
JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 20 22 NOVEMBER 2000
Quantum wave packet dynamics with trajectories: Implementation
with adaptive Lagrangian grids
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The quantum trajectory method was recently developed to solve the hydrodynamic equations of
motion in the Lagrangian, moving-with-the-fluid, picture. In this approach, trajectories are
integrated for fluid elements~‘‘particles’’ ! moving under the influence of the combined force from
the potential surface and the quantum potential. To accurately compute the quantum potential and
the quantum force, it is necessary to obtain the derivatives of a function given only the values on the
unstructured mesh defined by the particle locations. However, in some regions of space–time, the
particle mesh shows compression and inflation associated with regions of large and small density,
respectively. Inflation is especially severe near nodes in the wave function. In order to circumvent
problems associated with highly nonuniform grids defined by the particle locations, adaptation of
moving grids is introduced in this study. By changing the representation of the wave function in
these local regions~which can be identified by diagnostic tools!, propagation is possible to much
longer times. These grid adaptation techniques are applied to the reflected portion of a wave packet
scattering from an Eckart potential. ©2000 American Institute of Physics.
@S0021-9606~00!01244-7#
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I. INTRODUCTION

The hydrodynamic formulation of quantum mecha
ics1–8 leads to a description of the time-evolution of th
probability density, wave function, and other quantities
terms of equations-of-motion which have analogies to th
developed for classical compressible fluids. Studies in qu
tum hydrodynamics fall into two domains having differe
methodologies and goals. The older and possibly be
known approach uses quantum hydrodynamics as an ana
cal tool. Typically, this approach is initiated by first solvin
the time-dependent Schro¨dinger equation to obtain the wav
function. In the second step, analysis is performed on
wave function to yield hydrodynamic quantities such as fl
maps and particle trajectories.7 An example of this approach
is analysis of the double-slit diffraction problem in terms
Bohm trajectories and the way in which they are influenc
by the quantum potential.7,9 The second and less develop
strategy is quite different. In contrast to the analytical ro
mentioned previously, the synthetic approach is based u
the direct solution of the hydrodynamic equations-of-mot
so as to propagate discretized elements of the probab
fluid.10–18During the propagation, the wave function may
computed ‘‘on-the-fly,’’ but it is not presupposed as in t
analytical approach.

The quantum trajectory method~QTM!, introduced re-
cently by Lopreore and Wyatt, is an example of the synthe
approach.12 An approach similar to the QTM has also be
recently developed by Sales Mayoret al.13 In the QTM, the
equations-of-motion for discretized fluid elements~‘‘par-
ticles’’! are formulated and solved in the Lagrangia
8890021-9606/2000/113(20)/8898/10/$17.00
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moving-with-the-fluid, picture. These fluid elements follo
quantum trajectories which are influenced by both the c
sical force obtained from the potential energy surface and
quantum force obtained from the Bohm quantum potent
Q. The quantum potential measures the curvature of the
plitude of the wave function around each of the particles a
in this formulation is the source of all quantum effects. T
main approximation involves the use of a relatively sm
number of fluid elements, although additional approxim
tions may be introduced in the computational implemen
tion.

The QTM has been applied to barrier transmission12

nonclassical reflection from a downhill ramp,14 and a collin-
ear model chemical reaction.15 It has also been shown how
the wave function, including phase information, may be g
erated along the quantum trajectories.16 Also, distributed ap-
proximating functionals,17,18 DAFs, have been implemente
in the QTM in order to provide an accurate evaluation ofQ
and its derivatives.19 In addition, Bittner has developed an
applied related methods to study tunneling dynamics in
double well potential.20 In related earlier studies, Weine
et al.10,11used a Lagrangian hydrodynamic approach to stu
the motion of Gaussian wave packets on quadratic poten
surfaces.

In a companion to the present study, Bittner and Wy
presented three enhancements to the quantum hydrodyn
methodology.21 These included a technique for propagati
quantum trajectories perpendicular to wavefronts~surfaces of
constant quantum action,S!, a method for propagating leas
squares expansion coefficients, and the use of local ga
8 © 2000 American Institute of Physics
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transformations to remove fast components of the w
function, so that the accuracy of computed derivatives wo
be improved. In the present study, the focus will be upon
introduction and implementation of local adaptive Lagran
ian grids. These local grids are carried along with the p
ticles exterior to the local grid and they are introduced
some internal regions over certain time intervals in orde
avoid the difficulty of computing the quantum potential a
the quantum force near wave function nodes. In fact, mov
local meshes can eliminate difficulties encountered aro
wave function nodes, at the expense of stepping outside
traditional formulation of quantum hydrodynamics. In add
tion, adaptive grids can be used to redistribute mesh poin
improve the sampling of data~such as the probability densit
or the velocity! that is being carried along by the movin
particles.~The terms ‘‘mesh points’’ and ‘‘particles’’ will be
used interchangeably in this study.!

Mesh adaptation continues to be a topic of intense inv
tigation in computational fluid dynamics22–28 and some of
the techniques used in this study have their origin in class
fluid dynamics. A subsidiary aspect of mesh adaptation c
cerns the issues of where and when the adapted mesh s
be used. For this purpose, diagnostic tools are neede
signal the early onset of regions where problems may oc
at later times. The diagnostic problem will also be addres
in this study.

The way in which the adapted mesh is used is as follo
Assume thatN quantum trajectories have been generated
to time T in a scattering calculation. At this time, a diagno
tic indicator has sensed impending trouble within a reg
denotedG. The adapted mesh is introduced withinG and
whatever information carried by the particles~probability
density, wave function phase, velocity,...! is interpolated
onto the new mesh. The number of new mesh points wit
G may be different from the number of particles that we
there originally. As a result, when we propagate forward
time, we are no longer following the trajectories of the orig
nal particles, although these could be obtained by interp
tion. In any case, for particles not withinG, the usual hydro-
dynamic equations-of-motion are solved to update
particle positions and other quantities. However, for tho
particles within G, in order to maintain accuracy in th
propagation, it may be essential not to use the hydrodyna
representation. By some means~to be described later in Sec
V B!, the wave function is updated to obtain the value
each new mesh point withinG. This completes the first time
step after mesh adaptation so that the cycle may then
repeated. The exterior particles move along from time ste
time step, and mesh adaptation-interpolation-propagatio
performed within the moving regionG. This whole process
in repeated until the diagnostic indicators have calmed do
enough to continue with the global hydrodynamic propa
tion.

The outline of the present study is as follows. In Sec.
the formulation of Lagrangian quantum hydrodynamics w
be reviewed and the role played by the quantum trajecto
will be described. At the end of this section, a description
presented of the model one-dimensional scattering prob
that will be used as an example for grid adaptation. In S
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III, the origins of irregular spacings between the particles
considered, with special emphasis upon particle dynam
near wave function nodes. Section IV describes adapta
strategies for Lagrangian grids, including the design and
of diagnostic tools. In Sec. V, alternative representations
the wave function are defined; it will be necessary to cha
representations in certain regions in order to avoid comp
tional problems encountered when using the hydrodyna
representation near nodes in the wave function. In Sec.
computational results obtained using grid adaptation will
presented for the reflected portion of a wave packet wh
has scattered from a repulsive Eckart potential. The trans
ted portion of the wave packet experiences no computatio
problems when the QTM is used to propagate quantum
jectories; this aspect of the dynamics is the subject of a p
vious study.19 However, in the reflected region, a number
nodes develop at later times and it is in this region that
grid adaptation strategies will be implemented. Finally, co
cluding remarks are presented in Sec. VII.

II. LAGRANGIAN QUANTUM HYDRODYNAMICS

In this section, a brief review of the quantum trajecto
method12,14–16,19will be presented~also see Ref. 13!. We
begin by expressing the time-dependent wave function
exponential form,C(r ,t)5ei j/\ . The complex-valued phas
is j(r ,t)52 i\C(r ,t)1S(r ,t), where both C ~the
C-amplitude! andS~the action function! are real-valued. The
wavefunction may also be written in polar form,c(r ,t)
5R(r ,t)eiS(r ,t)/\, so that the probability density is the
given by either of two expressions,r(r ,t)5e2C(r ,t)

5R(r ,t)2. The advantage of using the exponential form
that C and S are frequently slowly varying, even when th
real and imaginary parts ofC are rapidly oscillating. How-
ever, near some points, the preceding statement is not co
and as a result the advantage in usingR or C andS is lost;
elaboration of this statement is provided in the next secti
After substituting the exponential expression forC into the
time-dependent Schro¨dinger equation, we obtain th
equations-of-motion for the two scalar fields

]C

]t
52

1

2
“"v2v"“C, ~1!

2
]S

]t
5

1

2m
u“Su21V1Q, ~2!

where the current velocity isv(r ,t)5(1/m)“S(r ,t). The
second of these equations is the quantum Hamilton–Ja
equation~QHJ!, which differs from the classical HJ equatio
by the presence of the Bohm quantum potential,

Q~r ,t !52
\2

2m
$¹2C1u“Cu2%. ~3!

Rather than attempt to solve the QHJ equation, we take
gradient of Eq.~2! and obtain a Newtonian-type equation f
the flow acceleration,

mH ]

]t
1v"“J v52“~V1Q!, ~4!
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where the two terms on the right-hand side are the ‘‘cla
cal’’ force obtained from the gradient of the potential and t
quantum force obtained from the gradient of the quant
potential. Equations~1! and ~4! are then used to update th
flow velocity and theC-amplitude, which in turn is needed t
update the quantum potential in Eq.~3!.

Equations~1! and ~4! for C and v are expressed in th
Eulerian picture; the fields evolve with respect to a fixed-
space coordinate system. We now convert to the Lagran
picture by introducing a local frame moving with the field
This is done by utilizing the time derivative expressed in
moving frame,d/dt5]/]t1v•“, where the second term i
the convective contribution. Equations~1! and~4! in the La-
grangian picture are then

dC

dt
52

1

2
“"v, ~5!

dv

dt
52

1

m
“V1

\2

2m2 “$¹2C1u“Cu2%. ~6!

In these equations, the convective operatorv•“ no longer
appears explicitly.

The Lagrangian hydrodynamic equations are solved
discretizing the probability fluid in terms ofN fluid elements,
termed ‘‘particles.’’ Equations~5! and ~6! and then inte-
grated to find quantum trajectories for the fluid elemen
The position of each particle is obtained by integratingdr
5vdt along with Eqs.~5! and~6!. It is important to note that
the trajectory for each fluid element is correlated with t
trajectory for each of the other fluid elements. Howev
when the quantum force becomes very small or vanishes
fluid elements move as a classical uncorrelated ensem
When Eq.~5! is integrated along the trajectory, we obtain f
the C-amplitude,

C~r ,t !5C0~r0!2
1

2 E
0

t

“"vdt, ~7!

whereC0(r ) andr0 are the initial values att50. The diver-
gence of the velocity field in the integrand is a function
time and is evaluated along the trajectoryr (t).

The action function does not appear explicitly in Eqs.~5!
and ~6!, but its gradient does, through the proportional
betweenv and“S. As each trajectory is integrated, the a
tion function can be obtained by integrating the quant
Lagrangian along the trajectory.16 The quantum Lagrangian
Lq , is the excess of the flow kinetic energy over the to
potential, Lq(t)5(1/2)mv22(V1Q). The time-dependen
action along the trajectory is then given by

S~ t !5S01E
0

t

Lq~t!dt. ~8!

Equations~6!–~8! are the working equations used to upda
the position, velocity,C-amplitude, and action.

In this study, grid adaptation will be applied to the tim
dependent one-dimensional scattering of an initial Gaus
wave packet from a repulsive Eckart potential. The Eck
potential is given byV(x)5V0 sech2@a(x2xb)#, where V0

58000 cm21 is the barrier height,a50.4 determines the
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width, andxb57.0 a.u. is the location of the barrier max
mum. The mass used in these calculations ism52000 a.u.
and the time step isDt54 a.u. For the results reported i
Sec. VII, 120 fluid elements were used~with the initial near-
est neighbor spacing 0.04 a.u.!. As time proceeds, the wav
packet moves toward the barrier and eventually splits i
reflected and transmitted wave packets. Emphasis will
placed upon grid adaptation for the reflected wave pac
which is where nodes form.

At time t50, the initial wave packet is the product of
Gaussian shape factor and a plane wave driving term

C~x,0!5~2b/p!1/4e2b~x2x0!2
eik~x2x0!, ~9!

whereb is the width factor for the Gaussian, and wherek
determines the initial phase and flow kinetic energy,S0

5\k(x2x0) andE5\2k2/(2m). This wave packet has th
width parameterb54.0 a.u., is centered atx052.0 a.u., and
has the initial translational energy of 4000 cm21. From Eq.
~9!, the initial condition on theC-amplitude is C0(x)
5 ln(2b/p)1/42b(x2x0)2. Finally, the fluid elements are
initiated with the same speed,v5(1/m)]S0 /]x5\k/m.

III. DENSITY FLUCTUATIONS AND PARTICLE
DYNAMICS NEAR NODES

A. Compression and inflation

At each time step, the particle positions$xi(t)% define a
moving and unstructured grid. Typically, we start att50
with all of the nearest neighbor spacings having the sa
value. However, after several time steps, the spacings ar
longer uniform. As time proceeds, this nonuniformity i
cludes local features categorized as compression or infla

Examples of regions where there is compression and
flation are shown in Fig. 1. Each dot in this figure shows
value of the amplitudeR(x) at the position of each of 79
particles at time step 470~where each time stepDt54 a.u.
50.097 fs) for the one-dimensional scattering of an init
Gaussian wave packet from an Eckart barrier centered axb

57.0 a.u. At this time step the main part of the packet
reflecting back to the left of the figure in the direction fro
which the initial wave packet was launched toward the b
rier. The portion of the wave packet~involving the remaining

FIG. 1. Amplitude functionR(x) for wave packet scattering from an Ecka
barrier at time step 470 (t545.5 fs). The dots show the function values
the particle positions. The Eckart barrier is centered to the right of the fig
at 7.0 a.u.
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41 particles! for x.7.0 a.u. is not shown in this figure. Com
pression refers to the high density of particles which deve
at local maxima in the amplitude; this occurs nearx
52.6 a.u. andx53.6 a.u.

The term inflation was used recently by Pinto-Neto a
Santini29 in reference to the influence of the quantum for
on Bohm trajectories near the singularity att50 in the
Wheeler–DeWitt equation, which was analyzed as a mo
quantum cosmology. Analogous behavior occurs in the w
packet scattering problem; as nodes or quasinodes dev
nearby trajectories move away from the region whereR(x)
is heading toward zero.@The term quasinode refers to a r
gion whereR(x) reaches a local minimum and attains
small value but does not become exactly zero. Quasino
include prenodes and postnodes; during the course of tim
prenode evolves into a postnode. Frequently, the sequ
prenode→node→postnode occurs, but in some cases the
act node may not form, so that the sequence
prenode→postnode.] The increased separation of initia
nearby particles as they move away from the node is a m
festation of inflation. The source of this expansion is t
quantum potential, which becomes singular at an exact n
@This is true unless¹2R also happens to vanish, in whic
case the singularity is canceled. This follows because
terms of theR-amplitude,Q5(2\2/(2m))R21¹2R.] As a
result of inflation, the particles are unlikely to be found clo
to the nodes or quasinodes. An example is shown in Fig
the particle density near the quasinode atx52.1 a.u. is very
low. Similar behavior is observed at the two quasinodes
cated nearx51.5 and 2.8 a.u.

The net result of compression and inflation is that
interparticle spacings become very nonuniform. This lead
a sampling problem: there is an oversupply of information
some regions while not enough is available in other regio
Adapting the mesh defined by the particle locations to
local ~in both space and time! conditions ~density fluctua-
tions! can alleviate this problem.

B. Trajectory dynamics near nodes

In order to appreciate the difficulties that wave functi
nodes cause when attempting to integrate quantum traje
ries, several features of the dynamics near one node wil
examined. This node develops in the dynamics neax
53.1 a.u. close to time step 457. This node preceeds
main part of the reflected wave packet that has underg
scattering with the Eckart barrier. Starting about time s
420, a prenode begins to form and as time proceeds,
prenode gradually evolves into the node that was referre
at time step 457. After this time, the node reverts to a po
node and then gradually disappears by about time step
The whole process of nodal formation and decay thus ta
place within about 100 time steps.@The node nearx
53.1 a.u. in Fig. 2~b! gradually heals as it moves to the le
and later appears in Fig. 1 as the postnode nearx52.8 a.u.]

It is well known that quantum trajectories cannot cro
nodal surfaces.7 However, this statement does not apply
quasinodes. As a prenode gradually forms before the n
develops, particles can cross from one side to the other,
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this also happens as the postnode decays. Since the
~‘‘exact’’ ! node is formed at only one instant of time, the fa
that particles cannot cross nodal surfaces is of little con
quence. However, whatis significant is that inflation occurs
during the whole process of quasinode–node formation
decay. Particles are forced away from the ‘‘center’’ of t
quasinode because the quantum force imparts to them a
velocity, so that when they cross the center they must do
very quickly.

These features are illustrated in Fig. 2, which shows
quantum potential and the locations of the reflected partic
in the region surrounding the node that develops ax
53.1 a.u. close to time step 457. Three time steps are sho
steps 440, 450, and 460 in parts~a!, ~b!, and~c!, respectively.

FIG. 2. Quantum potential~continuous curve! and locations of particles
~dots on horizontal axis! for time steps~a! 440, ~b! 450, and~c! 460. The
indices for the two particles located on either side of the center of
quasinode are indicated.
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On time step 440, particles 1–26 are to the left of the cen
of the prenode, and particles 27–120 are to the right. In
tion near the center of the prenode atx53.2 a.u. and com-
pression to the right of that position are evident. Just bef
this time step particle 27 crossed from the left to the right
the center. Advancing to time step 450 in part~b!, particle 26
has just joined the particles to the right of the center, a
particle 25, now located just to the left of the center is ab
to join those on the right. On time step 460 shown in part~c!,
just after the node starts to decay, particles 25–120 are
cated on the right of the center of the postnode. After t
time step, inflation near the center diminishes, as the p
node gradually heals. It is clear from the analysis of
birth–death history of the node nearx53.1 a.u. that during
inflation, a few particles can hop from one side of the qu
sinode to the other.

Transport of a few particles from one side of the qua
node to the other presents problems because of the inter
nected issues of inflation and sampling. When particles
flate away from the center of the quasinode, accur
computation of the quantum potential and the quantum fo
f q52¹Q, is extremely difficult. In this region, bothQ and
f q vary rapidly and because particles on opposite sides of
quasinode are relatively far apart, most numerical meth
for computing accurate derivatives are doomed. It is for t
reason that adaptive grid techniques will be introduced in
next section.

Analysis of the quantum potential for small displac
ments from the center of the quasinode is relatively straig
forward. For example, for time step 457~close to the time
when the ‘‘exact’’ node forms!, the amplitudeR(x) is shown
in Fig. 3~a!. Near the center of the node at positionx0 ,
consider the Taylor expansions in regions I and II to the
or the right of the quasinode, respectively (y5x2x0),

R1~y!5a1by1cy21dy3 region I ~x,x0!,
~10!

R2~y!5a1ey1 f y21gy3 region II ~x.x0!.

In order to match the shape ofR(x) and the first two deriva-
tives in the two separate regions, we will assume thatb,0,
c,0, d,0 ande.0, f .0, andg,0. From these equations
the quantum potential in regions I and II is given by (A
52\2/(2m)),

Q1~y!5A~2c16dy!/~a1by1cy21dy3! region I,

Q2~y!5A~2 f 16gy!/~a1ey1 f y21gy3! region II.
~11!

At the minimum of the quasinode (y50), Q1(0)52Ac
.0, andQ2(0)52A f,0. The quantum potential from thi
model is discontinuous atx0 and this feature is shared wit
the numerically computedQ(x) shown in Fig. 3~b!. This
type of analysis is useful in relating the shape ofR(x) near a
node to the features ofQ(x).

IV. MOVING GRIDS AND ADAPTATION STRATEGIES

A. Adaptation of Lagrangian grids

Grid adaptation in computational fluid dynamics is
area of intense interest that is rich with ideas that can
er
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adapted into quantum hydrodynamics.22–27Adaptation of La-
grangian grids defined by the instantaneous particle posit
requires consideration of several overlapping issues.
purpose is to change the local separations of the particles
define the moving mesh in order to provide a better bala
between regions with fine scale features and other reg
with coarse features where a high particle density is
needed. We will letDN denote the change in the number
grid points in regionG as a result of grid adaptation. Fo
Lagrangian grids, this adaptation region moves with
flow; the situation here is different from Eulerian adaptati
where grid points in a fixed-in-space region undergo ada
tion. There are now three cases to consider.

~a! Redistribution (DN50) is a useful technique fo
moving mesh points to more desirable locations while ke
ing the total number of mesh points constant. Redistribut
is relatively simple to implement and does not require co
plicated updating of the data structures that store informa
carried along with each particle. An example of redistrib
tion is shown in Fig. 4. The top row shows the positions
the particles for the discretized wave packet illustrated ear
in Fig. 1. Regions of low density due to quasinode format
betweenx52 a.u. andx53.2 a.u. are evident as are seve
compressive regions of high particle density. The second
in this figure shows the particle locations after redistributio
In this example, the particles with indicesM0 ,M0

11,...,M1 were redistributed so as to make the nearest ne
bor spacings equal. This redistribution was then repeate
each of 40 time steps leading to the last row in Fig. 4.

~b! Creation (DN.0) adds particles to regionG in order

FIG. 3. Wave function amplitude~a! and quantum potential~b! for time
step 457.
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to resolve local features of the flow field. An example of th
type of adapted region is shown in Fig. 5. Ten particles w
equal nearest neighbor spacings were added between the
ticles with indicesM0 and M1 . The particle spacings exte
rior to this region are not equal. The other notation on t
figure will be explained later in Sec. V A.

~c! Annihilation or coarsening (DN,0) removes par-
ticles in order to compensate for compression. Annihilat
may also be used to remove particles that were created a
earlier time, assuming that they are no longer needed in
regionG.

There are several additional points that should be kep
mind. ~1! When mesh points are moved, created, or ann
lated, the current data must be interpolated onto the n
mesh points.~2! Both creation and annihilation require no
trivial updating of the data structures and the dimensions
some of the storage arrays will change. This adds to
computational overhead and for this reason it might be
visable to avoid doing this at every time step during t

FIG. 4. Illustration of mesh redistribution. In the top row, the initial partic
positions are shown before adaptation for the wave packet at time step
In the middle row, the points betweenM 056 andM 1581 have been redis-
tributed so that the nearest neighbor spacings are equal. In the bottom
the adapted grid is shown 40 time steps later. All of the particles witx
,7.0 a.u. are moving to the left, away from the center of the Eckart bar

FIG. 5. Illustration of mesh adaptation. Between pointsM 0 and M 1 , 10
equally spaced mesh points have been created. The hydrodynamic~C,S!
representation is used for the exterior points 1–8 and 13–20, while the~A,B!
wave function representation is used for the internal points 6–15. In the
overlap patches containing points 6–8 and 13–15, the average of the
functions computed separately in the two regions may be used.
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integration process.~3! For all three adaptation cases, pa
ticle trajectories are no longer followed within regionG ~but
they could be through interpolation!. ~4! As the particles ex-
terior to regionG evolve to new locations, the mesh poin
within this region follow along, but the particles may b
periodically redistributed in order to avoid inflation or com
pression that might otherwise occur.

B. Diagnostic tools

Over some time intervals, local adapted grids can
used in one or more of the regions spanned by the partic
How can these regions be identified for special consid
ation, before the situation gets too serious? For this purp
heuristic tools will be used to signal the onset of node f
mation so that adapted grids can be introduced before
countering numerical problems connected with the calcu
tion of derivatives. There are a number of ways in which t
may be done. We seek local test functions that are simpl
implement such that when the value of the test function
ceeds a threshold value, grid adaptation can begin autom
cally. In addition, at later times, it may be that fine-sca
features are no longer present, so that fewer grid po
would suffice. The test functions should also be able to id
tify this case.

For one-dimensional problems, two functions that m
these requirements are the forward first-order finite diff
ence and central second-order finite difference~multidimen-
sional extensions are easily defined!

D i
~1!5xi 112xi ,

~12!
D i

~2!5D i
~1!2D i 21

~1! 5xi 111xi 2122xi .

These finite differences are closely related to approximati
to the first and second derivatives of the particle coordina
with respect to the particle label~i!. Note that these relation
are used for qualitative purposes only and do not consti
approximations that are used for computing derivatives.

These two finite difference functions are plotted vsxi in
Fig. 6 for the same discretized wave packet that was sho
earlier in Fig. 1. Note thatD (1) and uD (2)u both reach local
maxima at the positions of the quasinodes in Fig. 1. A
result, the region betweenx52.0 a.u. andx53.2 a.u., where

70.

w,

r.

o
ve

FIG. 6. Illustration of the finite difference test functions for the wave pac
shown earlier in Fig. 1. For clarity,D (1) has been shifted up by 2.0 units an
D (2) has been shifted up by 1.0 unit.
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two quasinodes have developed, should be considered
grid adaptation. However, for the ‘‘weak’’ quasinode ne
x51.5 a.u., the two diagnostic functions do reach lo
maxima, but the decision on whether to adapt the local g
near this point is ambiguous.

To automatically signal the adaptation routine, a thre
old criterion can be introduced. For example, we could
quire that the local test function exceed a certain prede
mined value, such asuD i

(2)u.j. The value forj would have
to be determined through experience gained on related p
lems. The size of the region subjected to mesh adaptation
be based upon a function of the full-width of the loc
maxima in the test functions.

V. ALTERNATIVE REPRESENTATIONS FOR THE
WAVE FUNCTION

A. „R,S… and „A,B … representations

In Sec. II, the polar representation of the wave funct
was used to develop the equations-of-motion for the hyd
dynamic formulation. In this Madelung representation of t
wave function, the amplitudeR and the gradient of the actio
function“S play a dominant role. We will refer to this as th
~R,S! representation. A slightly different way to represent t
wave function is through the exponentiatedR-amplitude,R
5exp(C). In many regions, theC-amplitude has a low degre
polynomial dependence upon the coordinates and is
ferred because of the ease with which accurate derivat
may be computed. For the tails of wave packets, this re
sentation is especially useful. The hydrodynamic equatio
of-motion may be derived in either of these representatio
although the expressions for the quantum potential are
ferent in the two cases.

In spite of the usefulness of the hydrodynamic~C,S! and
~R,S! representations, there is one important situation wh
they are not very useful. This occurs near nodes, where
first derivative ofR is discontinuous and whereC is singular.
An example is shown if Figs. 7~a! and 7~b! for the reflected
portion of same wave packet that was shown earlier in Fig
but at a later time step~510!. Parts~a! and ~b! of this figure
show R(x) and C(x) near the quasinode that has form
nearx51.12 a.u. Computation of the second derivatives
R(x) or C(x), which are needed in order to compute t
quantum potential, are likely to be inaccurate unless spe
precautions are taken.

In order to circumvent the computation of derivatives
R or C near nodes, we will utilize a third representation
the wave function. If we break the complex-valued wa
function into real and imaginary parts,c5A1 iB, then A
and B and their derivatives are always well-behaved~con-
tinuous and nonsingular!, even near quasinodes and nod
This will be referred to as the~A,B! representation. For the
same scattering conditions used for Figs. 7~a! and 7~b!, the
real and imaginary parts of the wave function,A andB, are
plotted in Fig. 7~c!. Because bothA andB are smooth nea
x51.12 a.u., there is no difficulty is computing their deriv
tives.

Use of the~A,B! representation does not lead to the h
drodynamic equations that were described earlier in Sec
for
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but in regions around nodes this representation has the
vantage that there is no difficulty in computing derivative
The hybrid scheme that will be followed in this study
based upon use of the~C,S! hydrodynamic representation i
all regions, except for patches near nodes or quasinode
these nodal regions, the~A,B! representation will be used.

The way in which these two representations are use
illustrated in Fig. 5. We will assume that a quasinode h
developed nearx51.3 near the center of the figure. In th
grid adaptation step, 11 equally spaced points were inse
between the boundary particles labeledM0 and M1 . The
~A,B! region extends from pointsM011 to M121 and wave
function values at the boundary pointsM0 andM1 are used
to feed information from the outer~C,S! regions to the inte-

FIG. 7. Scattering wave function at time step 510 (t549.4 fs). ~a! The
R-amplitude;~b! the C-amplitude;~c! the real and imaginary parts of th
wave function, A and B, respectively. The quasinode nearx51.12 a.u.
should be noted.
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rior region. In addition, the~R,S! region extends from the lef
of the figure to pointM013 and then continues from poin
M123 to the right of the figure. In the two overlap patch
encompassing pointsM011 throughM013 on the left and
points M123 throughM121 on the right, the wave func
tions separately computed in the two exterior~C,S! regions
and in the middle~A,B! region can be smoothly blended b
averaging the wave functions. The size of the blend
patches is rather arbitrary and will need to be determi
through experience.

B. Propagation in the „A,B … representation

We have mentioned that the real and imaginary parts
the wave function, denoted (A,B), will be used in the inte-
rior of the local regionG between the boundary particle
labeledM0 andM1 . For the boundary particles and all pa
ticles exterior toG the quantum hydrodynamic equations w
be integrated to find the particle trajectories. Howev
within region G, a propagation technique will be used
advance the values of~A,B! to the next time step. The time
evolution problem in the internal region is both an initi
value problem and a 2-point Dirichlet boundary value pro
lem. The initial values are those which have been inter
lated onto the adapted mesh at timet, and the boundary
values are those supplied at the pointsM0 andM1 from the
hydrodynamic propagation. The propagation algorithm u
in this study for the internal region is the unconditiona
stable~and implicit! Crank–Nicholson~CN! scheme.30 This
scheme can handle the two-point boundary problem
propagates~A,B! from one time step to the next.

In operator form, the CN algorithm starts withc(x,t)
and generatesc(x,t1Dt) according to

S 11
Dt

2\
Ĥ Dc~ t1Dt !5S 12

Dt

2\
Ĥ Dc~ t !, ~13!

whereĤ is the Hamiltonian operator. After substituting th
decomposition of the wave function into real and imagina
parts, we obtain coupled real-valued equations forA andB,

B~x,t1Dt !1
Dt

2\
ĤA~x,t1Dt !5B~x,t !2

Dt

2\
ĤA~x,t !,

A~x,t1Dt !2
Dt

2\
ĤB~x,t1Dt !5A~x,t !1

Dt

2\
ĤB~x,t !.

At this point, we introduce the finite-difference discretizati
of thex-coordinate, with the uniform grid spacingDx. Using
a central second-difference approximation for¹2, these two
equations become a system of 2N ~whereN is the number of
grid points in the internal region! linear algebraic equations
When setting up these equations, the values ofA and B at
two times,t and t1Dt, at the two end points,M0 andM1 ,
are required. These eight required boundary values are
tained form the hydrodynamic equations-of-motion. Th
procedure is repeated for each time step that the local a
tive grid is used.
g
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VI. COMPUTATIONAL RESULTS

In this section, results will be presented to illustrate g
adaptation for the portion of the wave packet undergo
reflection from the Eckart barrier. First, several details w
be mentioned concerning implementation of the grid adap
tion scheme described earlier in Sec. IV. With reference
Fig. 5, for the results reported here, the~C,S! region was
chosen not to overlap the~A,B! region; all points interior to
those labeledM0 and M1 were included in the~A,B! repre-
sentation. Finally, in order to interpolate data from the u
structured mesh onto the uniform mesh in the adapted
gion, a method based upon Lagrange interpolat
polynomials was used. This method is described in the b
by Fornberg,31 and a corrected version32 of SUBROUTINE
WEIGHTS1 from Appendix C was employed with the p
rameter valuen57.

Because of inflation~associated with node formation!
and compression that occurs in advance of the central por
of the wave packet as well as ‘‘thinning out’’ that occurs
the wake behind the peak~this is not due to node formation!,
a rather large region was selected for adaptation. Figure~a!
shows the real part of the scattering wave function at ti
step 470~the same time step that was used for Fig. 1!, with
inflation and compression clearly displayed betweenx
51.0 a.u. andx54.0 a.u. Thinning in the wake betweenx
54.5 a.u. andx57 a.u. is also evident. The region select
for adaptation lies between pointsM056 andM1580 and
these are shown by the large black dots in Fig. 8~a!. ~Particle
81, on the far right of the figure, will just trail along behin
the adapted region as it moves to the left.! With both A(x)
and B(x) given as input on the unstructured grid betwe
M0 andM1 , these two functions were then interpolated on
a uniform mesh lying between these two boundary poin
The adapted mesh and the original mesh were chosen to
the same number of points between the boundary points
that redistribution is the technique being used in this illust
tion of grid adaptation.

Using the Crank–Nicholson algorithm to update the v
ues for~A,B! in the internal region and integrating the hydr
dynamic equations-of-motion to find the particle positions
the exterior region, the time evolution of the system is o
tained. Figures 8~b! and 8~c! show the real part of the sca
tering wave function after propagating an additional 25 or
time steps, respectively. Over the time interval between F
8~a! and 8~c!, the central peak inA(x) propagates about 0.8
a.u. toward the left of the figure. Before introduction of th
adapted grid, it was only possible to advance about 10 t
steps beyond that shown in Fig. 8~a!. At that time, numerical
problems developing around the nodes led to particle cro
ings ~interchange of position in one dimension! and subse-
quently the code crashed. Introduction of the adapted gri
the region of extensive inflation and compression thus p
mitted propagation to longer times then could be obtain
when only the hydrodynamic representation was employ
By adjusting the various parameters, propagation to tim
later than shown in Fig. 8~c! could be obtained, but the plot
are very similar to those shown here. The parameters
were varied included the following:~1! the size of the region
over which adaptation was employed;~2! the starting time-
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step for initiating the adaptation process;~3! the number of
adapted mesh points used in the internal region. The im
tant point is that the ‘‘node problem’’ occurring in the hy
drodynamic formulation has been circumvented. Further
perimentation on this and other scattering and bound s
problems would be very worthwhile.

VII. SUMMARY

Discretization of the hydrodynamic equation-of-motio
leads to an appealing picture of quantum mechanical t
evolution: particles follow quantum trajectories. These p
ticles~actually, elements of the probability fluid! move under
the influence of classical (f c52¹V) and quantum (f q

52¹Q) forces. Because of the nonlocal quantum force,
particles move together as a correlated ensemble, even w
the classical force vanishes. As the distribution of partic

FIG. 8. Real part of the scattering wave function at time steps~a! 470, ~b!
495, and~c! 545. The left and right boundary particles for the adaptat
region are shown as large dots. In~a!, the unstructured particle locations a
shown by the dots, while in~b! and~c! the adapted mesh is used between t
boundary points.
r-

x-
te

e
-

e
en
s

evolves in time, highly nonuniform distributions are fre
quently generated. These nonuniform distributions sh
both compression and inflation; these are regions where
ticles tend to aggregate or avoid. Regions around wave fu
tion nodes always show inflation, but other regions~such as
the tails of wave packets! may also show low particle dens
ties. Because of the low density and nonuniform particle d
tribution around these nodes, accurate calculation of
quantum potential and the quantum force presents se
challenges to algorithms designed for calculating derivativ

In order to meet the challenges posed by highly nonu
form particle distributions, adaptive Lagrangian~moving!
grids were introduced in this study. Using diagnostic too
patches can be identified where trouble may later deve
during the time evolution. Within these local patches, g
adaptation can add, remove, or redistribute mesh point
necessary. In addition, in patches which surround wave fu
tion nodes, the hydrodynamic representation is abandone
favor of propagation in terms of the real and imaginary pa
of the wave function, denotedA and B, respectively. Prob-
lems encountered in the hydrodynamic representation w
calculating the derivatives of the wave function amplitud
R5(A21B2)1/2, are circumvented. The use of the~A,B!
wave function representation in local patches along with
hydrodynamic representation in all other regions leads t
mixed representation which still permits propagation of p
ticles. Within the local patches, the local velocity field can
computed fromA andB, and the particles trajectories can b
extended through these regions.

In this study, grid adaptation was applied to the reflec
portion of a wave packet scattering from a repulsive Eck
potential. During reflection, a series of transient nodes fo
in the leading edge of this wave packet. When using
hydrodynamic representation, it was not possible to pro
gate beyond the early stage of formation of the first node
the reflected wave packet. However, using the~A,B! repre-
sentation of the wave function within the region where g
adaptation was introduced permitted propagation to m
later times. Further investigation is needed to tune the d
nostic tools that can be used to determine when and whe
perform grid adaptation. In addition, further studies a
needed to determine whether to redistribute grid points
whether to add or remove points to achieve a better samp
of the data used in computing derivatives required for so
ing the equations-of-motion.
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