospace company’s design process (Table 7.5) through the 
variable values in Table 7.2 and Table 7.3 and given any combination of IA quality 
and quality of work parameters in the baseline ranges specified in Table 7.4.  As 
such, the interpretation of the results from the IA improvement strategies is 
indicative of the potential process improvement for this firm. 
 

Table 7.5:  Summary of reference modes (from Section 6.4.3) 

Reference Mode States: 

1 
The simulation should generate changes with a ratio of 
independent modifications to change sets and percentage of 
knock-on changes representative of the data analysis (Table 6.5). 

2 The simulation should generate initiating changes throughout the 
design process. 

3 The simulation should generate knock-on changes for each change 
set that uniformly span the remainder of the design process. 

4 
The simulation should generate changes at a constant rate 
throughout the design process, but instances of increases in 
number of changes are allowed. 

 
For the first reference mode (Table 7.5), the value of the ratio of change sets to 
independent modifications (Table 7.2) is approximated from the data analysis of the 
3 example design area changes (Table 6.5).  As such, if the simulation also produces 
acceptable percentages of knock-on changes versus all changes generated (i.e. 25 – 
42% as also estimated by the data analysis in Table 6.5), then the first reference mode 
is met. 
 
As interpreted in the data analysis, knock-on changes are classified as all the changes 
reported after an initiating modification.  Notably, the percentage of knock-on 
changes derived is only an estimate since the database does not report all changes 
implemented (Appendix E).  Specifically, initiating modifications are assumed to 
include the identification of other simultaneous knock-on changes, which are not 
explicitly reported.  Given that these undocumented first changes can approximately 
double the average number of knock-on changes classified in the data analysis with 
the aerospace company’s reported IA quality values, excluding these modifications 
significantly decreases the knock-on percentage estimated.  In turn, to correspond 
with the data analysis interpretation of knock-on changes, the percentage of knock-
on changes calculated from the simulation only includes functional impact values 
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found after the first implemented modifications in a change set50.  Also, since the 
small number of knock-on modifications from the data analysis can be found 
individually with the IA quality value estimates, the percentage of knock-on changes 
calculated from the simulation accounts for functional impact values singularly that 
are implemented after the first implemented modifications in a change set. 
 
Through this interpretation of the knock-on changes defined by the data set and 
variable values used, the first reference mode is met in that the knock-on changes 
calculated for the simulation account for between 25 – 42% of all changes generated 
with the IA quality values estimated.  More functional impact values may be 
discovered initially and fewer subsequent knock-on values may exist due to 
increasing IA quality.  Table 7.6 describes the variation of this knock-on change 
percentage accordingly based on averaging the simulation results in the baseline 
range of quality of work values stipulated (Table 7.4). 
 

Table 7.6:  Simulation results for reference mode 1 

Percentage of Knock-On Changes IA Quality 
Mean Standard Deviation 

0.4 38% 4% 

0.5 32% 4% 

0.6 27% 4% 

 
The second and third reference modes (Table 7.5) are met based on the modelled 
distributions over time for initiating and knock-on changes.  Initiating changes are 
created throughout the design process given the initial conditions (Table 7.3) and are 
also spawned in Step 4 of the simulation due to rework (Figure 7.2) until the 
simulation clock time equals the time specified at which all change generation stops.  
Similarly, knock-on modifications for each change set are defined to uniformly span 
from an initiating change to the end time when change generation stops (Table 7.2). 
 
Finally, the simulation meets the fourth reference mode (Table 7.5) based on the 
distribution of changes generated across the simulated design process time frame.  
Given the modelling of the second and third reference mode, an increase in the 
number of changes can occur towards in the end of the simulation time for some 

                                                        
50 This portion of the knock-on changes simulated (i.e. knock-on changes not implemented with the 
initiating change) can estimate the small average number of knock-on changes classified in the data 
analysis (i.e. approximately 3 modifications from Table 6.5).  As such, the number of changes within change 
sets variable (Table 7.2) is approximated through the number of modifications found after the first 
implemented modifications and the IA quality values estimated.  Consequently, the simulation 
represents the amount of rework within change sets indicated by the database analysis. 
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combinations of low IA quality and quality of work values, which leave many 
changes to be implemented at the end of the design process.  However, observing the 
distribution of the number changes completed over 50 simulations with 
permutations of IA quality and quality of work values suggests that the simulation 
approximates changes occurring at more or less constant rate with peaks in the 
number of changes typically less than those discussed with respect of the fourth 
reference mode (Figure 6.23).  Figure 7.9 displays an instance of this distribution with 
IA quality and quality of work values of 0.4, which leaves changes to be 
implemented late. 

Completion Time
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Figure 7.9:  Example distribution of changes from simulation 

7.3.2 EXTREME CONDITIONS 
The simulation can also be tested against extreme variable values to establish the 
useful domain of the model.  Such boundary conditions occur when the model 
behaviour cannot be relied upon.  Specifically, the rework discovery time delay, IA 
quality, and quality of work values (Table 7.4) as well as the implementation delay 
(Table 7.2) and number of initial change objects generated (Table 7.3) are chosen for 
investigation since these variables directly affect the flow of changes around the 
rework feedback loop.  Table 7.7 displays any limits for these variables given the 
values of the other parameters specified (Section 7.2) and describes the cause for the 
boundaries.  In turn, the variable values used for the IA improvement strategies 
investigated (Section 7.4) are within these limits. 
 
 
 
 



7 ::  SIMULATING IMPACT ANALYSIS IMPROVEMENT 
 

189 

 

 

Table 7.7:  Extreme values for simulation variables (from Section 7.2) 

Variable Lower 
Bound 

Upper 
Bound Description 

Rework 
discovery time 

delay mean 
--- --- 

Given that the rework discovery time delay uniformly 
shifts the known rework curve, this value is not limited 
by the intended simulation behaviour. 

IA quality mean 0.3 --- 

IA quality values less than 0.3 can leave many changes to 
be implemented between the time to end all change 
generation and the simulation end time.  In turn, the 
modifications within this interval systematically causes 
an uncharacteristic change in slope of the known rework 
curve, which may affect the time difference estimation 
between cases (Figure 7.6), and the distribution of all 
changes increases towards the end of the design process, 
interfering with the fourth reference mode (Table 7.5).  
Note that this extreme condition is estimated based on 
the observation of 50 simulation runs of incremental 
potential lower bound values.  Large IA quality values 
do have these effects since most changes are completed 
within the specified time interval. 

Quality of work 
mean 0.2 --- 

Similar to the IA quality lower bound, small quality of 
work values leave many changes to be implemented 
after the change generation end time, producing a 
disjunct in the known rework curve concavity and 
interfering with the fourth reference mode.  Note that 
this extreme condition is also estimated based on the 
observation of 50 simulation runs of incremental 
potential lower bound values. 

Implementation 
delay mean --- --- 

Similar to the rework discovery time delay, the 
implementation time delay uniformly shifts the rework 
curve in time and does not change its characteristics. 

Number of 
change objects 

initially 
generated 

50 100 

Using a small number of initial change objects generates 
a sparse number of additional change objects throughout 
the design process.  As such, the interpolated time 
difference between cases can highly vary.  Increasing the 
initial number of changes generated systematically 
decreases the standard deviation of this time difference, 
but also increases the simulation run time.  Fifty initial 
changes produce simulation results demonstrating 
statistically significant improvements, even though a 
lower number of initial change objects generated may 
also be sufficient. 
 
Using more than 100 initial change objects begins to 
interfere with the fourth reference mode (Table 7.5) in 
that many more changes are implemented towards the 
end of the design process, making the change 
distribution more noticeably exponential.  Note that this 
extreme condition is also estimated based on the 
observation of 50 simulation runs of incremental 
potential upper bound values. 

 

7.3.3 SENSITIVITY ANALYSIS 
Finally, a sensitivity analysis on particular simulation parameters can indicate the 
influence of inaccurate variable value estimation on the interpretation of the 
simulation results.  The simulation variables that can affect the mean time difference 
between simulation cases (Figure 7.6), besides the key variables investigated in the 
strategies investigated (Table 7.4), are the ratio of independent modifications to change 
sets and distribution of the number of changes within change sets as well as the values 
associated with the functional impact categories, the percentage of changes within each 
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functional impact category, and implementation delay (Table 7.2).  As such, a sensitivity 
analysis increases and decreases each of these variables individually by a 
percentage51 from their baseline values and then determines the average time 
difference caused, as illustrated by the time difference between cases in Figure 7.6.  
The IA quality and quality of work values in Table 7.4 are also varied in this analysis, 
and the analysis averages the simulation results across these varying IA quality and 
quality of work values. 
 
The mean time differences calculated in this sensitivity analysis (Table 7.8) suggest 
that the ratio of independent modifications to change sets and distribution of the number of 
changes within change sets variables primarily affect the known rework curves 
constructed and can influence the prediction of the design process duration.  
However, given that the estimation of these variables is held constant in the 
simulations run to compare IA improvement strategies (Section 7.4), changes in the 
mean time difference do not influence the interpretation of trade-offs between these 
simulation scenarios run.  The other variables analysed are relatively insensitive to 
perturbations and change the time difference calculated at most by 2%. 
 

Table 7.8:  Sensitivity of simulation variables (from Table 7.2) 

Variable Percent Change in 
Variable 

Percent Change in 
Mean Time Difference 

+ 20% + 7% Ratio of independent 
modifications to change sets  - 20% - 7% 

+ 25% + 7% Distribution of the number of 
changes within change sets - 25% - 6% 

 
Notably, the percentage changes in the ratio of independent modifications to change sets 
and distribution of the number of changes within change sets variables in this sensitivity 
analysis cause the calculated percentage of knock-on changes (Section 7.3.1) to 
slightly exceed the stipulated limits (i.e. 25 – 42%) of the first reference mode, as 
shown in Table 7.9 and Table 7.10.  Nevertheless, given the estimation of these 
percentages for this reference mode, the variation of these values can still construct a 
representative baseline design process for the aerospace company.  Moreover, these 
perturbations still allow the simulation to be representative of the fourth reference 
mode and, in turn, do not significantly affect the applicability of the simulation 
results to the aerospace company’s design process. 

                                                        
51 All values are varied by 20%, except for the distribution of the number of changes within change sets.  
This distribution is varied by 25% to allow the associated ratio to make physical sense in that fractional 
changes cannot occur in practice. 
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Table 7.9:  Sensitivity of reference mode 1 to ±20% change in the ratio of 
independent modifications to changes sets 

Percentage of Knock-On Changes 
IA Quality Mean 

(+20% / -20%) 
Standard Deviation 

(+20% / -20%) 

0.4 41% / 33% 4% / 5% 

0.5 36% / 28% 4% / 5% 

0.6 30% / 23% 4% / 4% 

 
 

Table 7.10:  Sensitivity of reference mode 1 to ±25% change in the distribution of 
the number of changes within changes sets 

Percentage of Knock-On Changes 
IA Quality Mean 

(+25% / -25%) 
Standard Deviation 

(+25% / -25%) 

0.4 40% / 34% 4% / 4% 

0.5 35% / 28% 4% / 4% 

0.6 29% / 24% 4% / 4% 

 
Considering these simulation results further suggests that process improvement is 
more sensitive to increasing IA than reducing the number of changes generated, 
which occurs through improving the quality of work.  Specifically, the normalised 
sensitivity coefficient (Table 7.11) for reducing the number of knock-on changes is 
about 0.3 since a 6 – 7% improvement effect can occur from a 20 – 25% decrease in 
the number of knock-on modifications (from Table 7.8).  In turn, this coefficient is 
approximately 0.6 for improving IA quality because a 10% increase in IA quality 
approximately accounts for a similar 20% decrease in the number of knock-on 
modifications (from Table 7.9 and Table 7.10).  In other words, improving IA quality 
can be more beneficial than improving the quality of work. 
 

Table 7.11:  Normalised sensitivity coefficients 

Normalised Sensitivity Coefficient for: Value 
Quality of Work 0.3 

IA Quality 0.6 
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7.4 EVALUATION OF THE IMPACT ANALYSIS IMPROVEMENT 
STRATEGIES 

Finally, after defining the adapted rework cycle model and describing and testing its 
simulation (Step 1, Step 2, and Step 3 in the modelling and simulation method 
applied, Figure 7.8), the adapted rework cycle simulation can be used to examine and 
compare the practical IA improvement strategies derived from the empirical studies 
(Section 5.4) through varying the key simulation parameters (Table 7.4).  Embodying 
these strategies through simulation scenarios with different parameter values 
indicates each strategy’s effect on the aerospace company’s design process, and, in 
turn, the strategies can be evaluated in terms of their simulated consequences. 
 
Given the discussion of the modelling and simulation limitations shown in Table 6.1 
(Step 1 of model definition in the modelling and simulation method applied), the 
quantitative simulation results do not indicate the exact outcome of implementing 
these IA improvement strategies in that the un-modelled added work, obsoleted 
work, people, and productivity parameters as well as the focus on modelling changes 
and rework also can have an influence on the design process.  However, assuming 
the negligible influence of these simulation limitations since they do not alter the 
fundamental characteristics of the aerospace company’s design process (Section 6.3.4) 
and given that the simulation produces results are applicable to this firm’s design 
process (Step 3 of simulation testing in the modelling and simulation method 
applied), the simulation results can be compared quantitatively to estimate the 
relative potential for process improvement through IA improvement.  In turn, 
Section 8.2 further explores the effectiveness of these IA improvement strategies in 
comparison to other process improvement strategies and takes into account the 
limitations of these simulation results. 

7.4.1 SIMULATION OF THE IMPACT ANALYSIS IMPROVEMENT STRATEGIES 
The practical IA improvement strategies (Section 5.4 and Table 7.12) can be 
interpreted through shifting the means and standard deviations of the rework 
discovery time delay and IA quality variables.  In particular, the first strategy 
addressing method definition and implementation can be represented by 
improvements in both the rework discovery time delay and IA quality variables.  By 
defining a process for applying IA throughout design processes, IA may be applied 
earlier and produce higher quality results.  In turn, the second strategy to improve 
information quality may only affect IA quality, while the third strategy can also 
allow for IA to be implemented earlier as well as improve IA quality given 
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supplementary time and resources available for IA.  Table 7.12 correlates the 
strategies with these parameters. 
 

Table 7.12:  IA improvement strategy and simulation variable correlation 

IA Improvement 
Strategy 

Strategy Description 
(from Section 5.4) 

Perturbed Simulation Variables 
(from Table 7.4) 

1 
Delineating the use of existing or new IA 
techniques, providing resources to 
administer these techniques, and 
educating designers on these techniques 

Rework discovery time delay, IA quality 

2 
Defining processes for sharing and 
updating information used in IA 
techniques and tools 

IA quality 

3 Providing sufficient resources and time for 
IA Rework discovery time delay, IA quality 

 
In turn, Table 7.13 depicts the key variable values selected for four simulation 
scenarios, each examining shifts in the rework discovery time delay and IA quality 
means or standard deviations separately.  As such, the quantitative results of these 
simulation scenarios suggest the potential impact of improving the rework discovery 
time delay and IA quality parameters and are then correlated to the IA improvement 
strategies through their interpretation in Section 7.4.3.  Given that the adapted 
rework cycle simulation can demonstrate the trade-offs between parameters, the 
variables represented in these strategies (rework discovery time delay and IA 
quality) are also simulated with different quality of work values to determine their 
relative influence on the design process.  The comparison of the IA improvement 
variables to the quality of work is later referenced when examining IA improvement 
strategies against other design process improvement strategies in Section 8.2. 
 
In these scenarios, the rework discovery time delay mean is varied at approximately 
monthly intervals, and the IA quality and quality of work variables are increased 
from their baseline values of 0.5, as estimated by the aerospace company (Section 
7.2).  Given that the simulation only suggests the relative consequences of the 
improvement of such parameters, as opposed to indicating the exact improvement in 
process duration (as shown in Figure 7.6), these values are chosen notionally to 
demonstrate their potential influence, and the interpretation of these simulation 
results in Section 7.4.3 discusses the effectiveness of the IA improvement strategies, 
taking into account the relative improvement in the magnitude of these values. 
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Table 7.13:  Simulation scenarios for IA improvement strategies 

Variables 
Simulation Scenario 

Variable Value(s) 
Rework discovery time delay mean 31, 62, and 93 days 

Rework discovery time delay 
standard deviation 3.1 days 

IA quality mean 0.5 

IA quality standard deviation 0.05 

Quality of work mean 0.5, 0.6, 0.7, and 0.8 

1 
 

Perturbing: rework discovery time mean 

Quality of work standard deviation 0.05 

Rework discovery time delay mean 31, 62, and 93 days 

Rework discovery time delay 
standard deviation 15, 31, and 62 days 

IA quality mean 0.5 

IA quality standard deviation 0.05 

Quality of work mean 0.5, 0.6, 0.7, and 0.8 

2 
 

Perturbing: rework discovery time 
standard deviation 

Quality of work standard deviation 0.05 

Rework discovery time delay mean 31 days 

Rework discovery time delay 
standard deviation 3.1 days 

IA quality mean 0.5, 0.6, 0.7, and 0.8 

IA quality standard deviation 0.05 

Quality of work mean 0.5, 0.6, 0.7, and 0.8 

3 
 

Perturbing: impact analysis mean 

Quality of work standard deviation 0.05 

Rework discovery time delay mean 31 days 

Rework discovery time delay 
standard deviation 3.1 days 

IA quality mean 0.5, 0.6, 0.7, and 0.8 

IA quality standard deviation 0.01 and 0.1 

Quality of work mean 0.5, 0.6, 0.7, and 0.8 

4 
 

Perturbing: impact analysis 
standard deviation 

Quality of work standard deviation 0.01 

 

7.4.2 SIMULATION RESULTS 
For the first scenario investigating variations in the rework discovery time delay 
mean (Table 7.13), the simulation shows that decreasing this mean improves the 
design process in that a smaller mean increases the rate of work done.  Specifically, 
the simulation indicates that decreases in the rework discovery delay mean increases 
the time difference (∆t) between cases simulated52 with all other variable values held 
constant (Figure 7.10). 
 

                                                        
52 This time difference is calculated across 200 simulation runs for each case as indicated in Section 7.1.2. 
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Figure 7.10:  Simulation result analysis for decreasing the rework discovery time 

delay means between cases (from Figure 7.6) 

Figure 7.12 illustrates these increases in time difference for simulated cases with 
different rework discovery time delay means as well as shows the simultaneous 
effects of quality of work values changing from 0.5 (Case 2 in Figure 7.10) to an 
improved quality of work value displayed on the x-axis (Case 1 in Figure 7.10).  As 
expected from the adapted rework cycle behaviour (Figure 6.16), the improvement is 
uniform based on the rework discovery delay mean values used in compared cases 
since the known rework curve is shifted uniformly (Figure 7.11).  Performing t-tests 
across these simulation results indicates that compared cases with unique rework 
discovery time delay differences are significantly different to the 0.05 level, and those 
with the same differences are significantly similar to the 0.05 level. 
 

 
Figure 7.11:  Expected shifts in the known rework curve due to decreasing the 

rework discovery time delay means (from Figure 6.16) 
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Figure 7.12:  Simulation results for decreasing rework discovery time delay means 

 
In turn, for the second simulation scenario examining the rework discovery time 
delay standard deviation (Table 7.13), large standard deviations of the rework 
discovery delay can cause insignificant differences to the 0.05 level from the 
simulation results depicted in Figure 7.12 for the first simulation scenario.  
Specifically, having a standard deviation of 15 days for each of the rework delay 
improvements shown in Figure 7.12 does not significantly influence the mean time 
differences calculated.  Fifteen days can be considered large since larger standard 
deviations, given a rework discovery time delay mean of 31 days, can produce 
negative delays, which cannot be interpreted in an actual design process.  If larger 
standard deviations are used for the larger rework discovery delay means simulated 
(e.g. a standard deviation of 62 with a mean of 92), such that this positive rework 
discovery time condition is met, the average time differences also do not vary 
significantly to the 0.05 level from those in Figure 7.12.  Consequently, the simulation 
indicates that decreasing the mean of the rework discovery time delay can directly 
increase the mean time difference between cases, while changing the standard 
deviation has little effect.  Figure 7.13 compares the mean time differences (Figure 
7.10) for large standard deviations with the standard deviations used in Figure 7.12 
for the first simulation scenario.   
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Figure 7.13:  Simulation results for varying rework discovery time delay standard 

deviations 

 
In the third simulation scenario investigating variations in the IA quality mean 
(Table 7.13), IA quality and quality of work improvements are simulated, and the 
results indicate that increasing either IA quality or quality of work can cause similar 
time difference (∆t) reductions.  Figure 7.14 and Figure 7.15 show the different types 
of shifts in the known rework curve due to these improvements, and Figure 7.16 
depicts the results obtained from the simulation.  T-tests show that these time 
differences caused by the same increases in either IA quality or quality of work 
variables are all insignificantly different to the 0.05 level and that they are also 
significantly different to other increases in these values.  In other words, a 0.2 
improvement in IA quality is equivalent to a 0.2 improvement in the quality of work, 
which both differ from the time difference produced by setting either of these values 
to 0.3.  The improvements due to singularly increasing IA quality are expected based 
on the behaviour of the known rework curve (Figure 7.14).  However, obtaining 
comparable results for increasing either IA quality or the quality of work is 
unexpected to some extent in that the same improvement occurs through different 
types of shifts in the known rework curve (further discussed in Section 8.2). 
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Figure 7.14:  Expected shifts in the known rework curve due to increasing the IA 

quality (from Figure 6.16) 

 

 
Figure 7.15:  Expected shifts in the known rework curve due to increasing the 

quality of work 

 
For the fourth simulation scenario for the IA quality standard deviation (Table 7.13), 
large standard deviations in the IA quality variable can lead to insignificant changes 
in time differences to the 0.05 level to those with small standard deviations, similar to 
the examination of the rework discovery time delay variability.  In this case, a 
standard deviation value of 0.1 can be considered large in that, given a normal 
distribution and the range of IA quality values investigated, larger values exceed 
beyond the IA quality limits of 0 to 1.  Hence, increasing the IA quality or quality of 
work means primarily influences the potential time difference decrease between 
cases.  Figure 7.17 compares the mean time differences for small and large standard 
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deviations for IA quality improvements with a range of quality of work values all 
with standard deviations of 0.01. 
 

 
Figure 7.16:  Simulation results for increasing IA quality means 

 

 
Figure 7.17:  Simulation results for varying IA quality standard deviations 
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7.4.3 INTERPRETATION OF THE IMPACT ANALYSIS IMPROVEMENT STRATEGIES 
As suggested by the first strategy for IA improvement (Table 7.12), delineating and 
supporting the regular application of IA through design process procedures and 
policies can reduce the rework discovery time delay mean and standard deviation, 
potentially inducing process improvement.  In particular, the standardisation of 
procedures for implementing IA techniques can require the implementation of IA 
earlier in the design process and minimise the spread of times to find changes.  For 
example, a policy could mandate that designers must regularly hold design review 
meetings (a form of experiential IA) and specify procedures to search for new or 
undiscovered errors and their associated changes53.  Such a policy could decrease the 
rework discovery delay mean and standard deviation since IA would be applied 
consistently and systematically.  The application of traceability or dependency IA 
similarly could be standardised for regular implementation, as suggested by 
designers to perform “more” IA (Section 5.3.1).  In turn, the results for the first 
simulation scenario investigating the rework discover delay mean show that 
decreasing this mean can increase the rate of work done.  By completing more of the 
design earlier, the necessary project resources and development costs can be 
reduced, and the design process can be improved.  However, the results for the 
second simulation scenario for the rework discovery delay standard deviation 
indicate that decreasing the standard deviation of the rework discovery delay does 
not significantly affect process improvement.  Consequently, attempting to provide 
detailed procedures to find new or undiscovered errors during IA in order to reduce 
the variability in identifying changes may not prove beneficial. 
 
Similarly, the third IA improvement strategy (Table 7.12) provides resources and 
time to perform IA, allowing for the decrease in the rework discovery time delay 
mean and standard deviation by frequently or thoroughly applying IA.  Using 
additional resources and time to frequently apply IA corresponds to decreasing the 
rework discovery delay mean and can improve the design process, as depicted by the 
first simulation scenario.  However, as with the first IA improvement strategy, 
allocating and requiring the use of an excess of additional resources and time to find 
new or undiscovered changes to reduce the rework discovery time delay standard 
deviation does not ensure process improvement, as shown by the second simulation 
scenario. 
 

                                                        
53 These errors would correspond to initiating or independent changes, as the discovery of knock-on 
changes is associated with IA quality improvement (Section 6.3.2). 
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However, defining and supporting procedures54 and allocating resources and time55 
to find knock-on changes in the first and third IA improvement strategies can also 
allow for process improvement through increasing the IA quality mean.  As 
illustrated by the third simulation scenario, increasing the mean IA quality value 
leads to increasing the rate of work done.  However, decreasing the IA quality 
standard deviation does not enhance this improvement, as shown by the fourth 
simulation scenario.  As such, standardising procedures in detail to define the search 
for potential knock-on change impacts for each IA techniques available (i.e. 
decreasing the IA quality standard deviation) may not significantly change the basic 
improvement due to increasing the IA quality mean.  Similarly, delineating the 
resources and time that must be used to find knock-on changes and reduce the IA 
quality variance may not provide for process improvement. 
 
Comparatively, the second strategy for IA improvement (Table 7.12) can also affect 
the IA quality mean and standard deviation.  Increasing the access to information for 
IA56 can increase the IA quality mean and induce process improvement.  In turn, 
procedures can require, for example, that designers gather all information available 
at an application of IA in order to reduce the IA quality standard deviation.  
However, such policies may not produce significant gains in process improvement. 
 
In summary, the simulation scenarios suggest that the three practical IA strategies57 
from the empirical studies (Table 7.12) can effectively increase the rate of work done 
through improving the rework discovery time delay and IA quality means, leading 
to process improvement in the aerospace company and addressing the fourth 
research question (Figure 5.12).  Although the policies associated with these 
strategies can also affect the standard deviations of these variables, implementing 
standardised, detailed procedures specifically to reduce these variances may not 
improve the design process, as shown by the simulations.  As such, a trade-off 
emerges in that the standardisation of IA practice can cause improvement of the 
rework discovery time delay and IA quality means to an extent, but over-
standardisation may constrain the implementation of IA in practice and require 
excessive and unnecessary resources and time, only reducing the standard deviations 
                                                        
54 For instance, a policy could require that designers perform multiple IA techniques at every 
application of IA to provide for the identification of knock-on changes.  Alternatively, as elicited from 
designers in Section 5.3.3, new, advanced methods and tools for IA to find knock-on changes can be 
developed. 
55 In this case, resources and time are provided to search for knock-on changes once an error has been 
discovered. 
56 Section 5.3.2 discusses elicited suggestions by designers to increase information quality for IA. 
57 These practical IA improvement strategies can be implemented through the specific policies suggested 
by designers during the empirical studies (i.e. contained within the categories: (1) including more IA 
within change processes, (2) improving the input quality to IA, and (3) advancing the IA techniques 
performed), as discussed in Section 5.3. 



7 ::  SIMULATING IMPACT ANALYSIS IMPROVEMENT 
 

202 

 

 

of these variables.  Consequently, the first IA improvement strategy, suggesting the 
definition of IA implementation processes, may incur additional costs in terms of 
resources and time than the third IA improvement strategy for the same magnitudes 
of improvement in the rework discovery time delay and IA quality variables due to 
its promotion of process standardisation.  Furthermore, given that the second IA 
improvement strategy, focusing on information access, only affects the IA quality 
variable, it may provide less process improvement than the third strategy.  As such, 
effectively allocating additional resources and time to IA, as indicated by the third 
strategy and given the range of IA techniques available within the aerospace 
company (Table 3.1), may be the simplest means for process improvement and 
provide the most direct benefit out of the three practical IA improvement strategies.  
In turn, this strategy may require fundamental changes in management decisions to 
focus on the handling of rework, and, without the commitment of resources to IA, 
the other two strategies may better enforce IA improvement. 

7.5 EXAMINING PROCESS IMPROVEMENT THROUGH CHANGE 
PACKAGING 

As suggested in the description of the adapted rework cycle model (Section 6.3.3), 
change packaging also can modify the implementation and generation of changes 
and, in turn, improve design processes.  As such, the adapted rework cycle 
simulation incorporates change packaging to address research question 4c (Figure 
5.14) and is used to investigate change packaging policies for the aerospace company 
to complete the final step, Step 4, in the modelling and simulation method applied 
(Figure 6.4). 

7.5.1 SIMULATION OF CHANGE PACKAGING STRATEGIES 
The design of the adapted rework cycle simulation used to assess the IA 
improvement strategies does not include change packaging and assumes that no 
planning delay occurs between change identification and implementation(Section 
7.1.1).  In turn, the modelling of change packaging essentially includes such a 
planning delay and adds another simulation variable (i.e. another change object 
attribute to Table 7.1), change packaging time, to capture this delay.  Specifically, the 
simulation design is modified in that the change packaging time is delayed from the 
implementation time change object attribute, and the completion time attribute is set 
from the change packaging time instead of the implementation time.  This change 
packaging delay from the implementation time is variable since change packaging 
times are set at fixed intervals throughout the design process, and functional impact 
values for independent changes and change sets that are packaged together are given 
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the same change packaging times58.  Consequently, this modelling of change 
packaging can be interpreted as rework planning occurring at discrete times in the 
design process as opposed to continuously, which corresponds to practice at the 
aerospace company (I-2, I-16).  Furthermore, only a portion of functional impact 
values, which are packaged together, is modelled to generate additional change 
objects according to the quality of work parameter.  This improvement factor, 
captured by the quality of work improvement factor simulation variable, accounts for the 
reduction of errors through the packaging of dependent modifications and is 
additive to the quality of work value (Section 6.3.3). 
 
The addition of the change packaging time and quality of work improvement factor 
variables allows for change packaging policies to be investigated.  However, given 
this simple parameterization of the design process through the adapted rework cycle, 
this examination is essentially limited to the influence of the timing of change 
implementation with respect to the discovery of changes.  As such, the change 
packaging policies simulated focuses on performing changes quickly versus 
implementing modifications in bulk later in the design process.  The quality of work 
improvement factor can vary in these two cases in that this factor may tend to 
increase later in the design process when more changes are packaged together and 
more design information is available.  Table 7.14 describes the change packaging 
strategies simulated.  Variations of these strategies may exist.  For instance, changes 
may be packaged before the next specified packaging interval if a threshold quantity 
of functional impact values is discovered.  However, such policies effectively depend 
on performing modifications earlier or later in the design process. 
 

Table 7.14:  Change packaging strategy and simulation implementation correlation 

Change Packaging 
Strategy Strategy Description Simulation Implementation 

1 Packaging few changes quickly for 
implementation 

Change packaging times occur at small 
intervals after the time of the first change 
in each functional area with a small 
quality of work improvement factor 

2 Packaging many changes slowly for 
implementation 

Change packaging times occur at large 
intervals after the time of the first change 
in each functional area with a large quality 
of work improvement factor 

 
These packaging policies can be investigated through simulating a range of values 
for the change packaging time intervals as well as improvement factor parameters.  
In turn, the first simulation scenario compares the improvement due to varying the 
                                                        
58 In turn, changes are given equal priority and importance despite their discovery time, unlike the two 
prioritisation methods discussed in software process dynamics literature (Section 6.1.2). 
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change packaging time interval, and the second scenario examines the impact of a 
range of improvement factor values.  Table 7.15 shows the key variable values used 
in the simulation scenarios to depict these strategies. 
 

Table 7.15:  Simulation scenarios for change packaging 

Variables Simulation 
Scenario Variable Value(s) 

Change packaging time interval 15, 31, 62, and 93-day fixed intervals 1 
 

Perturbing: change 
packaging time Quality of work improvement factor 0 

Change packaging time interval 31-day fixed intervals 2 
 

Perturbing: quality of 
work improvement factor Quality of work improvement factor 0, 0.05, 0.1, 0.2 

 
These scenarios are run with all other simulation variables (Section 7.2) held constant 
in order to determine the influence of change packaging.  As such, the simulation 
testing performed for the IA improvement strategies (Section 7.3) applies to these 
change packaging simulations in that the variable values used are within the 
acceptable ranges and produce a design process indicative of the aerospace 
company’s design process.  Notably, the change packaging time interval and quality 
of work improvement factor values used in the packaging scenarios (Table 7.15) are 
notional in that they only characterise improvement as opposed to concretely 
determining the decrease in design process duration.  In turn, the interpretation of 
the simulation results estimates the relative magnitude of these variables for the 
change packaging strategy assessment and comparison. 

7.5.2 SIMULATION RESULTS 
Based on the modelling of change packaging, the first simulation scenario 
investigating different change packaging time intervals (Table 7.15) shows that 
decreasing the packaging interval increases the improvement in time difference 
between known rework curves (Figure 7.18).  Accordingly, quickly packaging and 
implementing changes increases the rate of work done.  Figure 7.19 shows this 
improvement in mean time difference (∆t) for cases59 with decreases in packaging 
time intervals. 
 

                                                        
59 This time difference is calculated across 200 simulation runs for each case as indicated in Section 7.1.2. 
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Figure 7.18:  Simulation result analysis for decreasing the change packaging time 

interval between cases (from Figure 7.6) 

 

 
Figure 7.19:  Simulation results for decreasing change packaging time intervals 

 
However, change packaging also affects the quality of work parameter.  The second 
simulation scenario (Table 7.15) shows that increasing the quality of work 
improvement factor with fixed change packaging intervals causes improvements in 
the mean time difference between known rework curves as expected due to the 
decrease in the quantity of known rework (shown in Figure 7.15).  Figure 7.20 depicts 
these improvements by comparing baseline cases with quality of work values of 0.4, 



7 ::  SIMULATING IMPACT ANALYSIS IMPROVEMENT 
 

206 

 

 

0.5, and 0.6 and improvement factors of 0 (Case 2 in Figure 7.15) with improved cases 
with the same quality of work values and increasing improvement factors (Case 1 in 
Figure 7.15), shown on the x-axis.  Although change packaging is shown to have a 
slightly greater effect on scenarios with lower quality of work, performing t-tests, 
these differences are insignificant to the 0.05 level.  In turn, given that the 
improvement factor directly increases the quality of work parameter, the time 
difference improvements are comparable to IA quality improvement (as discussed in 
the IA improvement simulations results in Section 7.4.2). 
 

 
Figure 7.20:  Simulation results for increasing improvement factors 

7.5.3 INTERPRETATION OF THE CHANGE PACKAGING STRATEGIES 
These simulation results for change packaging indicate that decreasing the packaging 
interval and increasing the quality of work improvement factor can both lead to 
process improvement and increase the rate of work done.  However, as suggested in 
the description of the change packaging strategies in Section 7.5.1, the change 
packaging intervals and quality of work improvement factors may be interdependent 
in that packaging policies affect both variables.  Longer packaging intervals to group 
more design modifications together can have larger quality of work improvement 
factors.  As such, there is a trade-off between packaging and implementing fewer 
design modifications quickly and delaying work to generate fewer additional, 
emergent changes.  The simulation results exemplify this trade-off in that 
approximately the same time differences between known rework curves are achieved 
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either by largely decreasing the packaging intervals from 93 days to 31 or 15 days in 
Figure 7.19 or by significantly increasing the quality of work by a factor of 0.2 in 
Figure 7.20. 
 
In the case of the aerospace company in which many changes are interdependent, 
longer packaging delays resulting in higher quality of work values may be a more 
effective strategy (i.e. the second change packaging strategy in Table 7.14) than 
packaging and implementing changes quickly (i.e. the first change packaging 
strategy in Table 7.14).  Implementing this first strategy to significantly improve the 
design process may be less feasible than the second since decreasing the packaging 
time intervals to produce such process improvement may be unattainable (i.e. a 
reduction of about 2 months).  The regulated processes to document, review, and 
approve changes for safety-critical certification, which typically can take 2 months, 
determines the frequency at which changes can be packaged.  Significantly 
increasing the speed of these processes to increase the frequency at which changes 
can be packaged and implemented may be detrimental to the product’s reliability.  In 
turn, given the high interdependency of changes, inducing significant process 
improvement through change packaging policies that improve the quality of work 
may be more feasible and prove more beneficial. 
 
As such, this analysis of the two change packaging strategies yields insight to the 
aerospace company’s practice of change packaging in that this firm often packages 
and implements changes quickly instead of focusing on increasing their quality of 
work due to pressure by customers to deliver certain design modifications earlier 
than others.  This practice mitigates the potential for process improvement through 
change packaging, as suggested by the simulations.  However, such customer 
pressure also suggests that packaging strategies may not have the potential to yield 
as significant process improvement as other strategies in that customer demands 
often cannot be negotiated and change packaging policies to increase the quality of 
work cannot be adhered to.  For instance, the software design process may be 
improved more readily through the IA improvement strategies (Section 7.4) in which 
the aerospace company has more control over their policy implementation. 

7.6 SUMMARY 
This chapter completes the steps in the modelling and simulation method applied 
(Figure 7.21), and the interpretation of the simulation results yields insights into the 
IA improvement and change packaging strategies for the aerospace company.  By 
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investigating trade-offs between the simulation parameters of the adapted rework 
cycle to represent these strategies, the simulation results indicate that: 
 

• The three IA improvement strategies suggested (Section 5.4 and Table 7.12) can 
all improve the software design process of the aerospace company. 

• However, the third IA improvement strategy, focusing on allocating resources 
and time to IA, may more effectively lead to process improvement than the other 
strategies. 

• In turn, change packaging strategies may not yield process improvement as 
simply as the IA improvement strategies within the aerospace company in that 
these policies cannot be consistently implemented and are affected by customer 
demands. 

• Nevertheless, change packaging strategies, which delay change implementation 
to increase the quality of work, best suit the aerospace company. 

 

 
Figure 7.21:  Completion of the application of modelling and simulation method 

 



 

 

 
 
 
 
 
 
 

8 :: HEURISTICS FOR PROCESS IMPROVEMENT 
 
The motivation and aim for modelling and simulating the adapted rework cycle is to 
compare IA improvement and change packaging strategies with other process 
improvement initiatives (e.g. optimising design task scheduling or developing better 
requirement management practices) in order to ascertain the relative importance of 
these strategies for the aerospace company.  As indicated in Section 6.1.1, the 
extended rework cycle model (Figure 6.2) provides a basis for such a comparison by 
depicting a range of strategies affecting the parameters in the basic rework cycle.  
The magnitudes of these parameters can be estimated due to different strategies and 
the consequences on the rework cycle determined, suggesting the relative effects of 
these strategies on the design process.  In turn, this chapter adapts the extended 
rework cycle model to include IA and change packaging and then uses this model to 
examine the simulation results obtained for IA improvement (Section 7.4) and 
change packaging (Section 7.5), which perturb the model parameters to different 
extents, and to compare process improvement strategies.  Heuristics for IA 
improvement and change packaging, indicating when these strategies are best 
employed compared to other process improvement strategies, are derived from this 
simulation result analysis and from a qualitative investigation of the trade-offs 
between the parameters in the adapted rework cycle not simulated.  The feedback 
from the industry partners on these heuristics is then discussed. 
 
Prior to deriving and evaluating these heuristics for process improvement in Section 
8.2 and Section 8.3, respectively, the refined research questions from Section 5.6 are 
revisited in Section 8.1, connecting these questions with the modelling and 
simulation of the adapted rework cycle performed in Chapter 6 and 7 and with the 
foreshadowed derivation of heuristics in Chapter 8. 
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8.1 REVISITING THE REFINED RESEARCH QUESTIONS 
As indicated in Section 6.1.1 and Section 6.3.4, the adapted rework cycle model 
includes sufficient parameters to characterise IA improvement and change 
packaging.  Specifically, improvements to the rework discovery time delay and IA 
quality variables can embody the practical IA improvement strategies (Section 7.4.1), 
and these strategies are compared by estimating the magnitudes of improvements in 
these two parameters and then simulating the effect on the adapted rework cycle.  
The simulation results of such strategies denote the relative design process 
improvement through the time difference between known rework curves depicted in 
Figure 7.6.  Larger time differences correspond to increases in the rate of work 
completed or greater process improvement.  Hence, the modelling and simulation of 
the adapted rework cycle provide a means to investigate IA improvement on the 
design process through modifications to the rework discovery time delay and IA 
quality parameters in the adapted rework cycle, addressing research question 4b 
(Can modelling and simulation demonstrate the effects of impact analysis improvement on the 
design process?  If so, how?).  Furthermore, IA and other process improvement 
strategies can be compared by estimating the magnitudes of the other variables in the 
adapted rework cycle model and determining their relative effects on the design 
process, as done in Section 8.2 to derive the heuristics for process improvement. 
 
These heuristics developed stem from the simulation results in Chapter 7.  However, 
the limitations of the adapted rework cycle model implementation notably restrict 
these results (Section 6.3.4).  Specifically, the results only suggest the relative, instead 
of exact, effects of the IA improvement strategies.  The simulation of the IA 
improvement strategies indicate that improving IA through either reducing the 
rework discovery time delay mean or increasing the IA quality mean can increase the 
rate of work done, but do not concretely predict the scale this improvement for the 
aerospace company.  Nevertheless, the simulation results imply that these strategies 
can improve design processes to different extents through small rework discovery 
time delays and high IA quality, answering research question 4a (Can the application 
of impact analysis improve the design process?  If so, how?).  The third IA improvement 
strategy, which proposes increasing the resources and time available for IA, may 
most directly cause process improvement out of the strategies suggested (Section 
7.4.3).  As such, the heuristics for process improvement derived in Section 8.2 further 
respond to this research question by considering the relative effects of IA 
improvement and other process improvement strategies in terms of the limitations of 
the adapted rework cycle. 
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Finally, the adapted rework cycle model allows for the conceptualisation of change 
packaging.  Change packaging essentially controls the implementation time of design 
modifications and shifts the known rework curve (Figure 7.6), which indicates 
process improvement as analysed.  In addition, change packaging can influence the 
quality of work parameter in the adapted rework cycle model in that facilitating the 
recognition of design interdependencies through packaging can reduce design 
errors.  In turn, as suggested by the simulation result interpretation (Section 7.5.3), 
change packaging policies for the aerospace company should focus on improving the 
quality of work.  Only packaging few changes together quickly for implementation 
does not yield as significant process improvement.  However, for this firm, change 
packaging policies may not prove as beneficial as improving IA practice because the 
implementation of change packaging is highly influenced by customer demands and 
cannot be completely controlled.  Nevertheless, implementing change packaging 
with IA improvement strategies can amplify process improvement.  Thus, change 
packaging does not directly influence IA improvement through modifying the 
rework discovery time delay and IA quality parameters, but can enhance the results 
of IA improvement strategies, addressing research question 4c (Does change packaging 
affect impact analysis improvement?  If so, how?).  The heuristics derived for process 
improvement in Section 8.2 further relate change packaging and IA improvement 
strategies by considering other factors influencing the adapted rework cycle model. 

8.2 IMPACT ANALYSIS IMPROVEMENT AND CHANGE PACKAGING 
HEURISTICS 

Incorporating other relevant factors and feedback loops into the adapted rework 
cycle model provides a basis to compare IA improvement strategies and change 
packaging against other design process improvement strategies (Section 8.2.1), and 
an analysis of this extended system dynamics model with the simulation results 
presented in Chapter 7 allows for the extraction of heuristics for IA improvement 
(Section 8.2.2) and change packaging (Section 8.2.3). 

8.2.1 EXTENDING THE ADAPTED REWORK CYCLE MODEL 
As described in Section 6.1.1, Lyneis et al. (2001) discuss additional factors affecting 
the people, productivity, and quality of work variables in the basic rework cycle 
model with obsolescence (Figure 6.14).  Figure 8.1 recalls this extension of this model 
through a causal loop diagram (Appendix C), also pictured in Figure 6.2. 
 



8 ::  HEURISTICS FOR PROCESS IMPROVEMENT 
 

212 

 

 

 
Figure 8.1:  The extended rework cycle model (Lyneis et al. 2001) 

Lyneis et al. (2001) focus on several key influences on the productivity and quality of 
work parameters, including the work quality to date, availability of prerequisites, out-of-
sequence work, schedule pressure, morale, skill and experience, organisational size changes, 
and overtime.  Two of the feedback effects associated with these key variables are 
positive or reinforcing.  Specifically, increasing overtime work or allocating more 
people to design projects increases the rate of work done.  However, the other 
feedback relationships associated with the key influences depicted are “generally” 
positive and cause productivity and quality to initially decrease early in design 
processes and only later induce increases60.  For example, as resources increase, the 
average experience level of the staff decreases, which, in turn, decreases productivity 
and the quality of work since less experienced people work slower and induce more 
errors.  In turn, productivity and quality of work later increase as these individuals 
gain project experience.  As described by Lyneis et al., if resources continue to be 
added, these negative effects can govern projects and schedule delays can 
continually increase.  Brooks’ law embodies this concept and states: “adding 
manpower to a late software project makes it later” (Brooks 1995). 
 
The key factors identified by Lyneis et al. similarly influence the adapted rework 
cycle model through the productivity and quality of work parameters and also affect 
the rework discovery time delay and IA quality.  For instance, if staff skill and 
experience decreases, the rework discovery delay may increase and IA quality may 

                                                        
60 Due to this change in polarity during the projects, link polarities are not explicitly specified in Figure 
8.1 according to the notation used in Appendix C. 
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decrease since the staff may not quickly perform IA and miss necessary changes.  The 
IA technique and task influences observed in the empirical studies (Figure 4.7) 
exemplify these corresponding feedback loops affecting the rework discovery time 
delay and IA quality, and Table 8.1 interprets the key feedback parameters depicted 
by Lyneis et al. through these IA influences. 
 

Table 8.1:  Correlation between additional factors and IA influences 

Extended Rework 
Cycle Parameter 

IA Influence(s) 
(from Figure 4.7) Correlation 

Work quality to date Lack of information,  
Ambiguity of information 

Unknown, incomplete, or uncertain information or 
representation of design dependencies derived from 
prior work can decrease IA quality.  In turn, the 
perceived work quality can influence when IA is applied 
and affect the rework discovery time delay. 

Availability of 
prerequisites 

Lack of information,  
Ambiguity of information, 
Volatility of information, 
Magnitude of information, 
Lack of resources 

Problematic information or stakeholder availability for IA 
can influence when IA is applied and cause a decrease in 
IA quality. 

Out-of-sequence work Partitioning,  
Synchronisation 

IA performed on a portion of a design or asynchronously 
for related changes can lead to missed knock-on changes 
and decrease IA quality.  In this case, the rework 
discovery time delay may also increase if previous IA 
results are assumed complete. 

Schedule pressure Lack of time 
Time pressure can cause the rework discovery time delay 
to increase as less time is used to identify rework, leading 
to incomplete IA results and decreasing IA quality. 

Morale --- --- 

Skill and experience Analysis education 
The rework discovery time delay increases and IA quality 
decreases if inexperienced designers do not understand 
the methods to apply available IA techniques and tools. 

Organisational size 
changes Analysis education 

As design teams grow after the beginning of a project, 
new designers must learn about the project in order to 
quickly implement IA and effectively apply experiential 
IA techniques.  The rework discovery time delay and IA 
quality may increase and decrease, respectively, as this 
staff growth occurs. 

Overtime Lack of time 
The rework discovery time delay and IA quality may 
increase and decrease, respectively, if designers are 
fatigued from analysing many changes. 

 
Notably, the method definition, process conflicts, over-extension, and administration 
IA influences do not meld with the extended rework cycle parameterization (Figure 
8.1) and, consequently, suggest the existence of an additional feedback loop 
dependent on another parameter, namely, IA process definition and implementation.  
This feedback effect on the rework discovery time delay and IA quality is also 
“generally” positive since IA processes tend to become more effective and 
understood towards project completion.  However, this parameter also affects the 
resource allocation to IA directly through the processes prescribed.  Arguably, 
similar effects can influence the productivity and quality of work parameters 
through the design process definition and implementation.  For example, the defined 
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sequencing of tasks, which other research at Cambridge EDC investigates 
(Chalupnik et al. 2007; Wynn et al. 2006), can be optimised to improve workflow or 
robustly handle unexpected, adverse factors and minimise the effects of errors.  
Likewise, specified change packaging processes can affect productivity and the 
quality of work (Section 8.2.3).  Furthermore, morale was not found to influence IA 
quality in the empirical studies, but can be envisioned to affect other companies and 
projects61. 
 
Continuing to use the extended rework cycle model (Figure 8.1) as a framework, the 
direct means to positively increase the rate of rework discovery can be translated.  
The direct means to increase the rate of progress is through overtime or staff 
allocation, and, in turn, improving IA can occur through allocating resources and 
time to apply IA.  As such, the first and second practical IA improvement strategies 
(Table 7.12) mitigate the negative effects of the “generally” positive, key feedback 
loops, while the third strategy directly influences the application of IA through 
resource management, as suggested by the IA simulation interpretation (Section 
7.4.3).  Figure 8.2 summarises these additional factors affecting the adapted rework 
cycle through a causal loop diagram. 
 

 
Figure 8.2:  The extended, adapted rework cycle model 

                                                        
61 Even though the adaptation of the extended rework cycle by Lyneis et al. (2001)  in Figure 8.2 suggests 
the effects of low morale on IA quality, morale is not included in the IA influences characterisation since 
this classification only reflects observations in the empirical studies. 
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As proposed by Lyneis et al. (2001), the additional factors depicted in the extension of 
the adapted rework cycle do not completely cover all of the other potential influences 
on the design process.  Nevertheless, this model provides a framework to examine 
improving IA and change packaging practice with other process improvement 
strategies in that trade-offs between parameter magnitudes of the adapted rework 
cycle model can be determined and a selection of improvement strategies can be 
correlated with these variables in the extended model62.  In turn, the discussion of the 
heuristics derived using the extended, adapted rework cycle model references 
example process improvement strategies, but the heuristics generically depict the 
trade-offs between strategies in terms of the parameters in the adapted rework cycle. 

8.2.2 EXTRACTION OF HEURISTICS FOR IMPACT ANALYSIS IMPROVEMENT 
The IA improvement simulation results (Section 7.4.3) can be further interpreted in 
order to determine the trade-offs between the parameters simulated (i.e. the rework 
discovery time delay or IA quality vs. the quality of work63).  In turn, the comparison 
of these parameters can be related to process improvement strategies through the 
extended, adapted rework cycle (Figure 8.2) and conclusions can be drawn for when 
focusing on IA improvement is most beneficial for the aerospace company.  The 
other parameters not simulated (i.e. people and productivity) can also be investigated 
qualitatively in terms of this interpretation of the simulation results.  As such, this 
section compares the following sets of parameters, which are correlated with process 
improvement strategies: 
 

• IA quality vs. quality of work (Section 8.2.2.1) 

• Rework discovery time delay vs. people and productivity (Section 8.2.2.2) 

• IA quality vs. people and productivity (Section 8.2.2.3) 

• Rework discovery time delay vs. quality of work (Section 8.2.2.4) 

 

The heuristics derived, which are summarised in Figure 8.19, depict the trade-offs 
between these sets of parameters and guide the comparison of IA improvement (i.e. 
strategies improving the rework discovery time delay or IA quality parameters) with 
other process improvement strategies (i.e. strategies improving the quality of work, 
people, or productivity parameters).  Some of these heuristics are based on the 
assumptions of the simulation results and, hence, are applicable to the aerospace 
firm, while others take into account the key limitations of the adapted rework cycle 
simulation (Table 6.1) and are applicable in other contexts.  (Hence, Heuristic 1 
                                                        
62 As discussed in Section 6.1.1, Lyneis et al. (2001)  list additional factors that could be included. 
63 The quality of work simulation results were not interpreted in Chapter 7. 
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through 3 as well as Heuristic 4 through 6 are similar to each other.)  Specifically, the 
change-set size, which influences the interpretation of IA quality, the unmodelled 
work to do, and obsolescence are discussed (Limitation 2, Limitation 8, and 
Limitation 9 in Table 6.1, respectively).  The other limitations are not addressed since 
they primarily define the model scope, rather than affect the interpretation, of the 
adapted rework cycle simulation.  Change packaging strategies are analysed in 
Section 8.2.3 in terms of these heuristics, also accounting for the interpretation of 
change packaging in the adapted rework cycle (Limitation 6 in Table 6.1). 

8.2.2.1 IA QUALITY VS. QUALITY OF WORK 
As stated in Limitation 9 in Table 6.1, the adapted rework cycle simulation only 
models changes occurring and does not encompass the stock of work to do.  This 
assumption correlates to the aerospace company’s modification of their design 
platform to develop new products in that most effort is spent implementing rework 
to adapt the platform and minimal work ever resides in the stock of work to do.  For 
this situation, the IA simulation results in Section 7.4.3 indicate that improving IA 
quality or the quality of work means by the same magnitudes can have the same 
effect on the design process (Figure 8.3). 
 

 
Figure 8.3:  Simulation results comparing IA quality and the quality of work   

(from Section 7.4.3) 

However, implementing IA improvement strategies to increase IA quality may be 
more beneficial in this case since the magnitude of IA quality can be more readily 
increased through simply allocating more resources and time to IA, as suggested by 
the third IA improvement strategy (Table 7.12).  As simulated, increasing IA quality 
only necessitates identifying first-order, knock-on modifications (Section 6.3.2), 
which does not require creating elaborate traceability or dependency IA techniques 
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and can occur through experiential IA.  In contrast, improving the quality of work by 
the same magnitude can require more invasive strategies, such as changing 
requirement management processes, which can initially disturb productivity 
significantly, as designers learn the new processes.  More generally, as depicted 
through the causal links in the extended, adapted rework cycle model (Figure 8.2), 
such imposing strategies can also include improving the availability of prerequisites, re-
scheduling design tasks to account for out-of-sequence work, or providing training to 
designers to increase their skill and experience.  Consequently, Heuristic 1 for IA 
improvement (Figure 8.4) indicates when IA improvement strategies are more 
beneficial than other process improvement strategies focusing on improving the 
quality of work. 
 

IA Improvement Heuristic 1: 
If the amount of rework is much larger than the amount of work to do, 

identifying the impact of closely related knock-on changes is more 
beneficial than decreasing the rework generated. 

 
(i.e. strategies improving IA quality are more beneficial than  

strategies improving the quality of work) 

 
Figure 8.4:  Heuristic 1 for IA improvement 

 
As such, if the stock of work to do is much larger than the amount of rework during 
the design process, then improving the quality of work may be more effective than 
increasing IA quality, given that the quality of work influences the amount of rework 
generated from the work to do and from the rework (Figure 8.5).  (For Heuristic 1, 
improving the quality of work primarily affects the rework generated from rework.)  
In turn, for this second scenario, improving the quality of work can lead to further 
reductions of the total amount of rework than that suggested by the simulation 
results (Figure 8.3) for the same magnitude of increase of this parameter.  The 
associated process improvement caused by this decrease in rework makes improving 
the quality of work more beneficial than increasing IA quality, as stated in Heuristic 
2 for IA improvement (Figure 8.6).  Consequently, investing in process improvement 
strategies to increase the quality of work may prove more useful than implementing 
IA improvement strategies in this case. 
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Figure 8.5:  Improving the quality of work amplifies the effects on the known 

rework curve 

 
IA Improvement Heuristic 2: 

If the amount of work to do is much larger than the amount of rework, 
decreasing the rework generated is more beneficial than  

identifying the impact of closely related knock-on changes. 
 

(i.e. strategies improving the quality of work are more beneficial than  
strategies improving IA quality) 

 
Figure 8.6:  Heuristic 2 for IA improvement 

 
These two heuristics suggest a third in that the amount of work to do typically 
decreases as the amount of rework increases during product development (Figure 
8.7), as discussed by Cooper (1993c).  As such, the influence of improving IA quality 
on process improvement increases as design processes progress, given that rework 
constitutes more of the work being done.  Thus, Heuristic 3 for IA improvement 
(Figure 8.8) indicates that IA improvement strategies become more beneficial than 
other strategies that increase the quality of work during design processes.  Table 8.2 
summarises Heuristic 1 through 3. 
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Figure 8.7:  Rework dominates the work done towards the end of design processes 

(from Figure 6.15) 

 
IA Improvement Heuristic 3: 

Identifying the impact of closely related knock-on changes  
becomes more beneficial than decreasing the rework generated  

as design processes progress.  
 

(i.e. strategies improving IA quality become more beneficial as design processes progress) 
 

Figure 8.8:  Heuristic 3 for IA improvement 

 
Table 8.2:  Comparison of Heuristic 1 through 3 

Heuristic for IA 
Improvement Application Context Comparison of Key Variables 

1 Rework >> Work to do Improving IA quality is better than 
improving the quality of work. 

2 Rework << Work to do Improving the quality of work is better than 
improving IA quality. 

3 During design processes Improving IA quality becomes more beneficial than 
improving the quality of work over time. 

 
 
The adapted rework cycle simulation does not model the addition or obsolescence of 
work (Limitation 8 in Table 6.1), which also reflects the aerospace company’s focus 
on modifying their product platform.  However, the addition and obsolescence of 
work can reinforce the previous heuristics derived.  From Heuristic 2 (Figure 8.6), if a 
significant amount of work is added to the stock of work to do, and the stock of work 
to do is much larger than the amount of rework in the feedback loop, then improving 
the quality of work remains more effective than increasing IA quality.  In turn, if 
obsolescence of work occurs, extra rework is incorporated into the rework cycle 
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feedback loop.  From Heuristic 1 (Figure 8.4), if the amount of rework is much larger 
than the amount of work to do and obsolescence of work occurs, then improving IA 
quality also remains more effective than increasing the quality of work.  Notably, if 
both the addition and obsolescence of work occurs, Heuristic 1 and Heuristic 2 also 
can recommend improving either IA quality or the quality of work given the 
resulting proportion of work to do and rework. 

8.2.2.2 REWORK DISCOVERY TIME DELAY VS. PEOPLE AND PRODUCTIVITY 
As denoted by Limitation 10 in Table 6.1, the adapted rework cycle simulation does 
not include the people and productivity parameters.  Nonetheless, as indicated by 
the extended rework cycle model, increasing either of these variable values directly 
causes the rate of progress to also increase (i.e. there are no feedback loops between 
these parameters in Figure 8.1), increasing the rate of work completed and allowing 
for process improvement.  Decreasing the rework discovery time delay can be 
compared to this improvement since this parameter also allows the rate of work 
completed to increase since rework is known earlier and can be completed 
subsequently. 
 
As such, similar to the first set of heuristics derived (Table 8.2), improving the 
rework discovery delay is more beneficial than increasing people or productivity, if 
the amount of rework is much larger than the amount of work to do, as depicted by 
Heuristic 4 for IA improvement (Figure 8.10).  In this case, decreasing the rework 
discovery delay can increase the rate of known rework, and consequently, the rate of 
work completed (i.e. work in the stock of work done) and cause process 
improvement.  People may not work at capacity and as productively with less 
known work to begin with and not influence the rate of work completed (Figure 8.9).  
In turn, process improvement strategies should focus on improving IA through the 
rework discovery delay (e.g. the first or third IA improvement strategy in Table 7.12) 
rather than through policies increasing people or productivity (e.g. hiring more staff 
or requiring overtime, as shown in the extended, adapted rework cycle in Figure 8.2). 
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Figure 8.9:  Decreasing the rework discovery time delay increases the rate of 

known rework and work completed 

 

IA Improvement Heuristic 4: 
If the amount of rework is much larger than the amount of work to do, 

identifying the impact of changes quickly is more beneficial than 
implementing work quickly. 

 
(i.e. strategies improving the rework discovery time delay are more beneficial than  

strategies increasing people or productivity) 
 

Figure 8.10:  Heuristic 4 for IA improvement 

 
Comparatively, if the stock of work to do is larger than the amount of rework, then 
strategies increasing people or productivity may be more effective than strategies 
decreasing the rework discovery time delay, as represented by Heuristic 5 for IA 
improvement (Figure 8.12).  Increasing people or productivity with much work to do 
can more significantly affect the rate of work completed since most of the work is 
known (Figure 8.11). 
 

Table 8.3:  Comparison of Heuristic 4 through 6 

Heuristic for IA 
Improvement Application Context Comparison of Key Variables 

4 Rework >> Work to do Improving the rework discovery delay is better than 
improving people or productivity. 

5 Rework << Work to do Improving people or productivity is better than 
improving the rework discovery delay. 

6 During design processes 
Improving the rework discovery delay 
becomes more beneficial than 
improving people or productivity over time. 
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Figure 8.11:  Increasing people or productivity increases the rate of work 

completed (from Figure 6.17) 

 

IA Improvement Heuristic 5: 
If the amount of work to do is much larger than the amount of rework, 

implementing work quickly is more beneficial than  
identifying the impact of changes quickly. 

 
(i.e. strategies increasing people or productivity are more beneficial than  

strategies improving the rework discovery time delay) 
 

Figure 8.12:  Heuristic 5 for IA improvement 

 
As suggested by the derivation of Heuristic 3 (Figure 8.8), decreasing the rework 
discovery time delay becomes more effective as design processes progress since more 
rework than work to do exists (Figure 8.7).  Heuristic 6 for IA improvement 
summarises this trend (Figure 8.13) in that implementing IA improvement strategies 
affecting the rework discovery delay become more beneficial during design 
processes.  Table 8.3 summarises Heuristic 4 through 6. 
 

IA Improvement Heuristic 6: 
Identifying the impact of changes quickly becomes more beneficial than 

implementing work quickly as design processes progress. 
 

(i.e. strategies improving the rework discovery time delay become more beneficial  
as design processes progress) 

 
Figure 8.13:  Heuristic 6 for IA improvement 
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8.2.2.3 IA QUALITY VS. PEOPLE AND PRODUCTIVITY 
As described by Cooper (1993b) for the rework cycle model, improving the rework 
discovery time delay may not be useful when the quality of work is low since 
significant rework continues to be generated.  In this case, improving the quality of 
work first should be the initial strategy.  This trade-off holds for the adapted rework 
cycle.  In addition, the adapted rework cycle suggests that increasing people or 
productivity with low IA quality also may not be effective, if work collects in the 
stock of unknown rework and limits the rate of work completed, as described by 
Heuristic 7 for IA improvement (Figure 8.15).  Increasing people or productivity does 
not influence the rate of known rework, as illustrated in Figure 8.9, and identifying 
quantities of rework more effectively can provide for process improvement in this 
case (Figure 8.14).  Hence, strategies for IA improvement, such as any of those listed 
in Table 7.12, may be more beneficial than policies affecting people or productivity. 
 

 
Figure 8.14:  Improving IA quality from low-levels 

 

IA Improvement Heuristic 7: 
Improving very low IA quality is more beneficial than  

increasing staff size or productivity. 

 
Figure 8.15:  Heuristic 7 for IA improvement 

 
As discussed in Section 6.3.2 and highlighted in Limitation 2 of Table 6.1, the small 
size of the change sets simulated suggests the impact of improving IA quality for 
first-order, knock-on modifications.  Modelling larger change sets reflects the 
influence of performing IA to find higher-order, indirect, knock-on changes.  
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However, even improving IA when progress is limited by the amount of rework that 
can be discovered earlier, as is the case for Heuristic 7, can provide for process 
improvement.  This variability in the change set size modelled also suggests a trade-
off in that strategies focusing on performing IA to find higher-order, knock-on 
modifications, which can require additional IA resources and time, may not be worth 
the decrease in people or productivity from diverting resources.  Other factors 
modelled in the extended, adapted rework cycle (Figure 8.2), such as the quality of 
work to date, availability of prerequisites, and out-of-sequence work, also can significantly 
influence IA quality, as the IA applied can involve more extensive investigation 
through traceability and dependency IA.  Another simple heuristic cannot determine 
the management of this trade-off, given that increasing the resources and time for IA 
may not solely allow for such improvement, and a predictive model simulation is 
required (Section 9.3). 

8.2.2.4 REWORK DISCOVERY TIME DELAY VS. QUALITY OF WORK 
Finally, Cooper (1993b) also indicates that decreasing the rework discovery time 
delay at high quality of work levels may not yield significant improvements since the 
work performed is directly completed.  Although this relationship holds in the 
adapted rework cycle, in comparison, at high IA quality levels, increasing people or 
productivity can still increase the rate of work done since unknown rework does not 
limit the amount of work that can be performed.  Consequently, high IA quality 
enables improvement in design processes involving rework (i.e. when the quality of 
work is not at high levels), but does not guarantee process improvement as high 
quality of work does.  Figure 8.16 displays Heuristic 8 for IA improvement.  In turn, 
strategies focusing on improving the quality of work can ensure process 
improvement, unlike IA improvement policies.  Nevertheless, IA improvement 
strategies can provide immediate means to handle rework and be less invasive than 
policies to increase the quality of work, as suggested in the discussion of Heuristic 1 
(Section 8.2.2.1).  
 

IA Improvement Heuristic 8: 
High IA quality enables process improvement, while high quality of 

work guarantees process improvement. 

 
Figure 8.16:  Heuristic 8 for IA improvement 
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8.2.3 EXTRACTION OF HEURISTICS FOR CHANGE PACKAGING 
In the adapted rework cycle simulation, change packaging influences the delay 
between discovering necessary design modifications and their implementation as 
well as includes a factor that can increase the quality of work parameter (Section 7.5).  
As such, change packaging can directly affect the productivity64 and quality of work 
parameters, as shown in the extended, adapted rework cycle in Figure 8.2, and 
heuristics for change packaging, summarised in Figure 8.19, can be derived from the 
previous heuristics delineated for IA improvement (Section 8.2.2). 
 
As suggested by Heuristic 3 for IA improvement (Figure 8.8), increasing the quality 
of work is more beneficial than improving IA quality early in design processes, and 
Heuristic 6 for IA improvement (Figure 8.13) indicates increasing productivity is 
more effective than decreasing the rework discovery delay early in design processes.  
Consequently, change packaging policies can have most impact on process 
improvement early in design processes since they can influence productivity and the 
quality of work.  Figure 8.17 displays Heuristic 1 for change packaging.  Although 
this heuristic suggests change packaging strategies may prove more effective than IA 
improvement strategies early in design processes through these heuristics for IA 
improvement, without the ability to implement of change packaging policies, as 
described occurring in the aerospace firm due to customer demands (Section 7.5.3), 
IA improvement may still be the better focus for process improvement. 
 

Change Packaging Heuristic 1: 
Change packaging is most beneficial early in design processes. 

 
Figure 8.17:  Heuristic 1 for change packaging 

 
In turn, the simulation results (Section 7.5.2) suggest a trade-off in that the quick 
packaging of few design changes (with little quality of work improvement) can 
decrease the delay to implementing work and increase productivity and the rate of 
work done, while packaging more design modifications together slowly improves 
the quality of work, also increasing the rate of work completed.  Although an 
argument for focusing on increasing the quality of work can be made based on the 
characteristics of the aerospace company’s design process (Section 7.5.3), given 

                                                        
64 For example, long delays between packaging changes can decrease productivity as less work is 
scheduled to be performed. 
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Heuristic 8 for IA improvement (Figure 8.16) that discusses the significance of 
improving the quality of work, focusing on improving the quality of work through 
change packaging strategies may be most effective for other design processes as well.  
Once a high quality of work is established, work is completed directly and is only 
limited by the staff size and their productivity.  Alternatively, increasing 
productivity with mediocre quality of work can lead to the generation of significant 
rework and slow the rate of work completed.  Figure 8.18 embodies this heuristic for 
change packaging. 
  

Change Packaging Heuristic 2: 
Packaging many changes together is more beneficial than quickly 

packaging smaller packages of design modifications. 

 
Figure 8.18:  Heuristic 2 for change packaging 

 
Notably, Limitation 6 in Table 6.1 influences this second heuristic for change 
packaging.  Specifically, if modifications occur across many decoupled design areas, 
such that few modifications are interdependent, change packaging may not 
significantly increase the quality of work parameter.  As such, policies to quickly 
implement changes may be more beneficial in this case. 

8.3 EVALUATION OF THE HEURISTICS 
Evaluating the heuristics in terms of specific design processes indicates their 
relevance to industry practice as well as the scope for their potential application or 
limitations.  In turn, the evaluation should include feedback from a multitude of 
interviewees working in a variety of industry sectors and could also encompass a 
comparison with other academic research.  Although this reflection would not prove 
the validity of the heuristics, the boundaries of the heuristics could be probed.  This 
dissertation leaves the implementation of such a thorough evaluation for future work 
(Section 9.3) and simply presents feedback from interviewees at the aerospace and 
telecommunications firms in this section.  Despite this narrow evaluation performed, 
heuristics, nevertheless, provide a useful means to incorporate lessons from 
modelling and simulation into industry projects, as discussed by Lyneis and Ford 
(2007).  Lyneis and Ford reason that research cannot definitively quantify simulation 
results for all projects, and creating such guidelines can enable the practical use of 
academic literature. 
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The heuristics were evaluated similarly to the IA characterisations by determining 
the “adequacy” of these heuristics for use in practice (Section 4.5).  The same 
interviewees from the aerospace and telecommunications companies (I-2, I-16, I-39) 
reflecting on the IA characterisations discussed the heuristics in terms of the falsehood, 
utility, and transferability criteria (Section 4.5.2).  In addition, these evaluators were 
asked to suggest their perception of the applicability of these heuristics in design 
processes.  Specifically, the interviewees responded to the following questions on the 
heuristics (summarised in Figure 8.19): 
 

• Falsehood: Do the heuristics reflect IA and change packaging improvement?  If 
so, why do you agree?  If not, what cases are not captured? 

• Utility: Do the heuristics explain how to improve IA and change packaging?  Do 
the heuristics provide reasonable predictions for improvement?  If so, why do 
you agree?  If not, how should they be modified?65 

• Transferability: Do the heuristics correspond with other guidelines used in 
practice?  Do other guidelines contradict the heuristics?  If so, what guidelines? 

• Applicability:  For what application are these heuristics useful? 
 

The following sections discuss the evaluation of the heuristics against each of these 
criteria.  Interviewees’ suggestions to modify the wording of the heuristics for clarity 
and to increase their usability are already incorporated into their presentation in 
Section 8.2.2 and Section 8.2.3. 

8.3.1 FALSEHOOD 
The interviewees from the aerospace company (I-2, I-16) agreed that the heuristics 
indicate means for process improvement.  They both described Heuristic 4 through 8 
for IA improvement as “intuitive” based on their understanding of areas for process 
improvement in practice and the description of the adapted rework cycle model.  
However, the manager (I-2) acknowledged that the first three heuristics for IA 
improvement (Table 8.2) were not as “instinctive” for him and stated: 
 

From a system dynamics point of view, I understand that (Heuristic 1 for IA improvement), 
but, from a management point of view, it doesn’t sound right.  You always put the effort into 
stopping things coming around this loop (from the quality of work), rather than stopping them 
once they have happened (in practice).  That (Heuristic 1 for IA improvement) is counter-
intuitive. 

 

He discussed that projects tend to naturally focus on improving the quality of work 
parameter and later concluded: “We need to think about them (Heuristic 1 through 3 
for IA improvement) a bit more.  They would change our behaviour”. 
 
                                                        
65 The interpretation of utility in terms of explaining and predicting practice is derived from Bacharach 
(1989). 
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In turn, the evaluator from the telecommunications company (I-39) introduced a 
different perspective on the heuristics.  He agreed that Heuristic 4 through 7 for IA 
improvement were logical and discussed how rework accumulated during projects 
when designers did not acknowledge the need for changes or perform IA regularly.  
The agile development processes prescribed particularly focus on decreasing the 
rework discovery time delay in order to manage such necessary changes within the 
company’s product and service development projects.  For the remaining heuristics 
for IA improvement, this interviewee indicated that they only apply to certain 
projects in the firm.  He explained that the telecommunications company use to focus 
on finding all of the knock-on effects and errors caused by design changes within all 
projects, but this policy caused the late delivery of their products and services.  He 
rationalised: 
 

If you don’t deliver to the shelf life, then there was no point in having the product in the first 
place.  It’s better to deliver something that works most of the time with some errors than to 
have nothing on the shelf at all. 

 

In turn, Heuristic 1 through 3 and Heuristic 8 for IA improvement do not necessarily 
suggest process improvement in practice if improving IA quality or the quality of 
work delays the development process for these time-critical projects, which can span 
only 3 months.  The investment in IA techniques, even to identify closely related 
changes, may not be beneficial if the project is delayed and the opportunity to make 
profit passes.  Nevertheless, this evaluator noted that other projects, which require 
robust products that contain minimal design errors, do fit these remaining heuristics 
for IA improvement.  He said:  “In traditional projects, these heuristics (Heuristics 1 
through 3 and Heuristic 8) fit exactly right.  Some parts of the company still work 
that way.  I suppose it’s the obvious and natural way of working”.  Consequently, 
the evaluation of the heuristics for IA improvement suggests that some only apply to 
design processes with the criteria of removing all errors for completion.  However, in 
this context, the heuristics meld with the interviewees’ perspectives on process 
improvement and are relevant to describing process improvement in practice. 
 
All the evaluators (I-2, I-16, I-39) agreed with the change packaging heuristics.  The 
manager from the aerospace company (I-2) stated:  “These heuristics feel right”.  He 
then discussed the company’s packaging policies in terms of increasing the quality of 
work.  Similarly, the evaluator at the telecommunications firm (I-39) agreed with the 
change packaging heuristics and indicated that they applied across the projects at 
this company.  He noted that change packaging is particularly critical since many of 
the products and services this company delivers work with and build upon each 
other.  Without change packaging, he said: “The project becomes out of control”.  As 
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such, the evaluation of the change packaging heuristics implies that these heuristics 
agree with industry practice. 

8.3.2 UTILITY 
The evaluators from the aerospace company (I-2, I-16) indicated that the heuristics 
for IA improvement were useful.  For instance, the manager (I-2) discussed how 
policies to heighten the emphasis on IA during design processes would meet 
resistance from project managers in terms of Heuristic 1 through 3 and then stated:  
 

It is a mindset thing.  Their (the project managers’) instinctive reaction is to go around the 
(rework cycle) loop as fast as you can.  It’s useful.  The model is useful to explain this.  It 
would be interesting to see how it modelled dynamically. 

 

This interviewee subsequently suggested further investigation to quantify the trade-
offs presented in the heuristics for IA improvement.  As such, a more predictive 
model, including data on all the parameters, would also be useful (Section 9.3). 
 
Given the telecommunications evaluator’s (I-39) response to the falsehood criterion 
questions (Section 8.3.1), he noted that Heuristic 1 through 3 and Heuristic 8 are not 
necessarily useful for all projects.  However, this interviewee discussed how 
Heuristic 4 through 7 conform to process improvement in practice and are useful to 
note during any project.  He said:  “What you can’t do is trick yourself into thinking 
you can deliver something before you really can”.  In turn, within the limitations of 
Heuristic 1 through 3 and Heuristic 8 for certain projects (Section 8.3.1), this 
evaluator’s comments suggest the heuristics for IA improvement provide a useful 
means to explain and guide practice. 
 
All evaluators (I-2, I-16, I-39) discussed that some changes in practice have high 
priority and are implemented quickly based on customer or stakeholder demand.  
Heuristic 2 for change packaging does not capture this exception that occurs in 
practice.  As such, the interviewees proposed that they ideally strive to implement 
Heuristic 2, but other pressures often make it impossible.  In addition, the 
interviewees from the aerospace company (I-2, I-16) noted that the change packaging 
heuristics assume that the system and software architecture is modular and changes 
can be packaged to improve the quality of work.  In turn, for Heuristic 1 for change 
packaging, they discussed the need to develop a design capable of change packaging 
early in design processes as well.  Thus, the heuristics for change packaging describe 
process improvement, but they do not directly discuss the exceptions and conditions 
required to implement change packaging in practice.  The adapted rework cycle 
model does not capture these exceptional factors, and, hence, the heuristics derived 
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are useful to describe ideal practice as opposed to offering suggestions on how to 
address these other influences. 

8.3.3 TRANSFERABILITY 
At the aerospace company, the process engineer (I-16) stated that he encouraged 
project managers to improve IA practice, similar to Heuristic 1 through 3 for IA 
improvement, using his guideline: “Pay now, or pay later”.  Project managers should 
admit rework exists and put the effort into finding design errors sooner rather than 
later.  In essence, these heuristics derived from the adapted rework cycle formalise 
this guideline.  This interviewee also suggested that the design processes delineated 
and prescribed by the aerospace company generally encourage the other heuristics 
for IA improvement.  The evaluator at the telecommunications company (I-39) 
similarly indicated that the heuristics for IA improvement conform to the prescribed 
processes and tools implemented within more “traditional” projects in this firm 
(Section 8.3.1).  As such, the heuristics for IA improvement formalise implicit 
guidelines used as a basis for the prescribed processes in the aerospace and 
telecommunication companies. 
 
The interviewees from the aerospace company (I-2, I-16) discussed the firm’s 
initiatives to further modularise the product platform and viewed Heuristic 1 for 
change packaging as transferable to these strategies.  Notably, these evaluators did 
not mention that change packaging is not typically enforced during the informal 
change processes and only occurs during formal change processes (Section 3.4.2).  As 
such, early change packaging may not occur rigorously in practice.  Thus, the 
practised processes in the aerospace company may counter Heuristic 1 for change 
packaging, even though the interviewees confirmed this heuristic as valid by the 
falsehood and utility criteria (Section 8.3.1 and Section 8.3.2, respectively).  The 
evaluator at the telecommunications company (I-39) indicated that Heuristic 1 is 
reflected by company procedures.  In turn, Heuristic 2 for change packaging follows 
the change packaging policies in place in both companies.  However, as noted in 
Section 8.3.2, exceptions to this policy occur in practice.  Hence, this evaluation 
suggests that the change packaging heuristics generally conform to prescribed 
practice, but also highlights a potential area for modification to the aerospace 
company’s informal change processes implemented. 

8.3.4 APPLICABILITY 
The evaluators at the aerospace company (I-2, I-16) envisioned several applications 
for the IA improvement and change packaging heuristics.  The manager (I-2) 
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suggested that management practices across mechanical and hardware design teams 
should be investigated in terms of the IA improvement heuristics.  He stated: “I am 
wondering what it means at a broader project-level.  I don’t see very much IA at this 
point (outside of the control system design group)”.  This application of these 
heuristics could highlight areas for more broadly improving change management.  
Similarly, the design process engineer (I-16) commented that the adapted rework 
cycle model and these heuristics also encourage the active tracking of changes in the 
mechanical and hardware design teams (Section 4.5.2.3).  This evaluator also noted 
that the change packaging heuristics could be useful for hardware design and cited a 
specific project in which many hardware changes were not packaged, causing much 
rework. 
 
In turn, at the telecommunications company, the design process engineer (I-39) 
stressed that Heuristic 1 through 3 and Heuristic 8 for IA improvement are only 
applicable for design processes with the completion criterion of removing design 
errors (Section 8.3.1).  He described how some of the design processes implemented 
emphasised stopping when the product was “good enough”.  However, he 
suggested that all of the heuristics for IA improvement and change packaging are 
more applicable at a higher level across projects since the platforms developed for 
products and services delivered should be stable in the long run.  If products must 
work together, then performing IA to ensure their integration becomes vital. 
 
Thus, the IA improvement and change packaging heuristics potentially have broader 
applications than to the system and software design changes of the aerospace firm 
investigated through simulation.  

8.4 SUMMARY 
Using the extended rework cycle model developed by Lyneis et al. (2001) as a basis, 
which depicts the trade-offs between strategies for process improvement, the 
adapted rework cycle model is similarly extended.  Heuristics for IA improvement 
and change packaging (Figure 8.19), suggesting when these strategies are beneficial 
in comparison to other process improvement strategies, are derived by interpreting 
the simulation results from Chapter 7 in terms of this model and also qualitatively 
analysing the trade-offs between model parameters. 
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IA Improvement 
Heuristic States: 

1 
If the amount of rework is much larger than the amount of work to do, 
identifying the impact of closely related knock-on changes is more 
beneficial than decreasing the rework generated. 

2 
If the amount of work to do is much larger than the amount of rework, 
decreasing the rework generated is more beneficial than identifying 
the impact of closely related knock-on changes. 

3 
Identifying the impact of closely related knock-on changes becomes 
more beneficial than decreasing the rework generated as design 
processes progress. 

4 
If the amount of rework is much larger than the amount of work to do, 
identifying the impact of changes quickly is more beneficial than 
implementing work quickly. 

5 
If the amount of work to do is much larger than the amount of rework, 
implementing work quickly is more beneficial than identifying the 
impact of changes quickly. 

6 Identifying the impact of changes quickly becomes more beneficial 
than implementing work quickly as design processes progress. 

7 Improving very low IA quality is more beneficial than increasing staff 
size or productivity. 

8 High IA quality enables process improvement, while high quality of 
work guarantees process improvement. 

 

Change Packaging 
Heuristic States: 

1 Change packaging is most beneficial early in design processes. 

2 Packaging many changes together is more beneficial than quickly 
packaging smaller packages of design modifications. 

 

Figure 8.19:  Summary of heuristics for IA improvement and change packaging 

 
These heuristics indicate that IA improvement strategies can contribute to process 
improvement more effectively than other process improvement strategies.  For 
example: 
 

• From Heuristic 1 for IA improvement, improving IA quality through strategies 
simply allocating more resources and time for IA can be more beneficial than 
more invasive strategies, such as reforming requirement management practices. 

• From Heuristic 4 for IA improvement, IA improvement strategies focusing on 
reducing the rework discovery time delay can be more effective than improving 
productivity through policies to increase hiring or overtime. 

 

Given that the conditions of these two heuristics are relevant to the characteristics of 
the aerospace company’s design process, strategies to improve IA should be 
considered at the same level as other process improvement strategies.  However, as 
indicated by an evaluator, improving IA is not “instinctive” for project managers at 
the aerospace firm.  As such, the modelling and simulation of IA through the 
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adapted rework cycle used to develop the heuristics provides justification and 
explains the heightened importance of IA improvement, as discussed in the 
evaluation of the heuristics.  The grounding of the investigation of process 
improvement strategies in the adapted rework cycle provides a useful means to 
systematically weigh the trade-offs in policies.  Although limitations to the adapted 
rework cycle and, in turn, heuristics exist, as noted in the evaluation, these heuristics 
also can guide the selection of process improvement strategies for other design 
processes besides that of the aerospace company. 
 
 



 

 

 
 
 
 
 
 
 

9 :: CONCLUSION 
 
This research project has investigated IA through literature, empirical studies, and 
the modelling and simulation of the adapted rework cycle.  Based on this 
examination of IA as a distinct element of design processes, this dissertation 
addresses the research questions posed and contributes to understanding change 
management.  The following sections highlight the key conclusions (Section 9.1) and 
contributions of this dissertation (Section 9.2) and summarise the future work 
stemming from this research project (Section 9.3). 

9.1 KEY CONCLUSIONS STEMMING FROM THE RESEARCH 
QUESTIONS 

The research questions summarised in Table 9.1 and their responses (Section 5.5 and 
Section 8.1) illuminate key conclusions from this investigation of IA. 
 

Table 9.1:  Summary of research questions 

Research Question States: 

1 How are change processes and impact analysis prescribed at the system and 
software engineering interface within industry? 

2 Does impact analysis influence the management of emergent changes in practice?  
If so, how? 

3 What are the challenges in using impact analysis to manage emergent changes at 
the system and software engineering interface? 

4a Can the application of impact analysis improve the design process?  If so, how? 

4b Can modelling and simulation demonstrate the effects of impact analysis 
improvement on the design process?  If so, how? 

4c Does change packaging affect impact analysis improvement?  If so, how? 

 
For research question 1, the empirical studies indicate that the aerospace and 
telecommunication companies studied implement formal and informal change 
processes.  In either of these change process performed, processes to apply IA are 
often not explicitly defined in practice, and a practical IA improvement strategy 
targets defining methods to implement IA.  As a result, two key conclusions follow: 
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• Prescribed IA techniques are not always implemented in practice for some 
industry sectors. 

• Defining processes to implement IA can support the application of IA in practice. 

 

For research question 2, the empirical studies also suggest that IA is viewed as a key 
means to manage emergent changes in practice.  Without thorough IA results, design 
modifications can lead to unexpected, emergent changes.  In turn, the definition of 
key concepts, including IA techniques, tasks, quality, and rigour, describe how the 
application and results of IA can vary in practice due to IA influences, illustrated in 
Figure 9.1.  This research question leads to three key conclusions: 
 

• Without high-quality IA results, emergent changes are missed, leading to rework, 
schedule delays, and unexpected costs.  As such, commitment to performing IA is 
a prerequisite to manage the emergence of unanticipated design modifications.  
Investment in new techniques and tools is not necessarily required as rigorous IA 
can equally occur through traceability, dependency, or experiential IA, and any 
combination thereof by managing IA influences. 

• The empirical studies at the aerospace company, which operates a highly 
iterative design process, indicate that the partitioning, synchronisation, and 
information-related influences most commonly affect IA results (Figure 9.1).  In 
fact, 95% of design modifications elicited across the systems-software interface as 
well as the interface with external stakeholders involved at least one of these 
influences (Section 5.2.2.4). 

• Addressing such influences can improve the rigour of IA to examine first-order, 
knock-on design modifications, increasing the quality of IA results and, 
consequently, significantly improving the design process; as shown by the 
simulation results in Section 7.4, marginal IA improvement can cause about a 
60% decrease in the time to complete design work (Figure 7.16).  Rigorously 
analysing higher-order, knock-on effects to increase IA result quality can require 
more time and resources and have diminishing returns on process improvement. 

 

For research question 3, the IA influences characterisation depicts the challenges to 
implementing IA in practice.  These influences can decrease the rigour and quality of 
IA results obtained.  However, as suggested by the empirical studies, focusing on 
dominant influences can lead to more practical process improvement strategies than 
attempting to mitigate all influences equally.  Hence, the conclusion is: 
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• Targeting specific IA influences to address through IA improvement strategies is 
a practical means for IA improvement. 

 

 
Figure 9.1:  Summary of IA influences (from Section 4.4) 

 
For research question 4a, the modelling and simulation of the adapted rework cycle 
indicate that effective IA can improve design processes aiming to deliver error-free 
products and services.  The adapted rework cycle model also provides the basis to 
derive heuristics, describing how IA and other improvement strategies can relatively 
affect design processes, through the investigation of trade-offs between its 
parameters.  In turn, based on the heuristics for IA improvement derived and their 
evaluation, two key conclusions follow: 
 

• Strategies to improve IA, which may be less “instinctive” to implement according 
to an evaluator, can deliver equivalent, if not more effective, process 
improvement as other strategies, such as optimisation of design task scheduling 
or requirements management.  This assessment is also evinced in the simulation 
of the aerospace company’s design process in that the normalised sensitivity 
coefficient to improve IA is twice that of the coefficient to decrease the number of 
changes generated (i.e. through implementing other such strategies) (Section 
7.3.3). 
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• The importance of implementing IA should be elevated within design processes 
and can be explained through the adapted rework cycle. 

 

For research question 4b, the modelling and simulation of the adapted rework cycle 
provide a means to investigate IA improvement on the overall design process.  By 
using a system dynamics methodology for modelling and simulation, strategies for 
IA improvement have been investigated through analysing the trade-offs between 
parameters.  In turn, the model simulated demonstrates the impact of improving IA 
in terms of design process duration, and these results conform to expert evaluation.  
As such, another key conclusion arises: 
 

• The modelling and simulation of the adapted rework cycle demonstrates and 
predicts the significant influence of IA improvement on design processes. 

 

For research question 4c, the modelling of change packaging in the adapted rework 
cycle model and the evaluation of this model show that change packaging can 
enhance IA improvement strategies.  In turn, the heuristics for change packaging 
describe the ideal implementation of change packaging within design processes, and 
the following conclusion stems from the analysis of change packaging: 
 

• Introducing change packaging to design processes increases the quality of work 
being performed and does not detrimentally affect other aspects of the design 
process.  In other words, change packaging strategies provide an opportunity for 
improvement at minimal risk. 

 

In conclusion, performing IA can lead to design process improvement by enabling 
the appropriate scoping of changes prior to implementation (i.e. before accepting a 
change request) and allowing for the thorough analysis of modifications during 
implementation.  For products that develop through evolution and rework, historical 
data and knowledge about design area volatility from previous design iterations can 
inform the IA implemented during on-going design processes.  Past traceability, 
dependency, and experiential IA results and the actual changes made can be 
compared and used to inform future assessments.  As such, the means for collecting 
and analysing data on changes should also be examined with regards to enabling IA 
improvement, as discussed in future work (Section 9.3). 
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9.2 CONTRIBUTIONS 
Through addressing the research questions posed, this research project makes 
contributions to the field of change management, which can be pinpointed to specific 
sections of this dissertation as follows: 
 

• The holistic classification of IA (Section 2.5).  This work explicitly identifies 
experiential IA as a means to assess the scope of design modifications.  This novel 
interpretation of IA acknowledges the frequent practice of scoping changes 
through inspection or engineering judgement within industry and melds this 
practice with the definition of IA types. 

• The scarcities and disparities in literature on IA (Section 2.7).  The literature review 
assesses IA across a broad range of research areas, including systems 
engineering, software engineering, requirements engineering, mechatronics, 
control system design, engineering design, change management, configuration 
management, and concurrent engineering.  Analysis of this breadth of literature 
highlights previously unidentified gaps in research, which the empirical studies 
address. 

• The empirical studies on IA (Section 3.4 and Section 3.5).  Describing the results of 
empirical studies adds to the body of knowledge of change management practice. 

• The IA characterisations (Section 4.1, Section 4.2, Section 4.3, and Section 4.4).  The 
IA characterisations delineate the disparity between prescribed and practised IA 
and comprehensively specify the influences to this difference. 

• The elicitation method for IA practice (Section 5.1).  The IA elicitation method 
provides a means to systematically examine IA practice.  The application of this 
method at the aerospace company shows how to elicit the IA techniques used, the 
quality of IA, and the influences to the IA applied.  The analysis of such results 
can unearth specific areas for improving design processes. 

• The adapted rework cycle model (Section 6.1 and Section 6.3).  The adapted rework 
cycle provides a novel means to conceptualise and investigate IA and change 
packaging within design processes.  Other models found to date focus on specific 
types of IA and do not incorporate the packaging of changes in processes 
involving rework. 

• The heuristics for IA improvement and change packaging (Section 8.2).  The heuristics 
derived from the adapted rework cycle explain and specify the implications of IA 
improvement and change packaging on design processes, which previously only 
were implicitly acknowledged by the industry collaborators. 



9 ::  CONCLUSION 
 

239 

 

 

9.3 FUTURE WORK 
Despite making these contributions to change management research, limitations or 
areas for improvement in this examination of IA are highlighted throughout this 
dissertation.  Future work can address these points, strengthening the understanding 
of the implications of IA improvement.  Accordingly, the envisioned future work 
entails: 
 

• As discussed in the evaluation of the IA characterisations (Section 4.5.2.2), further 
empirical studies determining the IA techniques that produce high-quality IA 
results for specific change types or product design areas could lead to the 
development of useful IA guidelines. 

• As mentioned in the elicitation of IA practice (Section 5.2.1), the information and 
attribute ratings collected from the interviews for the 42 modifications discussed 
could be correlated with the completed change database for this project.  In turn, 
the estimations of IA quality given by designers could be evaluated and inputted 
into the simulation (Section 7.2). 

• As suggested in the description of the adapted rework cycle model (Section 6.3.2 
and Section 6.3.3), the adapted rework cycle could be extended to include a 
product model to allow the coupling of change sets to be modelled.  This addition 
would enhance the investigation of IA quality improvement and change 
packaging.  The system dynamics professor, who evaluated the adapted rework 
cycle model, also particularly encouraged this addition to the adapted rework 
cycle (Section 6.3.5). 

• As addressed in the limitations of the adapted rework cycle (Section 6.3.4), this 
model, as simulated for the aerospace company, does not factor in “added” or 
“obsoleted” work (Figure 6.14) and could be extended to include these elements.  
Since IA also occurs prior to accepting additional proposed work or 
modifications (as shown by the change process in Figure 2.10), IA should 
correspondingly be included when modelling “added” work.  As such, the 
refined model in Figure 9.2 distinguishes between proposed, rejected, and 
accepted or added work.  This model shows that IA performed on new, proposed 
work occurs at a certain rate based on IA productivity, or how often IA is applied 
on proposed work (e.g. the frequency of meetings with customers to discuss new 
requirements).  IA quality, as defined in Section 6.3.2, can also affect the rate of 
proposed work analysed in that more in-depth, higher-quality IA can require 
more resources, reducing this rate.  Notably, IA quality for proposed work may 
differ from the IA quality value for the rework discovery rate since higher IA 
quality may only be given priority while implementing changes, as observed in 
the aerospace company (Section 3.4.2.1), and the investigation of higher-order, 
knock-on effects may also differ in these instances.  Nevertheless, high IA quality 
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prior to adding work to projects can allow for improved scoping of the amount of 
work to do and, consequently, the time and budget required.  Future work 
should further evaluate the model shown in Figure 9.2 and investigate the 
implications on the heuristics derived in this dissertation. 

• As indicated by the aerospace evaluators of the IA improvement heuristics 
(Section 8.3.2), implementing the adapted rework cycle as a predictive model 
would be useful to improve project management and policies.  In turn, modelling 
the work to do, people, and productivity parameters is necessary by collecting 
additional empirical data, addressing the limitations of the simulation 
implementation cited in Section 6.3.4 and Section 6.3.5. 

 

 
Figure 9.2:  The adapted rework cycle with the addition and obsolescence of work 

(from Figure 6.14) 

In turn, additional future work supports these aims: 
 

• The evaluators at the aerospace company (Section 8.3) described the need to 
develop a strategy to promote the importance of IA to project managers.  Without 
first understanding and addressing their reservations, implementing IA 
improvement strategies is impeded.  Such a strategy could involve workshops 
and publications, such as pamphlets or workbooks. 

• These evaluators also suggested the need to improve the change information 
captured within the system, software, mechanical, and hardware engineering 
groups.  Investigating what information and how such information is 
documented could provide for improvements to the predictive modelling of the 
adapted rework cycle.  Specifically, capturing the relationships between initiating 
and knock-on modification in change sets, also called parent-child relationships 
by Giffin et al. (2007), can support such prediction through improved analysis of 
empirical data to calibrate simulations. 
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Furthermore, this research project could be extended: 
 

• The heuristics for IA improvement and change packaging could be evaluated 
across additional companies and industry sectors developing software.  This 
extension would provide a better understanding of their applicability and 
limitations to a wider range of system-software design processes. 

• The heuristics developed also could be evaluated for mechanical and hardware 
design processes as well as for the project management of mechatronic product 
development.  This examination would indicate the generality of the adapted 
rework cycle to design processes. 

• Finally, the adapted rework cycle could be incorporated into other system 
dynamics and software process dynamics models to determine if and how 
including IA affects their results and policy interpretations. 

9.4 SUMMARY 
The scoping of changes by engineers through IA techniques and tasks determines the 
emergence of unanticipated design errors and modifications.  With poor quality IA 
results, software-intensive products can unexpectedly fail or development processes 
can incur additional costs and project delays.  Although no panacea to effective 
change management may exist, this dissertation demonstrates how improving IA can 
improve system engineering and software design processes and provides direction to 
this end by stipulating the challenges of implementing IA in practice.  Treating IA as 
a crucial part of change management is an effective means to improve design 
processes. 
 



 

 

APPENDIX A 
 
Table A identifies the interviews conducted for this research project (Section 3.1).  
Key discussions, which could not be audio recorded and were only memoed, are also 
included in this list, including a meeting with multiple managers of the aerospace 
company (I-23) and the interviews and workshop at the telecommunications 
company.  At the workshop at the telecommunications company, systems, software, 
and process engineers as well as project managers were present. 
 
This list also includes interviews external to the empirical studies that were 
conducted at three other companies (a large computer hardware and software 
development firm, a small company focusing on research and development for 
computer hardware and software, and a medium-size consultancy working within 
telecommunications) for general research feedback, advice, and input. 
 

Table A:  Interviews conducted within this research project 
 

ID Position Company Date(s) 
3-Jan-05 

13-Feb-05 

12-Aug-05 
1 Manager Computer Hardware and Software Firm 

25-Aug-05 

30-Aug-05 

28-Apr-06 2 Manager Aerospace Firm 

3-Dec-07 

13-Oct-05 
3 Software Engineer Aerospace Firm 

7-Nov-06 

13-Oct-05 
4 Systems Engineer Aerospace Firm 

6-Nov-06 

5 Controls Hardware Engineer Aerospace Firm 17-Oct-05 

6 Controls Conceptual Design Aerospace Firm 18-Oct-05 

7 Controls Hardware Engineer Aerospace Firm 19-Oct-05 

8 Software Engineer Aerospace Firm 19-Oct-05 

9 Controls Hardware Engineer Aerospace Firm 20-Oct-05 

10 Mechanical Engineer Aerospace Firm 25-Oct-05 

11 Mechanical Engineer Aerospace Firm 26-Oct-05 

12 Process Engineer Aerospace Firm 28-Oct-05 

2-Nov-05 
13 Systems Engineer Aerospace Firm 

7-Nov-06 

2-Nov-05 
14 Systems Engineer Aerospace Firm 

6-Nov-06 

2-Nov-05 
15 Systems Engineer Aerospace Firm 

8-Nov-06 
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ID Position Company Date(s) 

16-Nov-05 

4-Dec-06 16 Process Engineer Aerospace Firm 

3-Dec-07 

17 Systems Engineer Aerospace Firm 16-Nov-05 

18 Manager Aerospace Firm 17-Nov-05 

17-Nov-05 
19 Systems Engineer Aerospace Firm 

9-Nov-06 

20 Process Engineer Aerospace Firm 18-Nov-05 

21 Systems Engineer Aerospace Firm 18-Nov-05 

22 Systems Engineer Aerospace Firm 21-Nov-05 

23 Managers Aerospace Firm 9-Dec-05 

24 Manager Aerospace Firm 12-Oct-06 

25 Software Engineer Aerospace Firm 6-Nov-06 

26 Systems Engineer Aerospace Firm 6-Nov-06 

27 Software Engineer Aerospace Firm 6-Nov-06 

28 Software Engineer Aerospace Firm 7-Nov-06 

29 Software Engineer Aerospace Firm 8-Nov-06 

30 Systems Engineer Aerospace Firm 8-Nov-06 

31 Software Engineer Aerospace Firm 8-Nov-06 

32 Software Engineer Aerospace Firm 9-Nov-06 

33 Social Scientist Research and Development Firm 25-Jan-06 

34 Software Engineer Research and Development Firm 25-Jan-06 

35 Manager Research and Development Firm 25-Jan-06 

36 Process Engineer Telecom Consultancy 15-Nov-06 

37 Systems Engineer Telecom Firm 9-May-06 

38 Software Engineer Telecom Firm 9-May-06 

10-May-06 

8-Aug-06 39 Process Engineer Telecom Firm 

5-Dec-07 

24-Oct-06 

25-Oct-06 40 Workshop Telecom Firm 

26-Oct-06 

41 Process Engineer Telecom Firm 24-Oct-06 

42 Process Engineer Telecom Firm 8-Aug-06 

43 Process Engineer Telecom Firm 8-Aug-06 

44 Manager Telecom Firm 31-May-07 
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Figure A displays a matrix of the change attributes (Section 5.1.2) and IA (Table 3.1) 
for the 42 changes elicited during the aerospace IA empirical study (Section 5.2.1).  
Several engineers also used alternative IA techniques, which they developed 
individually to suit particular needs, as shown in Figure A.  For example, informal 
documentation stored large volumes of data inputted into the software design, and 
additional software models were implemented through computer spreadsheets.  
These additional forms of documentation and other models were also used to 
perform IA and were updated to reflect design changes. 

 
Figure A:  Change attribute and IA data collected during the aerospace IA study 
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Traceability IA: Requirement traceability (software tool)

Traceability IA: Software requirement documentation (manual) • • • • • • • • • • • • • • • • • • • •
Traceability IA: Software specification/design documentation (manual) • • • •
Traceability IA: System data dictionary

Traceability IA: Software data dictionary

Dependency IA: Software requirement models • • • • • • • • • • • • • • • • • • •
Dependency IA: Integrated software requirement model

Dependency IA: Software UML model • • • • • • • •
Dependency IA: Software code • •
Experiential IA: Formal design review • • • • • •
Experiential IA: Integrated product team meetings • • • • • •
Experiential IA: Informal discussions • • • • • • • • • • • • • • • • • • • • • • • • •
Experiential IA: Engineering judgement • • • • •
IA: Using other documentation or model • • • • • • •

Traceability • • • • • • • • • • • • • • • • • • • • • • • •
Dependency • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Figure B summarises the information in Figure A and correlates with Table 5.1. 

 
Figure B:  Summary of change attribute and IA data collected 

Traceability IA 
Techniques Used 

Dependency IA 
Techniques Used 

Experiential IA 
Techniques Used 

Source-Direction-Level Attribute Combinations 

IA Techniques Used 
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Figure C shows the changes and IA elicited from systems engineers (Figure A), 
grouped according to the attribute ratings, and correlates with Figure 5.8. 

 
Figure C:  IA practised by systems engineers according to attribute ratings 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Changes from Changes from
External Stakeholders Software Designers
I-4 C-4 Traceability Dependency Experiential I-14 C-9 Experiential

I-4 C-5 Experiential I-14 C-10 Experiential

I-14 C-6 Traceability Dependency Experiential I-14 C-11 Experiential

I-14 C-7 Traceability Dependency Experiential I-15 C-14 Experiential

I-14 C-8 Traceability Dependency Experiential I-19 C-17 Experiential

I-15 C-12 Dependency Experiential

I-15 C-13 Traceability Dependency Experiential

I-19 C-15 Experiential

I-19 C-16 Experiential

I-26 C-21 Traceability Dependency Experiential

I-26 C-22 Traceability Dependency Experiential

I-26 C-23 Traceability Dependency Experiential

I-30 C-35 Traceability Experiential

I-30 C-36 Traceability Experiential

I-30 C-37 Traceability Dependency Experiential

I-30 C-38 Traceability Dependency Experiential

More Formal and Less Formal and
More Synchronous Changes Less Synchronous Changes
I-4 C-4 Traceability Dependency Experiential I-4 C-5 Experiential

I-14 C-6 Traceability Dependency Experiential I-14 C-9 Experiential

I-14 C-7 Traceability Dependency Experiential I-14 C-10 Experiential

I-14 C-8 Traceability Dependency Experiential I-14 C-11 Experiential

I-15 C-12 Dependency Experiential I-15 C-13 Traceability Dependency Experiential

I-26 C-21 Traceability Dependency Experiential I-15 C-14 Experiential

I-26 C-22 Traceability Dependency Experiential I-19 C-15 Experiential

I-26 C-23 Traceability Dependency Experiential I-19 C-16 Experiential

I-30 C-37 Traceability Dependency Experiential I-19 C-17 Experiential

I-30 C-38 Traceability Dependency Experiential I-30 C-35 Traceability Experiential

I-30 C-36 Traceability Experiential
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Figure D shows the changes and IA elicited from software engineers (Figure A), 
grouped according to the attribute ratings, and correlates with Figure 5.10. 

 
Figure D:  IA practised by software engineers according to attribute ratings 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Changes from Changes from
System Designers Software Designers
I-3 C-2 Traceability Experiential I-3 C-1 Traceability Dependency
I-25 C-18 Traceability Dependency Experiential I-3 C-3 Traceability Experiential
I-25 C-19 Experiential I-25 C-20 Dependency
I-27 C-24 Traceability Dependency Experiential I-27 C-28 Traceability Dependency Experiential
I-27 C-25 Traceability Dependency Experiential I-28 C-30 Dependency
I-27 C-26 Traceability Dependency Experiential I-28 C-31 Traceability Dependency
I-27 C-27 Traceability Dependency Experiential I-29 C-32 Dependency
I-28 C-29 Traceability Dependency Experiential I-29 C-34 Dependency
I-29 C-33 Traceability Dependency I-31 C-40 Dependency
I-31 C-39 Dependency I-32 C-41 Dependency Experiential
I-32 C-42 Dependency Experiential

More Formal and Less Formal and
More Synchronous Changes Less Synchronous Changes
I-3 C-1 Traceability Dependency I-25 C-19 Experiential
I-3 C-2 Traceability Experiential I-27 C-28 Traceability Dependency Experiential

I-3 C-3 Traceability Experiential I-32 C-42 Dependency Experiential

I-25 C-18 Traceability Dependency Experiential
I-25 C-20 Dependency
I-27 C-24 Traceability Dependency Experiential
I-27 C-25 Traceability Dependency Experiential
I-27 C-26 Traceability Dependency Experiential
I-27 C-27 Traceability Dependency Experiential
I-28 C-29 Traceability Dependency Experiential
I-28 C-30 Dependency
I-28 C-31 Traceability Dependency
I-29 C-32 Dependency
I-29 C-33 Traceability Dependency
I-29 C-34 Dependency
I-31 C-39 Dependency
I-31 C-40 Dependency
I-32 C-41 Dependency Experiential
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Figure E displays the ratings of information, resource, and time availability as well as 
IA quality for the 23 changes discussed in the IA empirical studies (Section 5.2.1).  
These ratings are displayed versus the IA techniques implemented, change 
attributes, and IA influences and are colour coded according to the IA technique or 
task influences cited (white and grey, respectively).  The notes on the IA influences 
summarise the primary influences cited by designers during the interviews.  These 
notes indicate the outcome of mitigating these influences according to hypothetical 
outcomes of increasing the information, resource, and time availability.  In a few 
cases, designers suggested such mitigation strategies that actually occurred in 
practice, and these are stated as well in the notes.   
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Resource Availablity H H L H H L H H H H H H L L M M H H L L H M H H H H H H H H H H H H H H H H H H H L H L L M H M M

Time Availability H H H H H H M H M M M H L L L L L L M M M M H H H H H M M M M L L H H L H L H H H L L H L H H L L

IA Result Quality H H L H M M M H M H M M M H M H M M M M M M H M H M H H H M M M M M M M M M L H H M M M H M H M M

Traceability • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
Dependency • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
Experiential • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Source M M H H H H H H H H H H H H H H H H L L L H H H H H H M M M M L L M M M M M H H H M M M M L L M M

Direction L L M M M M M M M M M M M M M M M M M M M M M M M M M L L L L L L L L L L L M M M L L L L L L L L

Level L L M M M M M M M M M M M M M M M M M M M M M M M M M L L L L L L L L L L L M M M L L L L L L L L

Formality H H H H H H H M M M M M M M M M M M L L L M M M M M M H H H H L L M M M M M M M H M M M M M M M M

Timing H H H H H H H H M M M M M M L L L L L L L M M M M M M M M M M L L M M M M M L L H M M M M H H L L

N
o

te
s
 o

n
 I
A

 I
n

fl
u

e
n

c
e
s

IA
 T

e
c
h

n
iq

u
e
:  
M

e
th

o
d
 d

e
fi
n
it
io

n

IA
 T

e
c
h

n
iq

u
e
 M

it
ig

a
ta

ti
o

n
: 
C

le
a
r 

m
e
th

o
d
 d

e
fi
n
it
io

n

IA
 T

a
s
k
: 
L
a
c
k
 o

f 
in

fo
rm

a
ti
o
n
, 
L
a
c
k
 o

f 
re

s
o
u
rc

e
s

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

:  
S

h
o
u
ld

 i
m

p
ro

v
e
 b

o
th

 i
n
fo

rm
a
ti
o
n
 a

n
d
 r

e
s
o
u
rc

e
s

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
in

g
 e

it
h
e
r 

in
fo

rm
a
ti
o
n
 a

n
d
 r

e
s
o
u
rc

e
s
 s

h
o
u
ld

 h
e
lp

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

:  
Im

p
ro

v
in

g
 e

it
h
e
r 

in
fo

rm
a
ti
o
n
 a

n
d
 r

e
s
o
u
rc

e
s
 s

h
o
u
ld

 h
e
lp

IA
 T

a
s
k
: 
L
a
c
k
 o

f 
in

fo
rm

a
ti
o
n
, 
L
a
c
k
 o

f 
ti
m

e

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
e
d
 b

o
th

 i
n
fo

rm
a
ti
o
n
 a

n
d
 t
im

e

IA
 T

a
s
k
: 
A

m
b
ig

u
it
y
 o

f 
in

fo
rm

a
ti
o
n

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
in

g
 i
n
fo

rm
a
ti
o
n
 a

v
a
ila

b
ili

ty
 s

h
o
u
ld

 h
e
lp

IA
 T

e
c
h

n
iq

u
e
: 
P

a
rt

it
io

n
in

g
, 
S

y
n
c
h
ro

n
is

a
ti
o
n

IA
 T

e
c
h

n
iq

u
e
:  
Im

p
ro

v
in

g
 t
im

e
 a

v
a
ila

b
le

 d
o
e
s
 n

o
t 
n
e
c
e
s
s
a
ri
ly

 h
e
lp

IA
 T

a
s
k
: 
L
a
c
k
 o

f 
in

fo
rm

a
ti
o
n

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
in

g
 i
n
fo

rm
a
ti
o
n
 s

h
o
u
ld

 h
e
lp

IA
 T

a
s
k
: 
L
a
c
k
 o

f 
ti
m

e
, 
M

a
g
n
it
u
d
e
 o

f 
In

fo
rm

a
ti
o
n

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
in

g
 i
n
fo

rm
a
ti
o
n
 a

c
c
e
s
s
 s

h
o
u
ld

 h
e
lp

IA
 T

a
s
k
: 
In

c
re

a
s
in

g
 r

e
s
o
u
rc

e
s
 h

a
s
 l
it
tl
e
 e

ff
e
c
t

IA
 T

a
s
k
: 
U

n
lik

e
ly

 t
o
 i
n
c
re

a
s
e
 t
im

e
 a

v
a
ila

b
le

 g
iv

e
n
 p

ro
je

c
t 
b
u
d
g
e
t 

a
n
d
 s

c
h
e
d
u
le

IA
 T

a
s
k
: 
L
a
c
k
 o

f 
in

fo
rm

a
ti
o
n
, 
A

m
b
ig

u
it
y
 o

f 
in

fo
rm

a
ti
o
n
, 
L
a
c
k
 o

f 
re

s
o
u
rc

e
s

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
in

g
 b

o
th

 i
n
fo

rm
a
ti
o
n
 a

n
d
 r

e
s
o
u
rc

e
s
 s

h
o
u
ld

 h
e
lp

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

:  
Im

p
ro

v
in

g
 b

o
th

 i
n
fo

rm
a
ti
o
n
 a

n
d
 r

e
s
o
u
rc

e
s
 s

h
o
u
ld

 h
e
lp

IA
 T

a
s
k
: 
M

a
g
n
it
u
d
e
 o

f 
in

fo
rm

a
ti
o
n
, 
V

o
la

ti
lit

y
 o

f 
in

fo
rm

a
ti
o
n

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
in

g
 i
n
fo

rm
a
ti
o
n
 a

v
a
ila

b
ili

ty
 s

h
o
u
ld

 h
e
lp

IA
 T

a
s
k
: 
L
a
c
k
 o

f 
in

fo
rm

a
ti
o
n

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
in

g
 i
n
fo

rm
a
ti
o
n
 a

v
a
ila

b
ili

ty
 s

h
o
u
ld

 h
e
lp

IA
 T

a
s
k
: 
L
a
c
k
 o

f 
in

fo
rm

a
ti
o
n

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
in

g
 i
n
fo

rm
a
ti
o
n
 a

v
a
ila

b
ili

ty
 s

h
o
u
ld

 h
e
lp

IA
 T

e
c
h

n
iq

u
e
: 
P

a
rt

it
io

n
in

g
, 
S

y
n
c
h
ro

n
is

a
ti
o
n

IA
 T

e
c
h

n
iq

u
e
 M

it
ig

a
ti

o
n

: 
W

o
rk

e
d
 w

it
h
 e

x
te

rn
a
l 
s
ta

k
e
h
o
ld

e
r 

e
x
te

n
s
iv

e
ly

IA
 T

a
s
k
: 
L
a
c
k
 o

f 
in

fo
rm

a
ti
o
n

IA
 T

a
s
k
: 
U

n
c
le

a
r 

h
o
w

 t
o
 i
m

p
ro

v
e
 i
n
fo

rm
a
ti
o
n
 a

v
a
ila

b
le

IA
 T

e
c
h

n
iq

u
e
: 
A

d
m

in
is

tr
a
ti
o
n

IA
 T

e
c
h

n
iq

u
e
: 
N

e
v
e
r 

e
n
o
u
g
h
 t
im

e
 f

o
r 

th
o
ro

u
g
h
 a

n
a
ly

s
is

 u
s
in

g
 t
o
o
ls

IA
 T

e
c
h

n
iq

u
e
: 
P

a
rt

it
io

n
in

g
, 
S

y
n
c
h
ro

n
is

a
ti
o
n

IA
 T

e
c
h

n
iq

u
e
: 
Im

p
ro

v
in

g
 i
n
fo

rm
a
ti
o
n
 a

v
a
ila

b
le

 d
o
e
s
 n

o
t 
n
e
c
e
s
s
a
ri
ly

 h
e
lp

IA
 T

e
c
h

n
iq

u
e
: 
O

v
e
r-

e
x
te

n
s
io

n

IA
 T

e
c
h

n
iq

u
e
: 
M

o
re

 i
n
fo

rm
a
ti
o
n
 o

r 
ti
m

e
 a

v
a
ila

b
le

 h
a
s
 l
it
tl
e
 e

ff
e
c
t

IA
 T

e
c
h

n
iq

u
e
: 
M

o
re

 i
n
fo

rm
a
ti
o
n
 o

r 
ti
m

e
 a

v
a
ila

b
le

 h
a
s
 l
it
tl
e
 e

ff
e
c
t

IA
 T

e
c
h

n
iq

u
e
: 
P

a
rt

it
io

n
in

g
, 
S

y
n
c
h
ro

n
is

a
ti
o
n
, 
M

e
th

o
d
 d

e
fi
n
it
io

n

IA
 T

e
c
h

n
iq

u
e
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
in

g
 c

o
m

m
u
n
ic

a
ti
o
n
 s

h
o
u
ld

 h
e
lp

IA
 T

e
c
h

n
iq

u
e
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
e
d
 c

o
m

m
u
n
ic

a
ti
o
n
 h

e
lp

e
d

IA
 T

a
s
k
: 
L
a
c
k
 o

f 
in

fo
rm

a
ti
o
n
, 

V
o
la

ti
lit

y
 o

f 
in

fo
rm

a
ti
o
n

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
in

g
 r

e
s
o
u
rc

e
s
 m

ig
h
t 
n
o
t 
h
e
lp

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
in

g
 t
im

e
 m

ig
h
t 
n
o
t 
h
e
lp

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
in

g
 i
n
fo

rm
a
ti
o
n
 s

h
o
u
ld

 h
e
lp

 s
ig

n
if
ic

a
n
tl
y

IA
 T

a
s
k
: 
L
a
c
k
 o

f 
re

s
o
u
rc

e
s

IA
 T

a
s
k
 M

it
ig

a
ti

o
n

: 
Im

p
ro

v
in

g
 i
n
p
u
t 
fr

o
m

 e
x
te

rn
a
l 
s
ta

k
e
h
o
ld

e
r 

s
h
o
u
ld

 h
e
lp

IA
 T

e
c
h

n
iq

u
e
: 
P

a
rt

it
io

n
in

g
, 
S

y
n
c
h
ro

n
is

a
ti
o
n

IA
 T

e
c
h

n
iq

u
e
: 
U

n
c
le

a
r 

h
o
w

 t
o
 s

y
n
c
h
ro

n
is

e
 w

o
rk

 g
iv

e
n
 t
ig

h
t 
s
c
h
e
d
u
le



APPENDIX B 
 

249 

 

 

Figure E:  Information, resource, time, and IA quality ratings and IA influences 
data collected 

 Figure F summarises the information in Figure E. 

 
Figure F:  Summary of ratings and IA influence data collected 

 



 

 

APPENDIX C 
 
Causal loop diagrams illustrate the relationships between variables in system 
dynamics models.  Links between variables are given positive or negative polarities.  
Positive links indicate that an increase in the causal variable induces an increase in 
the related effect.  Similarly for positive links, a decrease in the causal variable can 
lead to a decrease in the affected variable.  Negative links denote an increase or 
decrease in the causal variable corresponds to a decrease or increase, respectively, in 
the related effect.  Feedback loops are specified as reinforcing or balancing based on 
the product of the link polarities constructing the loop (i.e. multiplying the signs 
around the loop; two negative signs equal a positive sign).  Reinforcing loops have a 
positive result, while balancing loops have a negative result.  Figure G depicts the 
notation for causal loop diagrams described by Sterman (2000: 138). 
 

 
 

Figure G:  Causal loop diagram notation (Sterman 2000: 138) 
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Stock and flow diagrams represent the feedback loops of causal loop diagrams, but 
also illustrate the accumulation and flow of material, work, etc.  Typically, a bathtub 
metaphor is used to describe these diagrams.  The flow of water into a tub via the tap 
and the flow of water out of the tub via the drain determine the stock of water in the 
tub.  The tap and drain valves determine the rate of these flows.  Sources and sinks 
are outside of the model boundaries and are assumed to have infinite capacity (e.g. 
water can always flow out of the tap, and water can always drain from the tub).  As 
such, the flow of water with respect to time and the initial stock of water in the tub 
can be used to mathematically model this bathtub system.  Figure H shows the stock 
and flow diagram notation used by Sterman (2000: 193). 
 

 
 

Figure H:  Stock and flow diagram notation (Sterman 2000: 193) 
 



 

 

APPENDIX D 
 
The software change data set obtained from the aerospace company contains 19 
fields for almost 1600 changes.  Table B depicts the value formats primarily used 
since the notation and scales are not completely consistent within the data set.  These 
documented changes were from a completed project at the company, while the 42 
changes shown in Chapter 5 and Appendix B were from an on-going project. 
 

Table B:  Software change database fields of information 
 

Variable Description Value Format 

ID Number Changes are given an identification 
number chronologically. Integer 

Status 
Changes are classified according to 
their progress through the CCB and 
implementation. 

Classification (Open, Closed, Cancelled, 
Approved) 

Time of Change 
Request 

Changes are entered into the database 
at the time of their request. Date 

Title Changes are given a descriptive title. Text 

Safety Impact Changes are rated according to their 
estimated impact on safety. 

Scale Rating (No Impact, Minor Impact, Safety 
Hazard)  

Safety Impact 
Description 

Rationale for safety impact ratings is 
described in text. Text 

Functional Impact Changes are rated according to the 
expected rework required. 

Scale Rating (No Impact, Minor Impact, Major 
Impact) 

Impact on 
Documentation for 
Customer 

Changes are indicated to affect a 
particular document provided to the 
customer. 

Classification (No, Documentation Chapter 
Number) 

Software Type Changes can affect one of two 
primary areas of the software design. Classification (Type 1, Type 2) 

Task Performed Changes are classified according to 
the task that spawned the request. 

Classification (Reviewing, Software Requirement 
Model Analysis, Testing) 

Type of Change Changes are categorised according to 
their type. 

Classification (New Requirement, Improvement, 
Error) 

Change Requester – 
Major Group 

Internal or external stakeholders can 
initiate changes. Classification (Controls, Customer, Supplier) 

Change Requester – 
Sub Group 

Changes initiated by internal 
stakeholders are further specified in 
terms of their primary source. 

Classification (Software Requirements, Software 
Specification, Software Design) 

Change Request 
Work Product 

The work product affected by the 
change request is identified. 

Classification (Control System Requirements, 
Control System Specification, System Design, 
Software Specification, Software Design, 
Traceability) 

Change Description Details of changes are described in 
text. Text 

Name of Change 
Requestor 

Change requests are associated with 
designer initiating them. Text 

Name of Change 
Implementer 

Change requests are assigned to a 
designer for implementation. Text 

Confirmation Task The tasks used to confirm the change 
request details are classified. 

Classification (Reviewing, Software Requirement 
Model Analysis, Testing) 

Reason for Cancel If a change request is cancelled by the 
CCB, the reason is captured. Text 
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Even though the change database contains copious and detailed information about 
the changes occurring during the software development project, the data is not 
necessarily complete and contains subjectivity.  For instance, additional 
modifications are also performed in practice during the implementation of requested 
changes, and some of the change requests can actually have larger scopes than 
depicted by their expected “functional impact” value.  In turn, not documenting such 
unanticipated changes causes an underestimation of the rework implemented from 
analysing the change database.  Moreover, classification categories are not always 
standardised, leading to multiple categories with similar connotations.  Also, 
designers may classify changes non-uniformly since scales and categories can be 
interpreted differently.   
 
Despite these limitations, this database provides some indication of the changes that 
occur at the aerospace company.  For instance, several basic characteristics of this 
firm’s change processes, which correspond to observations during the empirical 
studies, can be derived from the database (Table C).  Note that not all percentages 
sum to 100% in Table C since some changes are classified into anomalous categories. 
 

Table C:  Characteristics of changes from data set 
 

Characteristic Information from the Data Set Interpretation 

Change Initiation 

72% of changes are initiated by controls.  Of 
which, 62% of changes are classified as “errors”. 
 
28% of changes are initiated by external 
stakeholders.  Of which, 72% are “new 
requirements” or “improvements”. 

Many changes are generated based 
on rework from within controls. 
 
External stakeholders primarily 
generate changes to customise the 
control system platform. 

Change Implementation 

38% of changes are made in system design.  Of 
which, 90% are in specification documentation. 
 
48% of changes are made in software design.  Of 
which, 50% affect software specifications, and the 
other 50% affect the other software design 
artefacts. 

System designers primarily develop 
software requirements, while 
software designers construct the 
detail software specifications and 
implement them. 

Change Identification 

64% of change requests are confirmed only by 
review. 
 
33% of change requests are confirmed only by 
testing. 
 
1% of change requests are confirmed only by 
model analysis. 

Multiple IA techniques may not be 
actively used during the initial 
analysis of change requests to 
identify potential knock-on 
modifications. 

 
From Table C, the “change initiation” characteristic suggests that the software design 
process is highly iterative within the control system group and that the customisation 
of the product platform is driven by input from external stakeholders.  In turn, the 
“change implementation” characteristic corresponds with the primary roles of 
system and software designers.  These characteristics are consistent with the 
discussion of the empirical studies in Section 3.3 and Section 3.4.1, respectively.  The 
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“change identification” characteristic suggests that knock-on changes may only be 
investigated in detail during downstream tasks of design work (i.e. after the initial 
analysis of change requests) and correlates with the empirical findings in Section 
3.4.2.1.  IA performed prior to scheduling implementation may not be used to search 
thoroughly for additional design flaws necessitating changes.  Thus, this 
characteristic hones in on the potential of the aerospace company to improve their 
application of IA to discover rework earlier. 



 

 

APPENDIX E 
 
As suggested in Section 6.4.2, 3 example change sets from the change database 
(Appendix D) were identified in 3 functional areas in order to depict the behaviour of 
the adapted rework cycle to improved IA quality (Section 6.3.2).  The 3 representative 
change sets were each determined as follows: (a) the database was first combed to 
determine changes associated with a functional area; (b) changes to a specific design 
area within this functional area were then determined; and, (c) changes related 
within this design area were finally identified, grouping initiating changes with 
knock-on modifications.  The examples analysed in Section 6.4.2 consist of the 
changes associated with specific design areas, outlined in Figure J. 
 

 
 

Figure J:  The selection of changes to depict the adapted rework cycle behaviour 
 
More specifically, the functional area changes were identified as follows: 
 

1. All changes (either requested or implemented) by a designer were collected from the 
database, forming a subset. 

2. All changes (either requested or implemented) by other designers involved in 
requesting or implementing changes within this data subset were then included into 
the subset. 

3. Step 2 was repeated again with the refined data subset. 

 
The names of designers were queried because the other data fields do not explicitly 
associate changes to functional areas, and changes associated with multiple designers 
were included in the subset since in some cases different designers led the 
development of a functional area during the 2.5 years of change data. 
 
Since specific design areas within functional areas are assigned acronyms, the change 
title and description fields were searched for a variety of acronyms appearing in the 
subset.  A specific design area associated with a manageable number of changes (i.e. 
less than 100) was then selected, and example change sets were created: 
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4. The change title, change description, and safety impact description fields in the 
change subset were searched for use of the selected design area’s acronym or its 
longhand name.  The changes found were allocated to the set of changes for the 
example design area. 

5. All fields in the complete database were then searched again using the acronym and 
its longhand name to ensure that no changes in the example data set were missed.  In 
all three functional areas investigated, this search produced no additional changes. 

 
Related modifications were then identified within the set of specific design area 
changes: 
 

6. Change titles, change descriptions, and safety impact descriptions were manually 
searched to form groups of changes due to the same causes. 

7. All changes within the functional area were searched again using keywords from the 
causes of these change groups.  In all three functional areas investigated, this search 
produced no additional changes. 

 
For the purpose of the data analysis performed (Section 6.4.2), the earliest change in 
each group of related modifications identified is considered the initiating change and 
the remaining related changes are classified as knock-on changes.  Notably, the 
change database does not align with the definition of IA quality or how interviewees 
describe the company’s IA quality (I-2, I-12, I-15, I-16) in that the database does not 
depict applications of IA accounting for fractions of the remaining rework either 
through reporting decreasing functional impact values over time for related changes 
or reporting multiple, related changes simultaneously.  As such, it is assumed that 
the reported changes in the database encompass a quantity of other knock-on 
changes (Section 7.3.1) that are not explicitly denoted to correspond with the 
definition of IA quality (Section 6.3.2). 
 
As previously suggested, the causes of the modifications in the database description 
fields were used to relate changes.  As opposed to forming groups of changes around 
design area dependencies in system and software architecture diagrams, this manner 
of grouping limits the scope of the related initiating and knock-on changes, as 
mentioned in Section 6.3.2.  Such causes identified in the database were no more 
complicated66 than the examples in Table D and Table E and, thus, suggest sets of 
related modifications readily found by IA. 
 
As represented by the changes in Table D, a change to boundary conditions was 
implemented in the software design and only later changes to the system 
requirements and software requirement model were requested due to the same cause 
                                                        
66 Other example causes include changes to the annunciation of faults and validation of signal inputs in 
requirement and design work products. 
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(i.e. the modified boundary conditions).  Table E similarly depicts this pattern of 
changes affecting related work products to maintain consistency and also shows 
another pattern in that additional changes to the same work product (i.e. including 
additional error flags) can also emerge due to the same initiating cause (i.e. including 
additional logic) to ensure design completeness.  These two patterns were the forms 
of related changes identified in the three example data sets searched. 
 

Table D:  Example A of related changes 
 

Time of Change 
Request Change Description Change Request  

Work Product 
t Change to boundary conditions Software Design 

t + 1 year, 1 month Update to boundary conditions in software requirement 
model Control System Specification 

t + 1 year, 1 month Update to boundary conditions in software 
requirements Control System Specification 

 
Table E:  Example B of related changes 

 
Time of Change 

Request Change Description Change Request  
Work Product 

t Change to allow reading of data input and associated 
logic Software Design 

t + 1 month Update to data input reading and logic Software Specification 

t + 1 month Additional change to logic requirements due to 
misleading error flag in logic specification  Control System Specification 

t + 2 months Additional error flag included for completeness in 
design Control System Specification 

t + 3 months Clarification of requirements requested by software 
design (ambiguity in logic required) Control System Specification 

t + 4 months Specification of revised logic Software Specification 

t + 4 months Implementation of revised logic Software Design 

 
Although the database was systematically searched, some related changes could 
have been missed.  However, given the limited scope of the initiating and knock-on 
change groups, few changes, if any, could arguably fit into their specificity based on 
the defined causes.  An increase of several such changes into the example design 
areas would unlikely change the characteristics of the known rework curves (Figure 
6.19) used to derive the reference modes.  Missing several changes within a group of 
related changes, and, therefore, increasing the total functional impact of the related 
changes, only causes an increase in a single data point as analysed for an impact 
analysis quality of 1, which does not necessarily affect the concavity of the known 
rework curve.  If several missed changes affect different related change sets, then the 
impact is also negligible since this increase in rework is small, and the curve retains 
its shape. 
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