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Martin Kneser (1928 – 2004)

- strong approximation and class

numbers

- Galois cohomology of algebraic

groups

- geometry of numbers, explicit

constructions of lattices
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1 A Short History of Quadratic Forms 1884 –

1954

The theory of quadratic forms emerged as a part of (elementary)

number theory, dealing with quadratic diophantine equations, initially

over the rational integers.
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The main questions in modern language were:

a. the equivalence problem: when are two quadratic modules

(“lattices”) (L, q) und (M, q′) over Z equivalent ?

b. The representation problem: for which t ∈ Z does there exist a

x ∈ L with q(x) = t ?

c. The determination of the representation numbers

a(t, L) = |{x ∈ L | q(x) = t}|.
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Herrmann Minkowski (1864 – 1909)

He developed the foundations of a

general theory of quadratic forms over

the rationals and rational integers. He

already proved major results on all

three questions in a modern way.
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A brilliant work of the very young Minkowski is the prize-winning

paper

Grundlagen für eine Theorie der quadratischen Formen mit ganz-

zahligen Koeffizienten, Mémoires présentés par divers savants a

l’Académie des Sciences de l’institut national de France, Tome

XXIX, No. 2. 1884.

In the main part of this paper, he develops the local classification of

integral quadratic forms. In the context of the prize question on sums

of five squares, this was preparatory, but clearly of independent

importance.
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In his Königsberg Dissertation from 1885 entitled

Untersuchungen über quadratische Formen. Bestimmung der

Anzahl verschiedener Formen, die ein gegebenes Genus enthält.

Königsberg 1885; Acta Mathematica 7 (1885), 201–258

he proves a version of the Maßformel which is already very similar to

the current one. In contrast to the works of previous authors, the

“right hand side” is a product of local densities over all prime

numbers.

In this context, Minkowski also introduces for the first time (more or

less) today’s notion of a genus of quadratic forms (in any number

over variables).
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In those days, the rational theory (classification over Q) still was a

by-product of the integral theory. Nevertheless, the following paper

practically contains the main theorem over Q.

H. Minkowski (Letter to Hurwitz), Über die Bedingungen, unter

welchen zwei quadratische Formen mit rationalen Koeffizienten

ineinander rational transformiert werden können, J. reine angew.

Math. 106 (1890), 5–26 = Ges. Abh. I, 219–239.

9

To every rational quadratic form, Minkowski associates a system of

invariants Cp = ±1, one for each prime. He shows that these

invariants, together with the discriminant (a rational square class),

determine the rational equivalence class. This result contains the

local-global principle (for equivalence, not for representations), but

the term is not yet used.

end Minkowski
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Helmut Hasse (1898 – 1979)

One of the leading german algebraic

number theorists in the 20th century

- introduces Hensel’s p-adic num-

bers into the theory of quadratic

forms

- proves the (strong) local-global

principle over number fields
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Carl Ludwig Siegel (1896 – 1982)

- analytic number theory

- discrete groups, complex analysis

- complete solution of the problem

of representation numbers of in-

tegral quadratic forms
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Theorem (Minkowski, Siegel) Es sei L ein positiv definites Gitter der

Dimension ℓ und M = M1, . . . ,Mh ein Repräsentantensystem für ein

Geschlecht positiv definiter Gitter der Dimension m. Dann gilt für die

Darstellungsanzahlen a(L,Mk) von L durch die verschiedenen Mk und die

lokalen Darstellungsdichten αp(L,M), p prim, die Beziehung

1∑
k

|O(Mk)|−1
·
∑

k

a(L,Mk)

|O(Mk)|
=

γ(m − ℓ)

γ(m)

∏
αp(L,M).

Hierbei sind die Werte γ(n) induktiv definiert durch

γ(0) = 1, γ(1) =
1

2
, γ(2) =

1

2π
, γ(n) =

γ(n − 1)

n · ρn
für m ≥ 3,

wo ρn das Volumen der n-dimensionalen Einheitskugel ist.

Über die analytische Theorie der quadratischen Formen I, II, III, Annals of

Mathematics 36 (1935), 527–606, 37 (1936), 230–263, 38 (1937), 212–291
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Ernst Witt (1911 – 1991)

- the founder of the modern

theory of quadratic forms over

arbitrary fields

- the cancellation theorem

- the extension theorem for

isometries

Theorie der quadratischen Formen in

beliebigen Körpern, J. reine angew.

Math. 176 (1937), 31–44 = Coll. Pa-

pers, Ges. Abh. 2–15
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Witt was a very original mathematician; he made fundamental

contributions to diverse of topics: Witt index, Witt group, Witt

vectors, to name just three. For instance, in the theory of Lie

algebras, in modular forms and in algebraic combinatorics he is cited

for some standard results.
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In particular, I want to mention Witt’s paper

Eine Identität zwischen Modulformen zweiten Gerades, Abh.

Math. Sem. Univ. Hamburg 14 (1941), 323–337 = Coll. Papers,

Ges. Abh. 313–328.

It is one of the first contributions to ongoing research on “lattices and

modular forms”. He shows that for D̃16 und E8 ⊥ E8, not only the

ordinary theta series, but also the second degree Siegel theta series

coincide.

We shall come back to this later.

end Witt
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Martin Eichler (1912 – 1992)

- simple algebras over number

fields

- spinor norms, spinor genera

- first approximation results

- modular forms, theta series
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Martin Kneser very clearly acknowledges the influence of Eichler on

his own work in the introduction of the 2001 book version of his

lectures on quadratic forms:

“Für all dies vergleiche man das einflußreiche Werk

Quadratische Formen und orthogonale Gruppen, Springer-

Verlag 1952.”

He makes precise in what sense the book was influential on himself:
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“Schließlich ein persönliches Wort. Es ist

ziemlich genau 50 Jahre her, daß ich als

junger Assistent nach Münster kam, bald

an Eichlers Seminar teilnahm, wo gerade

die neuesten Ergebnisse aus seinem Buch

Quadratische Formen und orthogonale Grup-

pen besprochen wurden. Da ich im Institut

mein Arbeitszimmer mit Eichler teilte, hatte

ich die besten Möglichkeiten, von einer Semi-

narsitzung zur nächsten die offen gebliebenen

Fragen zu klären und so die quadratischen

Formen an der Quelle zu studieren.”

(M. Kneser 2001, aus der Einleitung von Quadratische Formen)
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2 Martin Kneser: Quadratic forms and

arithmetic of algebraic groups 1955 – 1970

In the mid 1950s, the theory of algebraic groups and the (arithmetic)

theory of quadratic forms were still rather unrelated areas of research. On

the side of groups, the classification of (semi)simple algebraic groups over

algebraically closed fields was known by work of Claude Chevalley. Jacques

Tits had (essentially) introduced the structures later called buildings which

give a uniform geometrical interpretaion of all these groups, including the

exceptional ones.

20



Already by the end of the 1950s, a completely new area of research had

emerged, after Armand Borel had proved his fundamental theorem on the

existence and conjugacy of maximal connected solvable subgroups. This

made the classification of semisimple groups over arbitrary fields

accessible, which was then rather quickly carried out mainly by Borel and

Tits. They used k-split tori and the relative root system to reduce the

question essentially to the anisotropic kernel, in analogy with the Witt

decomposition of quadratic forms.
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Over number fields, this approach embedded the earlier studies of algebras

with involution, hermitian forms, Cayley octaves and Jordan algebras into

a uniform theory. In this situation it was perfectly natural (after work of

Lang and Tate) to introduce non-abelian Galois cohomology (H0,H1,

abelian H2) to treat such classification questions. Jean-Pierre Serre’s

course at the Collège de France 1962-63, leading to the famous Lecture

notes No. 5 Cohomologie Galoisienne, demonstrates how quickly the new

method had been established.
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The theory of semisimple groups over number fields in turn laid the

foundations for a general treatment of arithmetic subgroups of algebraic

groups, whose fundamentals were developed by Borel and Harish-Chandra.

Clearly, many substantial results had been obtained (much) earlier mainly

by Siegel, but the framework had dramatically changed.

We now want to look at (part of) Kneser’s work as embedded in this

general picture.
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Martin Kneser’s vita

- 1945-50 studies in Tübingen,

Göttingen and Berlin

- 1951-1956 assistant at Münster

and Heidelberg, Habilitation

- 1957-58 Univ. of Saarbrücken

- 1959-62 Prof at München

- 1963–1993 Prof at Göttingen
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Four fundamental works by Martin Kneser:

1. Klassenzahlen indefiniter quadratischer Formen,

Archiv d. Math. 7 (1956), 323–332

2. Klassenzahlen definiter quadratischer Formen,

Archiv d. Math. 8 (1957), 241–250.

3a. Strong approximation. in: Algebraic groups and dis-

continuous subgroups. Proceedings, Boulder Co 1965.

3b. Starke Approximation in algebraischen Gruppen.I.

J. reine angew. Math. 218 (1965), 190 – 203.

4. Galois-Kohomologie halbeinfacher algebraischer Grup-

pen über p-adischen Körpern I. and II.

Math. Z.88 (1965), 40–47, 89 (1965), 250–272
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contents of the paper in Archiv d. Math. 1956:

- proof of the strong approximation theorem for representations

and for the orthogonal group

- the adelic orthogonal group is introduced for the first time

- the number of spinor genera in a genus is a group index

- generation of orthogonal groups by reflections

- computation of local spinor norms
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contents of the paper in Archiv d. Math. 1957:

- main idea: if (V, q) is isotropic at p, lattice over Z[1/p] behave

like indefinite lattices

- technically: apply strong approximation (from the previous paper)

to the set of places S = ∞∪ {p}

- for any two classes in the same spinor genus, there are

representatives L,M s.t. Z[1/p]L = Z[1/p]M.

- the resulting “neighbour method” is used to calculate the class

number of In up to dimension 14.
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2.1 Strong approximation and class numbers

We have already talked, without details, about the use of strong

approximation for class numbers and representations of quadratic

forms. We now generalize the situation to algebraic groups and give

complete definitions and statements.

Notation:
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k an algebraic number field

o the ring of integers of k

p, ℓ, v, . . . places (equivalence classes of valutations of k)

kp, op the completion of k, resp. o at p

p ∈ op a prime element for p, if p is finite

Sk the set of all places of k

S a finite set of places of k

A = Ak the ring of adeles of k

(aℓ)ℓ∈Sk
a typical element of A, so aℓ ∈ ol f.a.a. ℓ

A(S) ⊂ A the S-integral ideles, so aℓ ∈ oℓ for ℓ /∈ S
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V a finite-dimensional vector space over k

G a linear algebraic group defined over o

L a lattice in V

G(R) for any over-ring R ⊇ o the group of R-points in G

in particular

G(Ak) the adele-group of G over k

G(o) the stabilizer of L in G(k)

G(k) ⊂ G(Ak) diagonally embedded

30

Definition 1 The G-class number of a lattice L is the number of

G-classes in the G-genus of L.

Definition 2 (Strong Approximation) Let G be an algebraic

group over k and S be a finite set of places of k. We say that strong

approximation holds for the pair (G,S) if G(k)G(A(S)) is dense in

G(Ak).

Theorem 1 (Kneser 1965, Platonov 1969)

Strong approximation holds for all pairs (G,S), where G is simply

connected almost k-simple and G(kv) is not compact for at least one

v ∈ S.
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2.2 Local-global principles and Galois cohomology

Definition 3 The Hasse principle holds for an algebraic group G over

k if the canonical map

H1(k,G) →
∏

v∈Sk

H1(kv, G)

is injective.

The following result is fundamental for the use of this method:

Theorem 2 (Kneser 1965) If G is a semisimple simply connected

group over a local field k of characteristic 0, then H1(k,G) = 0.

The proof uses the classification and structure theory of such groups,

but also a lot of case-by-case investigations.
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Theorem 3 (Kneser 1965, Harder 1965/66, Chernousov 1989)

The Hasse principle holds for all semisimple simply connected

algebraic groups.

Remark: Naturally, this theorem is not restricted to simply connected

groups, as already the case of orthogonal groups shows. In particular,

it holds for all (connected) adjoint groups. It is also true for many

“intermediate” groups, like the orthogonal groups in even dimension

which is neither simply connected nor adjoint.
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2.3 Siegel’s theorem and Tamagawa numbers

The Tamagawa measure on the adelic points of a semisimple

algebraic group G defined over a number field is a certain, canonically

normalized product measure. It induces an invariant measure on the

coset space G(Ak)/G(k), whose volume is actually finite. The

Tamagawa number of G is defined as

τ(G) := |disc K|− dim G/2 vol G(Ak)/G(k).
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The following theorem had been conjectured by A. Weil.

Theorem 4 (Kottwitz, 1988) The Tamagawa number of any

semisimple simply connected algebraic group is equal to one:

τ(G) = 1.

for most of the classical groups: case-by-case verification by Weil in

the around 1960; see Adeles and algebraic groups.

for split groups: Langlands 1966, using “his” Eisenstein series for

adele groups.

for quasi-split groups: Lai, 1980

general case: Kottwitz, proving a certain invariance property under

inner twists.
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Note on history. Tamagawa introduced the Tamagawa measure and

thus the Tamagawa number of an algebraic group over a number field

in the late 50s. He himself did not publish much about it, but

apparently he knew that Siegel’s theorem is equivalent to τ(SO) = 2.

Tamagawa numbers of algebraic groups were further investigated by

Ono (see the Boulder proceedings of 1965).

Well known are the lecture notes (Princeton 1961) by Weil, where he

calculated τ(G) for the classical groups.

However, to my best knowledge Kneser was the first who had realized

that one can conveniently use the adelic orthogonal group for a proof

of the Minkowski-Siegel formula. This remark is contained as a

footnote on p. 326 already in his 1956 paper.
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2.4 Further contributions by M. Kneser

To finish this partial overview of Kneser’s work, I want to mention

three doctoral dissertations which were supervised by him. This is my

personal choice.

H.-V. Niemeier, Definite quadratische Formen der Diskriminante 1

und Dimension 24, J. Number Theory 5 (1973), 142–178.

Jürgen Biermann: Gitter mit kleiner Automorphismengruppe in

Geschlechtern von Z-Gittern mit positiv-definiter quadratischer Form,

Dissertation Göttingen 1981
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Yuriko Suwa-Bier Positiv definite quadratische Formen mit gleichen

Darstellungsanzahlen, Dissertation Göttingen 1984

In contrast to a first impression, this is not a question about theta

series. It requires a carefully chosen (and eventually computer-based)

decomposition of the 12-dimensional cone of pairs of reduced positive

definite 3 × 3-matrices.

The solution of this problem was eventually given in the following

dissertation, supervised by F. Grunewald:

Alexander Schiemann: Ternäre positiv definite quadratische Formen

mit gleichen Darstellungsanzahlen, Dissertation Bonn 1993
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Finally, I want to mention three papers by Kneser himself, which deal

with quadratic forms, but outside the main scope of his works.

Zur Theorie der Kristallgitter,

Math. Annalen 127, 105–106 (1954)

Two remarks on extreme forms, Canadian Journal of Math.

7, 145–149 (1955)

Lineare Relationen zwischen Darstellungsanzahlen quadrati-

scher Formen, Math. Annalen 168, 31–39 (1967)
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3 A particular problem: finite quotients of

Bruhat-Tits buildings

In the 1980s: Finite group theorists and geometers work on the classification of

certain classes of (locally) finite incidence geometries belonging to a Coxeter

diagram (and more general diagrams), together with a flag transitive

automorphism group. The maximal flags are called “chambers”, the term

“chamber system” is also common. These geometries locally look like finite

buildings.

There is an appropriate covering theory for chamber systems (related to group

amalgamations), and the universal 2-cover under rather general assumptions is a

building. If the diagram belongs to the known list of affine

Coxeter-Dynkin-diagrams and the rank is ≥ 4, then this building is known: it is a

Bruhat-Tits building.
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A general reference is the following:

William M. Kantor: Finite geometries via algebraic affine buildings,

pp. 37-44 in: Finite Geometries, Buildings and Related Topics (Eds.

W. M. Kantor et al.), Oxford University Press, Oxford 1990

Other contributors: Timmesfeld, Stroth, Ronan, Meixner.

We maintain the general notation introduced previously; in particular,

we consider the following:
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k a totally real algebraic number field

o, p, kp, op as before

G ⊂ GL(V ) simply connected semisimple, almost simple over k

anisotropic at the infinite places

p a fixed finite place of k s.t. rkp G ≥ 2

k̄p := o/po the residue field at p

∆ := ∆(G(kp)) the Bruhat-Tits building of G(kp).

L a lattice in V s.t. opL =: Lp defines a vertex of ∆

∆0
∼= ∆(G(k̄p)) the residue (star, link) of L in ∆.

Γ := G(o[1
p
]) a {p}-arithmetic discrete subgroup of G(kp)

Γ0 := G(o) the finite stabilizer of L in G(k).
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The following proposition makes precise the relation between class

numbers and chamber transitivity of discrete groups as indicated on

p. 40 of Kantor’s above-mentioned paper.

Proposition Under the above assumptions, the following properties

of the lattice L (resp. the arithmetic groups Γ,Γ0) are equivalent:

• Γ acts chamber transitively on ∆.

• (i) Γ0 acts chamber transitively on ∆0,

(ii) hG(L) = 1.
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Proof: (M. Kneser) “=⇒”: (i) is obvious from the assumption,

since the chambers of ∆0 are exactly the chambers of ∆ containing

the vertex L. For (ii), we have to show that

G(Ak) = G(k) · G(A(∞)). (1)

Since G is isotropic at p, we can use strong approximation for the set

of places ∞∪ {p}:

G(Ak) = G(k) · G(A(∞∪ {p})). (2)

Since Γ acts chamber transitively on ∆ it also acts vertex transitively

on the vertices of a given type, which for “type L” translates as

G(kp) = Γ · G(op) = G(o[
1

p
]) · G(op). (3)

44



Given an arbitrary adele (σℓ) ∈ G(Ak), first use (2) and write it as

σ · (τℓ) with σ ∈ G(k) and τℓ ∈ G(oℓ) for all ℓ 6= p. Then use (3) and

write τp = γ · δ with γ ∈ G(o[1
p
]) and δ ∈ G(op). Now replace the

original decomposition of (σℓ) by

σℓ = (σγ) · (γ−1τℓ) for all ℓ.

Since p is a unit in all oℓ, ℓ 6= p, we have γ ∈ G(oℓ) for all ℓ 6= p and

thus γ−1τℓ is still in G(oℓ). Furthermore, γ−1τp = δ is in G(op) by

construction. Thus the second factor of the new decomposition is in

G(oℓ) for all ℓ, and therefore the given adele is a member of the right

hand side of (1).
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“⇐=”: Because of assumption (i), we only have to show the

transitivity of Γ on the vertices of “type L”, that is, the vertices in

the orbit G(kp)L ⊂ ∆. But this transitivity is equivalent to (3), as

has already been used. To prove (3), just apply assumption (1) to

adeles which are 1 outside p: for any given σp ∈ G(kp), there exists

σ ∈ G(k) and an adele (τℓ) with τℓ ∈ G(oℓ) for all ℓ s.t. σp = σ · τp

and σ · τℓ = 1 for all ℓ 6= p. But this means σ ∈ G(op) for all ℓ 6= p,

thus σ ∈ G(o[1
p
]), as desired. �
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Notice: This proof is completely analogous to the derivation of the

neighbour method from strong approximation. See in particular

equation (3) and compare Kneser’s 1957 paper.

Consequences: Discrete chamber transitive groups on affine

buildings are very rare. Examples had been found in the works of

Kantor and Meixner/Wester in the above-mentioned context.

A full classification has been announced in

[KLT] W.M. Kantor, R. Liebler, J. Tits, On discrete chamber

-transitive automorphism groups of affine buildings,

Notices of the AMS Vol. 16, No. 1 (1987).

The “generic case” of the suggested proof deals with the

non-existence of such a subgroup for almost all algebraic groups G. It

is briefly sketched in that announcement (see also the survey quoted
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above). It uses only condition (i) (or rather the chamber transtivity

on residues of all types). This condition is already very restrictive, by

a theorem of Gary Seitz. A complete proof of the classification is not

published.

A proof of the finiteness result based on the computation of covolumes of

S-arithmetic groups has been given by Prasad and Borel/Prasad (two

subsequent papers in Publ. Math. IHES) already in 1989. It is an open

question whether one could use the class number condition effectively for a

revision of the KLT-classification. For spin groups, one could use the

results on the growth of class numbers of the 1972 dissertation of Ulf

Rehmann, partially based on the 1969 dissertation of Horst Pfeuffer (both

students of Kneser). For other groups, it would apparently be necessary to

control effectively the numerous parameters in the above-mentioned

formulas of (Borel and) Prasad on covolumes of arithmetic groups.
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