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The quantum trajectory method was recently developed to solve the hydrodynamic equations of
motion in the Lagrangian, moving-with-the-fluid, picture. In this approach, trajectories are
integrated for fluid elementg'particles”) moving under the influence of the combined force from

the potential surface and the quantum potential. To accurately compute the quantum potential and
the quantum force, it is necessary to obtain the derivatives of a function given only the values on the
unstructured mesh defined by the particle locations. However, in some regions of space—time, the
particle mesh shows compression and inflation associated with regions of large and small density,
respectively. Inflation is especially severe near nodes in the wave function. In order to circumvent
problems associated with highly nonuniform grids defined by the particle locations, adaptation of
moving grids is introduced in this study. By changing the representation of the wave function in
these local regionswhich can be identified by diagnostic toplpropagation is possible to much
longer times. These grid adaptation techniques are applied to the reflected portion of a wave packet
scattering from an Eckart potential. @000 American Institute of Physics.

[S0021-960600)01244-1

I. INTRODUCTION moving-with-the-fluid, picture. These fluid elements follow
quantum trajectories which are influenced by both the clas-
sical force obtained from the potential energy surface and the
guantum force obtained from the Bohm quantum potential,
Q. The quantum potential measures the curvature of the am-
litude of the wave function around each of the particles and

The hydrodynamic formulation of quantum mechan-
ics!® leads to a description of the time-evolution of the
probability density, wave function, and other quantities in
terms of equations-of-motion which have analogies to thos

developed for classical compressible fluids. Studies in quan-_ . . o

tum hydrodynamics fall into two domains having different n t.hls formul_at|or_1 'S Fhe source of all quantum e_ffects. The
methodologies and goals. The older and possibly bettep o approxm_1ahon involves the use Of.e.l relatively small
known approach uses quantum hydrodynamics as an analy{?—u mber of flu[d elementg, although addljuonal'approxma-
cal tool. Typically, this approach is initiated by first solving lons may be introduced in the computational implementa-
the time-dependent Schidimger equation to obtain the wave ) i y
function. In the second step, analysis is performed on this The ,QTM has .been applied to-barrler transmlsléﬁ)n,
wave function to yield hydrodynamic quantities such as fluxnenclassical reflection from a downhill rarfiband a collin-
maps and particle trajectoriégn example of this approach ear model che_mlca_ll reagtléﬁ.lt has_also be_en shown how

is analysis of the double-slit diffraction problem in terms of the wave function, including phase information, may be gen-
Bohm trajectories and the way in which they are influencecfrated along the guantlir?stra]ectoﬁésxlso, distributed ap-

by the quantum potentidi® The second and less developed Proximating functionals]*** DAFs, have been implemented
strategy is quite different. In contrast to the analytical routen the QTM in order to provide an accurate evaluatior(Qof
mentioned previously, the synthetic approach is based upod its derivatived? In addition, Bittner has developed and
the direct solution of the hydrodynamic equations-of-motionapplied related methods to study tunneling dynamics in the
so as to propagate discretized elements of the probabilitfouble well potentiaf® In related earlier studies, Weiner
fluid.2°>~18During the propagation, the wave function may beet al****used a Lagrangian hydrodynamic approach to study
computed “on-the-fly,” but it is not presupposed as in the the motion of Gaussian wave packets on quadratic potential
analytical approach. surfaces.

The quantum trajectory metha@TM), introduced re- In a companion to the present study, Bitther and Wyatt
cently by Lopreore and Wyatt, is an example of the synthetigoresented three enhancements to the quantum hydrodynamic
approach? An approach similar to the QTM has also beenmethodology?! These included a technique for propagating
recently developed by Sales Mayetral® In the QTM, the  quantum trajectories perpendicular to wavefrdstgfaces of
equations-of-motion for discretized fluid elemer{tpar- constant quantum actio®, a method for propagating least
ticles”) are formulated and solved in the Lagrangian,squares expansion coefficients, and the use of local gauge
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transformations to remove fast components of the wavéll, the origins of irregular spacings between the particles are
function, so that the accuracy of computed derivatives wouldonsidered, with special emphasis upon particle dynamics
be improved. In the present study, the focus will be upon thanear wave function nodes. Section IV describes adaptation
introduction and implementation of local adaptive Lagrang-strategies for Lagrangian grids, including the design and use
ian grids. These local grids are carried along with the parof diagnostic tools. In Sec. V, alternative representations of
ticles exterior to the local grid and they are introduced inthe wave function are defined,; it will be necessary to change
some internal regions over certain time intervals in order toepresentations in certain regions in order to avoid computa-
avoid the difficulty of computing the quantum potential andtional problems encountered when using the hydrodynamic
the quantum force near wave function nodes. In fact, movingepresentation near nodes in the wave function. In Sec. VI,
local meshes can eliminate difficulties encountered aroundomputational results obtained using grid adaptation will be
wave function nodes, at the expense of stepping outside thgresented for the reflected portion of a wave packet which
traditional formulation of quantum hydrodynamics. In addi- has scattered from a repulsive Eckart potential. The transmit-
tion, adaptive grids can be used to redistribute mesh points t@d portion of the wave packet experiences no computational
improve the sampling of dat@uch as the probability density problems when the QTM is used to propagate quantum tra-
or the velocity that is being carried along by the moving jectories; this aspect of the dynamics is the subject of a pre-
particles.(The terms “mesh points” and “particles” will be ~ Vious study:® However, in the reflected region, a number of
used interchangeably in this stugly. nodes develop at later times and it is in this region that the
Mesh adaptation continues to be a topic of intense invesgrid adaptation strategies will be implemented. Finally, con-
tigation in computational fluid dynamits2® and some of cluding remarks are presented in Sec. VII.
the techniques used in this study have their origin in classical
fluid dynamics. A subsidiary aspect of mesh adaptation con-
cerns the issues of where and when the adapted mesh sholldLAGRANGIAN QUANTUM HYDRODYNAMICS
be used. For this purpose, diagnostic tools are needed to
signal the early onset of regions where problems may occug,‘

at later times. The diagnostic problem will also be addresse egin by expressing the time-dependent wave function in

in this study. ; — Qiélh
. . . . exponential formW (r,t)=e'¥". The complex-valued phase
The way in which the adapted mesh is used is as foIIow:s.r £(rt)=—ihC(r ) +S(r.t), where both C (the

Asgume FhaN quantl_Jm trajector.|e5 have'be.e n gene.rated uFt—amplitude) andS (the action functiohare real-valued. The
to time T in a scattering calculation. At this time, a diagnos- wavefunction may also be written in polar forng(r,t)

tic indicator has sensed impending trouble within a region_ R(r,t) iSO/ o .

o . =R(r,t)e™>"V"" so that the probability density is then
dinotedl“."l;he ad'apted medshb|s |kr11troduc'e<|j wn{)ﬁhbqlpd given by either of two expressionsp(r,t)=e2c)
whatever information carried by the particiésrobability — Z g 1)2" The advantage of using the exponential form is

density, wave function phase, velocity,.is interp_olateq “that C and S are frequently slowly varying, even when the

g”to the nev_vﬁmesh.fThe r;lumber gf ne\f/v me_srll pmﬂts Withiea| and imaginary parts oF are rapidly oscillating. How-
may be different from the number of particles that wereg o\ near some points, the preceding statement is not correct

there originally. As a result, yvhen we propagate forwarq iNand as a result the advantage in usiigr C and Sis lost:

time, we are no longer following the trajectories of the origi- o ahoration of this statement is provided in the next section.

nal particles, although these could be obtained by interpolaq, substituting the exponential expression frinto the

tion. In any case, for particles not withlfy the usual hydro- time-dependent Schdinger equation, we obtain the

dynamic equations-of-motion are solved to update theequations-of-motion for the two scalar 'fields

particle positions and other quantities. However, for those

particles withinT', in order to maintain accuracy in the C 1

In this section, a brief review of the quantum trajectory
ethod?14-1819ill be presentedalso see Ref. 13 We

propagation, it may be essential not to use the hydrodynamic i EV.V_V'VC' @
representation. By some meaits be described later in Sec.

VB), the wave function is updated to obtain the value at  _ S _ i|VS|2+V+Q )
each new mesh point withiRi. This completes the first time gt 2m '

step after mesh adaptation so that the cycle may then Dghere the current velocity is(r,t)=(1/m)VS(r,t). The
repeated. The exterior particles move along from time step t@econd of these equations is the quantum Hamilton—Jacobi
time step, and mesh adaptation-interpolation-propagation isquation(QHJ), which differs from the classical HJ equation

performed within the moving regioh. This whole process py the presence of the Bohm quantum potential,
in repeated until the diagnostic indicators have calmed down )

enough to continue with the global hydrodynamic propaga- Q(r,t)=— ﬁ—{V2C+|VC|2} 3)
tion. ' 2m '

The outline of the present study is as follows. In Sec. Il,pather than attempt to solve the QHJ equation, we take the
the formulation of Lagrangian quantum hydrodynamics W'”gradient of Eq(2) and obtain a Newtonian-type equation for
be reviewed and the role played by the quantum trajectorieg,q fiow acceleration

will be described. At the end of this section, a description is
presented of the model one-dimensional scattering problem m i+v-V

that will be used as an example for grid adaptation. In Sec. at v=-VIVEQ), @
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where the two terms on the right-hand side are the “classi-

cal” force obtained from the gradient of the potential and the ) A
qguantum force obtained from the gradient of the quantum fon
potential. Equation$l) and (4) are then used to update the 0.8
flow velocity and theC-amplitude, which in turn is needed to
update the quantum potential in E§). R 06

Equations(1) and (4) for C andv are expressed in the 0.4

Eulerian picture; the fields evolve with respect to a fixed-in-
space coordinate system. We now convert to the Lagrangian 02

picture by introducing a local frame moving with the fields. . /
This is done by utilizing the time derivative expressed in the 1 ) 3 4 5 6
moving frame,d/dt=g/dt+v-V, where the second term is x (au.)

the convective contribution. Equatiof® and(4) in the La- FIG. 1. Amplitude functiorR(x) for wave packet scattering from an Eckart

grangian picture are then barrier at time step 470t£45.5fs). The dots show the function values at
the particle positions. The Eckart barrier is centered to the right of the figure
dcC 1 at 7.0 a.u.
a2 ®
dv 2 width, andxp=7.0a.u. is the location of the barrier maxi-

1
G- m Vo2 V{vViICH VP (®)  mum. The mass used in these calculationsnis 2000 a.u.
and the time step iAt=4 a.u. For the results reported in

In these equations, the convective operatoV no longer  Sec. VII, 120 fluid elements were usédith the initial near-
appears explicitly. est neighbor spacing 0.04 9.uAs time proceeds, the wave

The Lagrangian hydrodynamic equations are solved byacket moves toward the barrier and eventually splits into
discretizing the probability fluid in terms of fluid elements,  reflected and transmitted wave packets. Emphasis will be
termed “particles.” Equationg5) and (6) and then inte- placed upon grid adaptation for the reflected wave packet,
grated to find quantum trajectories for the fluid elementswwhich is where nodes form.
The position of each particle is obtained by integratdrg At time t=0, the initial wave packet is the product of a

=vdt along with Eqs(5) and(6). It is important to note that = Gaussian shape factor and a plane wave driving term
the trajectory for each fluid element is correlated with the

. . _ 14— B(X—Xg)2 aik(X—
trajectory for each of the other fluid elements. However, W (Xx,0)=(28/m)"%e™ P X gk(x o), )
when the quantum force becomes very small or vanishes, ”\ﬁhereﬁ is the width factor for the Gaussian, and whére
fluid elements move as a classical uncorrelated ensemblgetermines the initial phase and flow kinetic energy,

When Eq.(5) is integrated along the trajectory, we obtain for — 7 k(x—x,) and E=72k?/(2m). This wave packet has the

the C-amplitude, width parameteB=4.0a.u., is centered a=2.0a.u., and
1 [t has the initial translational energy of 4000 cmFrom Eq.
C(r,t):CO(ro)—E J V-vdt, (7)  (9), the initial condition on theC-amplitude is Cy(Xx)
0

=In(2B/m)Y4— B(x—x,)2. Finally, the fluid elements are
whereCo(r) andr, are the initial values at=0. The diver- Initiated with the same speed;=(1/m)JS,/dx=fk/m.
gence of the velocity field in the integrand is a function of
time and is evaluated along the trajecto(y). I1l. DENSITY FLUCTUATIONS AND PARTICLE

The action function does not appear explicitly in EGs. DYNAMICS NEAR NODES
and (6), but its gradient does, through the proportionality A. Compression and inflation

betweenv andVS. As each trajectory is integrated, the ac- . . . .
tion function can be obtained by integrating the quantum_ each time step, the particle positiofw(t)} define a

; . ! moving and unstructured grid. Typically, we starttatO
Lagrangian along the trajectory.The quantum Lagrangian, _ . . . .
; S with all of the nearest neighbor spacings having the same
Ly, is the excess of the flow kinetic energy over the total

potential, Lq(t):(1/2)mv2—(V+Q). The time-dependent value. However, after several time steps, the spacings are no

action alond the traiectory is then diven b longer uniform. As time proceeds, this nonuniformity in-
9 ) y 9 y cludes local features categorized as compression or inflation.

t Examples of regions where there is compression and in-
S()=Sp+ fOLq(T)dT- (8 flation are shown in Fig. 1. Each dot in this figure shows the
value of the amplituddR(x) at the position of each of 79
Equations(6)—(8) are the working equations used to updateparticles at time step 47@Qvhere each time stept=4 a.u.
the position, velocityC-amplitude, and action. =0.097fs) for the one-dimensional scattering of an initial
In this study, grid adaptation will be applied to the time- Gaussian wave packet from an Eckart barrier centereg at
dependent one-dimensional scattering of an initial Gaussiar 7.0 a.u. At this time step the main part of the packet is
wave packet from a repulsive Eckart potential. The Eckartreflecting back to the left of the figure in the direction from
potential is given byV(x)=V,secH[a(x—x,)], where Vo  which the initial wave packet was launched toward the bar-
=8000cm ! is the barrier heighta=0.4 determines the rier. The portion of the wave packénvolving the remaining
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41 particle$ for x>7.0 a.u. is not shown in this figure. Com- 0.04
pression refers to the high density of particles which develop
at local maxima in the amplitude; this occurs near 0.02 27
=2.6a.u. ank=3.6 a.u. 0 Al
The term inflation was used recently by Pinto-Neto and
Santinf® in reference to the influence of the quantum force XX _g g \[
on Bohm trajectories near the singularity &t 0 in the
Wheeler—DeWitt equation, which was analyzed as a model -0.04
guantum cosmology. Analogous behavior occurs in the wave
packet scattering problem; as nodes or quasinodes develo| -0.06
nearby trajectories move away from the region whig(®) 1 15 2 25 3 35 4.5
is heading toward zerdThe term quasinode refers to a re- X (a.u.)
gion whereR(x) reaches a local minimum and attains a
small value but does not become exactly zero. Quasinode 0.04
include prenodes and postnodes; during the course of time,
prenode evolves into a postnode. Frequently, the sequenc 0.02 5
prenode-~node—postnode occurs, but in some cases the ex- 0 A }6

act node may not form, so that the sequence is
prenode-postnode.] The increased separation of initially Q(x) ~0.02
nearby particles as they move away from the node is a mani

festation of inflation. The source of this expansion is the -0.04
guantum potential, which becomes singular at an exact node
[This is true unles¥/?R also happens to vanish, in which -0.06

case the singularity is canceled. This follows because, in 1 15 2 25 3 35 4 45
terms of theR-amplitude,Q=(—%2%/(2m))R"1V2R.] As a

X (a.u.)
result of inflation, the particles are unlikely to be found close (b)
to the nodes or quasinodes. An example is shown in Fig. 1; 0.04
the particle density near the quasinodeat2.1 a.u. is very
low. Similar behavior is observed at the two quasinodes lo- 0.02

cated neax=1.5 and 2.8 a.u.
The net result of compression and inflation is that the
interparticle spacings become very nonuniform. This leads togy)

5

: 5%

Y

a sampling problem: there is an oversupply of information in -0.02
some regions while not enough is available in other regions. —0.04
Adapting the mesh defined by the particle locations to the '

local (in both space and timeconditions(density fluctua- -0.06

tions) can alleviate this problem.

1 15 2 25 3 35 4 45
x (a.n.)

©

. o i . FIG. 2. Quantum potentialcontinuous curveand locations of particles
In order to appreciate the difficulties that wave function (dots on horizontal axjsfor time steps(a 440, (b) 450, and(c) 460. The

nodes cause when attempting to integrate quantum trajectwices for the two particles located on either side of the center of the

ries, several features of the dynamics near one node will bgasinode are indicated.

examined. This node develops in the dynamics near

=3.1a.u. close to time step 457. This node preceeds the

main part of the reflected wave packet that has undergonthis also happens as the postnode decays. Since the true

scattering with the Eckart barrier. Starting about time stefd“exact”) node is formed at only one instant of time, the fact

420, a prenode begins to form and as time proceeds, ththat particles cannot cross nodal surfaces is of little conse-

prenode gradually evolves into the node that was referred tquence. However, whas significant is that inflation occurs

at time step 457. After this time, the node reverts to a postduring the whole process of quasinode—node formation and

node and then gradually disappears by about time step 52@ecay. Particles are forced away from the “center” of the

The whole process of nodal formation and decay thus takeguasinode because the quantum force imparts to them a high

place within about 100 time step$The node nearx  velocity, so that when they cross the center they must do so

=3.1a.u. in Fig. ?) gradually heals as it moves to the left very quickly.

and later appears in Fig. 1 as the postnode mea2.8 a.u.] These features are illustrated in Fig. 2, which shows the
It is well known that quantum trajectories cannot crossquantum potential and the locations of the reflected particles

nodal surface$.However, this statement does not apply toin the region surrounding the node that developsxat

guasinodes. As a prenode gradually forms before the node 3.1 a.u. close to time step 457. Three time steps are shown,

develops, particles can cross from one side to the other, arsteps 440, 450, and 460 in pa(#, (b), and(c), respectively.

B. Trajectory dynamics near nodes
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On time step 440, particles 1-26 are to the left of the center 02
of the prenode, and particles 27—120 are to the right. Infla- 0.175
tion near the center of the prenodexat 3.2 a.u. and com- 0.15

pression to the right of that position are evident. Just before

this time step particle 27 crossed from the left to the right of R(x)
the center. Advancing to time step 450 in p@)t particle 26

has just joined the particles to the right of the center, and 0.075
particle 25, now located just to the left of the center is about 0.05
to join those on the right. On time step 460 shown in et 0.025 i
just after the node starts to decay, particles 25-120 are lo- 3
cated on the right of the center of the postnode. After this 1 L5 2 25 3 35 4 45
time step, inflation near the center diminishes, as the post- (g) x @)

node gradually heals. It is clear from the analysis of the
birth—death history of the node neas3.1a.u. that during
inflation, a few particles can hop from one side of the qua-
sinode to the other.

Transport of a few particles from one side of the quasi-
node to the other presents problems because of the intercon-g, 0 ‘v/
nected issues of inflation and sampling. When patrticles in- ﬁ
flate away from the center of the quasinode, accurate ~0.05 .
computation of the quantum potential and the quantum force,
fq=—VQ, is extremely difficult. In this region, botQ and 0.1
fq vary rapidly and pecause particles on opposm_a sides of the T 5 25 3 35 4 as
guasinode are relatively far apart, most numerical methods X (a.u.)
for computing accurate derivatives are doomed. It is for this ®)
reason th_at adaptive grid techniques will be introduced in thg, 3. wave function amplitudés) and quantum potentigb) for time
next section. step 457.

Analysis of the quantum potential for small displace-
ments from the center of the quasinode is relatively straight-
forward. For example, for time step 4%@lose to the time

yvhe_n the "exact” node formk the amplitudeR(x) is s_hpwn grangian grids defined by the instantaneous particle positions
n F'.g' 3@). Near the cent.er Of. the pode at positias, requires consideration of several overlapping issues. The
conS|d§r the Taylor expansions In regions | and Il to the Ieftpurpose is to change the local separations of the particles that
or the right of the quasinode, respectively<(x—xq), define the moving mesh in order to provide a better balance

Ri(y)=a+by+cy*+dy® region | (x<xo), between regions with fine scale features and other regions
(100  Wwith coarse features where a high particle density is not

needed. We will leAN denote the change in the number of
In order to match the shape B{x) and the first two deriva- grid points in regionl’ as a result of grid adaptation. For
tives in the two separate regions, we will assume b¥aD,  Lagrangian grids, this adaptation region moves with the
¢<0,d<0 ande>0, f>0, andg<0. From these equations, flow; the situation here is different from Eulerian adaptation
the quantum potential in regions | and Il is given b& ( Where grid points in a fixed-in-space region undergo adapta-
=—#2/(2m)), tion. There are now three cases to consider.

(a) Redistribution AN=0) is a useful technique for
moving mesh points to more desirable locations while keep-
ing the total number of mesh points constant. Redistribution
is relatively simple to implement and does not require com-
plicated updating of the data structures that store information
At the minimum of the quasinodey&0), Q1(0)=2Ac  carried along with each particle. An example of redistribu-
>0, andQ,(0)=2Af<0. The quantum potential from this tion is shown in Fig. 4. The top row shows the positions of
model is discontinuous &, and this feature is shared with the particles for the discretized wave packet illustrated earlier
the numerically compute@(x) shown in Fig. 8b). This in Fig. 1. Regions of low density due to quasinode formation
type of analysis is useful in relating the shapdR¢k) near a  betweenx=2 a.u. andk=3.2 a.u. are evident as are several

0.125
0.1

0.1

0.05

adapted into quantum hydrodynamfés?’ Adaptation of La-

Ra(y)=a+ey+fy?+gy® region Il (x>Xo).

Q.(y)=A(2c+6dy)/(a+by+cy?+dy®) region I,
(11)
Q,(y)=A(2f+6gy)/(a+ey+fy>+gy?) region Il.

node to the features @(x). compressive regions of high particle density. The second row
in this figure shows the particle locations after redistribution.
IV. MOVING GRIDS AND ADAPTATION STRATEGIES In this example, the particles with indiced/y,Mg

+1,...M, were redistributed so as to make the nearest neigh-

bor spacings equal. This redistribution was then repeated at
Grid adaptation in computational fluid dynamics is aneach of 40 time steps leading to the last row in Fig. 4.

area of intense interest that is rich with ideas that can be (b) Creation AN>0) adds particles to regian in order

A. Adaptation of Lagrangian grids
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25 i
1) .
Al )
M, M, 225 s
ADAPTATION t=45.5fs Lo
eoeee . L
t=49.4fs 1.25 A®
0.75
1 2 3 4 5 6
1 2 3 4 5 6 - 3
x(aw)
x(auw)

FIG. 6. lllustration of the finite difference test functions for the wave packet
hown earlier in Fig. 1. For claritA® has been shifted up by 2.0 units and
'@ has been shifted up by 1.0 unit.

FIG. 4. lllustration of mesh redistribution. In the top row, the initial particle
positions are shown before adaptation for the wave packet at time step 47
In the middle row, the points betweéh,=6 andM ;=81 have been redis-
tributed so that the nearest neighbor spacings are equal. In the bottom row,

the adapted grid is shown 40 time steps later. All of the particles with . . .
<7.0 a.u. are moving to the left, away from the center of the Eckart barrierintegration process(3) For all three adaptation cases, par-

ticle trajectories are no longer followed within regibnbut
they could be through interpolatinr(4) As the particles ex-

to resolve local features of the flow field. An example of thisterior to regionl” evolve to new locations, the mesh points
type of adapted region is shown in Fig. 5. Ten particles withithin this region follow along, but the particles may be
equal nearest neighbor spacings were added between the pBfriodically redistributed in order to avoid inflation or com-
ticles with indicesM, andM;. The particle spacings exte- Pression that might otherwise occur.

rior to this region are not equal. The other notation on this )

figure will be explained later in Sec. VA. B. Diagnostic tools

(c) Annihilation or coarsening \N<0) removes par- Over some time intervals, local adapted grids can be
ticles in order to compensate for Compression. Annihilationused in one or more of the regions spanned by the particles.
may also be used to remove particles that were created at Mbw can these regions be identified for special consider-
earlier time, assuming that they are no longer needed in thgtion, before the situation gets too serious? For this purpose,
region[". heuristic tools will be used to signal the onset of node for-

There are several additional points that should be kept ifnation so that adapted grids can be introduced before en-
mind. (1) When mesh points are moved, created, or annihicountering numerical problems connected with the calcula-
lated, the current data must be interpolated onto the newon of derivatives. There are a number of ways in which this
mesh points(2) Both creation and annihilation require non- may be done. We seek local test functions that are simple to
trivial updating of the data structures and the dimensions ofmplement such that when the value of the test function ex-
some of the storage arrays will change. This adds to theeeds a threshold value, grid adaptation can begin automati-
computational overhead and for this reason it might be adcally. In addition, at later times, it may be that fine-scale
visable to avoid doing this at every time step during thefeatures are no longer present, so that fewer grid points
would suffice. The test functions should also be able to iden-
tify this case.

For one-dimensional problems, two functions that meet
these requirements are the forward first-order finite differ-
ence and central second-order finite differefmeiltidimen-
sional extensions are easily defined

M, (AB) M,

« e s e ® bl L. L Ai(l):XHl_Xi!
VI A VI i, ) 1 1 (12)
(C,S) () AP =AM A =x 1 +x_1—2x.

These finite differences are closely related to approximations
to the first and second derivatives of the particle coordinates
with respect to the particle labél. Note that these relations

0.6 0.8 1 1.2 1.4 L6 1.8 2 are used for qualitative purposes only and do not constitute
X approximations that are used for computing derivatives.
FIG. 5. lllustration of mesh adaptation. Between poikts and M,, 10 These two finite difference functions are plottedxysn

equally spaced mesh points have been created. The hydrodyt@m®c  Fig. 6 for the same discretized wave packet that was shown

representation is used for _the exterior points _1—8 and 13—20, whilé\iBe earlier in Fig. 1. Note thath @ and |A(2)| both reach local
wave function representation is used for the internal points 6—15. In the two

overlap patches containing points 6—8 and 13—15, the average of the way@axima at th? positions of the quasinodes in Fig. 1. As a
functions computed separately in the two regions may be used. result, the region betweer=2.0 a.u. and= 3.2 a.u., where
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two quasinodes have developed, should be considered fc  0.03
grid adaptation. However, for the “weak” quasinode near
x=1.5a.u., the two diagnostic functions do reach local
maxima, but the decision on whether to adapt the local grid (¢,
near this point is ambiguous.

To automatically signal the adaptation routine, a thresh- R 0.015
old criterion can be introduced. For example, we could re-
quire that the local test function exceed a certain predeter
mined value, such g2 (?|> £. The value for¢ would have 0.005
to be determined through experience gained on related prohb m&,
lems. The size of the region subjected to mesh adaptation ca 0.6 0.8 1 12 14 1.6
be based upon a function of the full-width of the local @ x(au.)
maxima in the test functions.

0.025 ...J""

0.01

-3

V. ALTERNATIVE REPRESENTATIONS FOR THE P
WAVE FUNCTION =4 -

A. (R,S) and (A,B) representations s

In Sec. Il, the polar representation of the wave function C g
was used to develop the equations-of-motion for the hydro- -6 //‘\
dynamic formulation. In this Madelung representation of the
wave function, the amplitud® and the gradient of the action -7
function VS play a dominant role. We will refer to this as the
(R, representation. A slightly different way to represent the
wave function is through the exponentiateeamplitude,R
=exp(C). In many regions, th€-amplitude has a low degree ()
polynomial dependence upon the coordinates and is pre
ferred because of the ease with which accurate derivative:
may be computed. For the tails of wave packets, this repre. 0015
sentation is especially useful. The hydrodynamic equations:  0.01
of-motion may be derived in either of these representations g5 AGD /
although the expressions for the quantum potential are dif-A,B 0! S
ferent in the two cases. R

In spite of the usefulness of the hydrodynan@;S and
(R,S representations, there is one important situation where -0.01
they are not very useful. This occurs near nodes, where the —0.015
first derivative ofR is discontinuous and whef@is singular. .
An example is shown if Figs.(@ and 7b) for the reflected 0.6 0.8 lx(m) 12 1.4 1.6
portion of same wave packet that was shown earlier in Fig. 1,(c)
but at a later time stefb10). Parts(a) and(b) of this figure
show R(x) and C(x) near the quasinode that has formed FIG. 7. Scattering wave function at time step 516=§9.4fs). (a The

_ . L 1R—amphtude_;(b) the C-amplltude;(c_) the real and imaginary parts of the
nearx=1.12a.u. (_Zomputanon of the second derivatives 0wave function, A and B, respectively. The quasinode nearl.12 a.u.
R(x) or C(x), which are needed in order to compute theshould be noted.
guantum potential, are likely to be inaccurate unless special
precautions are taken.

In order to circumvent the computation of derivatives of but in regions around nodes this representation has the ad-
R or C near nodes, we will utilize a third representation of vantage that there is no difficulty in computing derivatives.
the wave function. If we break the complex-valued waveThe hybrid scheme that will be followed in this study is
function into real and imaginary partgi/=A+iB, thenA  based upon use of tH€,S hydrodynamic representation in
and B and their derivatives are always well-behaedn-  all regions, except for patches near nodes or quasinodes. In
tinuous and nonsingulgreven near quasinodes and nodesthese nodal regions, thHé,B) representation will be used.

This will be referred to as théA,B) representation. For the The way in which these two representations are used is
same scattering conditions used for Fig&) &and 7b), the illustrated in Fig. 5. We will assume that a quasinode has
real and imaginary parts of the wave functignandB, are  developed neak= 1.3 near the center of the figure. In the
plotted in Fig. 7c). Because boti\ and B are smooth near grid adaptation step, 11 equally spaced points were inserted
x=1.12 a.u., there is no difficulty is computing their deriva- between the boundary particles labelst}, and M. The
tives. (A,B) region extends from pointdl;+1 toM;—1 and wave

Use of the(A,B) representation does not lead to the hy-function values at the boundary poiri, andM, are used
drodynamic equations that were described earlier in Sec. Iko feed information from the outdlC,S regions to the inte-

0.6 0.8 1 1.2 14 1.6
x(a.u)

0.02

-0.005
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rior region. In addition, théR,9 region extends from the left VI. COMPUTATIONAL RESULTS
of the figure to pointM,+3 and then continues from point
M;—3 to the right of the figure. In the two overlap patches
encompassing pointsl ;+ 1 throughM,+ 3 on the left and
points M, —3 throughM;—1 on the right, the wave func-
tions separately computed in the two exteri6r,S regions
and in the middlgA,B) region can be smoothly blended by
averaging the wave functions. The size of the blendin
patches is rather arbitrary and will need to be determine
through experience.

In this section, results will be presented to illustrate grid
adaptation for the portion of the wave packet undergoing
reflection from the Eckart barrier. First, several details will
be mentioned concerning implementation of the grid adapta-
tion scheme described earlier in Sec. IV. With reference to
Fig. 5, for the results reported here, tf€,S region was

hosen not to overlap th@,B) region; all points interior to
hose labeled, and M ; were included in théA,B) repre-
sentation. Finally, in order to interpolate data from the un-
structured mesh onto the uniform mesh in the adapted re-
gion, a method based upon Lagrange interpolation
B. Propagation in the (A,B) representation polynomials was used. This method is described in the book
y Fornberg® and a corrected versidhof SUBROUTINE

EIGHTS1 from Appendix C was employed with the pa-
rameter valuen=7.

Because of inflationassociated with node formatipn
and compression that occurs in advance of the central portion
of the wave packet as well as “thinning out” that occurs in
'the wake behind the pedthis is not due to node formatipn
a rather large region was selected for adaptation. Fig(ae 8
shows the real part of the scattering wave function at time

We have mentioned that the real and imaginary parts o
the wave function, denoted\(B), will be used in the inte-
rior of the local regionl’ between the boundary particles
labeledMy andM ;. For the boundary particles and all par-
ticles exterior td" the quantum hydrodynamic equations will
be integrated to find the particle trajectories. However
within region I', a propagation technique will be used to
advance the values @A,B) to the next time step. The time-

evolution problem in the _mtemgl region is both an initial step 470(the same time step that was used for Fig.utith
value problem and a 2-point Dirichlet boundary value prob-; . ) .
inflation and compression clearly displayed between

lem. The initial values are those which have been interpo-:1 0a.u. anck=4.0a.u. Thinning in the wake between
lated onto the adapted mesh at tifjeand the boundary =4.5a.u. and<=7.a u. i.s also evident. The region selected
values are those supplied at the poiktg andM 4 from the for .ada-ptlation lies BeMeen poinké :é andM. =80 and
hydrodynamic propagation. The propagation algorithm usegﬁese are shown by the large bIackOdots in F(g)liiParticle

in this study for the internal region is the unconditionally 81 on the far riaht of the fiaure. will iust trail aion behind
stable(and implicit Crank—NicholsonCN) schemée® This ’ 9 gure, Wit | 9

; the adapted region as it moves to the )eflith both A(x)
scheme can handle the two-point boundary problem an . . :
: and B(x) given as input on the unstructured grid between
propagatesA,B) from one time step to the next.

In operator form, the CN algorithm starts with(x,t) Mo a_ndMl, these two functions were then interpolated onto
and generateg(x.t+ At) according to a uniform mesh lying betwee_n_ these two boundary points.
The adapted mesh and the original mesh were chosen to have
At . the same number of points between the boundary points, so
Y(t+At)= ( 1- EH> (1), (13)  that redistribution is the technique being used in this illustra-
tion of grid adaptation.

1+ Atﬂ
2%

- o o Using the Crank—Nicholson algorithm to update the val-
whereH is the Hamiltonian operator. After substituting the o for(A,B) in the internal region and integrating the hydro-

decomposition of the wave function into real and imaginarygynamic equations-of-motion to find the particle positions in
parts, we obtain coupled real-valued equations@ndB,  the exterior region, the time evolution of the system is ob-

tained. Figures @) and &c) show the real part of the scat-

B(x,t+At)+ EHA(X,H-AI): B(x,t)— ﬁf—iA(x,t), t_ering wave function after propagat_ing an additional 25 or_75
2h 2h time steps, respectively. Over the time interval between Figs.
8(a) and &c), the central peak i\(x) propagates about 0.8
At . At . a.u. toward the left of the figure. Before introduction of the
A(x,t+A1) = EHB(X’HM)_A(X'U"' EHB(X'U' adapted grid, it was only possible to advance about 10 time

steps beyond that shown in FigaR At that time, numerical
At this point, we introduce the finite-difference discretization problems developing around the nodes led to particle cross-
of the x-coordinate, with the uniform grid spacidgx. Using  ings (interchange of position in one dimensjoand subse-
a central second-difference approximation Yof, these two  quently the code crashed. Introduction of the adapted grid in
equations become a system di 2whereN is the number of the region of extensive inflation and compression thus per-
grid points in the internal regigrinear algebraic equations. mitted propagation to longer times then could be obtained
When setting up these equations, the valueg®\@ndB at  when only the hydrodynamic representation was employed.
two times,t andt+ At, at the two end pointdyl, andM ¢, By adjusting the various parameters, propagation to times
are required. These eight required boundary values are oltater than shown in Fig.(8) could be obtained, but the plots
tained form the hydrodynamic equations-of-motion. Thisare very similar to those shown here. The parameters that
procedure is repeated for each time step that the local adaprere varied included the following1) the size of the region
tive grid is used. over which adaptation was employe@) the starting time-
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evolves in time, highly nonuniform distributions are fre-
quently generated. These nonuniform distributions show
both compression and inflation; these are regions where par-
ticles tend to aggregate or avoid. Regions around wave func-
tion nodes always show inflation, but other regig¢ssch as

the tails of wave packetsnay also show low particle densi-
ties. Because of the low density and nonuniform particle dis-
tribution around these nodes, accurate calculation of the
quantum potential and the quantum force presents severe
challenges to algorithms designed for calculating derivatives.

In order to meet the challenges posed by highly nonuni-
form particle distributions, adaptive Lagrangiamoving
grids were introduced in this study. Using diagnostic tools,
patches can be identified where trouble may later develop
during the time evolution. Within these local patches, grid
adaptation can add, remove, or redistribute mesh points as
necessary. In addition, in patches which surround wave func-
tion nodes, the hydrodynamic representation is abandoned in
favor of propagation in terms of the real and imaginary parts
of the wave function, denoted and B, respectively. Prob-
lems encountered in the hydrodynamic representation with
calculating the derivatives of the wave function amplitude,
R=(A2+B?)Y2 are circumvented. The use of thé&,B)
wave function representation in local patches along with the
hydrodynamic representation in all other regions leads to a
mixed representation which still permits propagation of par-
ticles. Within the local patches, the local velocity field can be
computed fromA andB, and the particles trajectories can be
extended through these regions.

In this study, grid adaptation was applied to the reflected
portion of a wave packet scattering from a repulsive Eckart
potential. During reflection, a series of transient nodes form
in the leading edge of this wave packet. When using the
hydrodynamic representation, it was not possible to propa-
gate beyond the early stage of formation of the first node in
the reflected wave packet. However, using (AeB) repre-
sentation of the wave function within the region where grid

FIG. 8. Real part of the scattering wave function at time step#70, (b) adapt?‘tion was imr_Oduce.d p.erm-itted propagation to m_UCh
495, and(c) 545. The left and right boundary particles for the adaptation later times. Further investigation is needed to tune the diag-

region are shown as large dots.(l, the unstructured particle locations are nostic tools that can be used to determine when and where to
Ehown by thg dots, while itb) and(c) the adapted mesh is used between the perform grid adaptation. In addition, further studies are
oundary points. . L . .

needed to determine whether to redistribute grid points, or
whether to add or remove points to achieve a better sampling

step for initiating the adaptation proces8) the number of of the data used in computing derivatives required for solv-

adapted mesh points used in the internal region. The impoiing the equations-of-motion.

tant point is that the “node problem” occurring in the hy-

drodynamic formulation has been circumvented. Further exACKNOWLEDGMENTS
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