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Abstract We survey models and theories of geometric structures of parallelism,
orthogonality, incidence, betweenness and order, thus gradually build-
ing towards full elementary geometry of Euclidean spaces, in Tarski’s
sense. Besides the geometric aspects of such structures we look at their
logical (first-order and modal) theories and discuss logical issues such as:
expressiveness and definability, axiomatizations and representation re-
sults, completeness and decidability, and interpretations between struc-
tures and theories.
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1. Introduction and historical overview

In ancient Babylon and Egypt geometry was just a set of empirical
observations and practical skills and methods for measuring land and
designing irrigation systems, although it already had a degree of sophis-
tication (e.g., Pythagoras’ theorem was already known and the triangle
with sides 3-4-5 was used in practice for producing right angles). In
ancient Greek times it evolved into a liberal art.

We dare claim that Geometry only became a science with Euclid’s
epic work “Elements” written over 2300 years ago, which was not only
the first truly scientific treatment of geometry, but also the first sys-
tematic application of the axiomatic method in mathematics. Geometry
remained a central subject in mathematics throughout the centuries,
but when in the first half of the 17th century Descartes introduced co-
ordinate systems, and with them the analytic method in geometry, it
gradually began to lose its prime position in mathematics and became
part of algebra and calculus, and later – of topology. The modern view,
going back to the famous Klein’s Erlangen program, defined geometry as
a study not of figures, but of transformations, and classified the different
geometric structures and their theories in terms of the groups of trans-
formations which preserve them. This view placed it firmly on algebraic
foundations to an extent that some mathematicians consider it as an
‘applied group theory’.

On the other hand, the discovery of non-Euclidean geometries by
Bolyai, Lobachevsky and Gauss in the early 19th century (see e.g. Cox-
eter, 1969; Eves, 1972; Meserve, 1983), which showed inter alia the
independence of Euclid’s ‘Fifth Postulate’ from the other axioms of Eu-
clidean geometry, was an impressive demonstration of the strength and
importance of the formal logical approach in mathematics, which also
reinforced the importance of geometry to the foundations of mathemat-
ics. Euclid’s Fifth Postulate claims that, given a line and a point not
incident with it in a plane, there exists a unique line in that plane pass-
ing through the given point and parallel to the given line. Depending
on the acceptance or otherwise of that postulate, several natural lines of
development of geometry evolve:

affine geometry , first studied by Euler, which adopts the Fifth
Postulate. Thus incidence, parallelism, collinearity, and between-
ness, as well as transformations that preserve these relations, play
a central role in affine geometry. Such affine transformations can
be taken, in the spirit of the Erlangen program, as defining the
very notion of ‘affine’. Affine geometry does not deal with angles,
distances, or any other related metric concepts (not even with
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orthogonality), as these are not invariant under affine transforma-
tions. Thus the models of affine geometry, viz. affine spaces, are
more general than Euclidean spaces, but have poorer structure.

hyperbolic geometry , introduced by Lobachevsky and Bolyai, and
elliptic geometry, which adopt the negation of the Fifth Postulate.
In hyperbolic geometries, given a line and a point not on that line,
there exist infinitely many lines through that point which lie par-
allel with the original given line (see e.g. Coxeter, 1969; Szczerba
and Tarski, 1965; Szczerba and Tarski, 1979 for more details); in
elliptic geometry (see Coxeter, 1969; Behnke et al., 1974) there are
no parallel lines at all. These will not be discussed in this chapter,
but see Hilbert, 1950 for comparison and relationships.

absolute geometry , introduced by J. Bolyai, based only on the first
four postulates of Euclid, but independent of the Fifth Postulate.
In some extension of absolute geometry the notion of parallelism
can be completely rejected, as in projective geometry , where every
two lines in a projective plane intersect. In others, alternatives of
the Fifth Postulate can be adopted, as in the elliptic and hyperbolic
geometries. Thus, absolute geometry is a full-fledged system of
geometry, involving distances, angles, etc., but based on a weaker
axiomatic basis than Euclidean geometry. It is not a subsystem
of affine geometry, though the intersection of the two is still rich
enough to develop a meaningful and interesting theory of ordered
affine structures (see Coppel, 1998; Coxeter, 1969, Ch. 15; Lenz,
1992; Szczerba, 1972).

A fundamental affine relation, i.e., one invariant under affine trans-
formations, is the relation of betweenness on triples of points, which
extends basic affine structures by introducing ordering between points
on a line, but not distances. Much of the theory of betweenness is inde-
pendent from Euclid’s Fifth Postulate, and thus lies in the intersection
of absolute and affine geometry (see Coppel, 1998; Coxeter, 1969).

Perhaps the simplest important non-affine relation is that of orthog-
onality. Further adding distances and angles, along with the axioms
of the field of reals, extends affine geometry to the classical, Euclidean
geometry of the real plane and space.

In the beginning of the 20th century Hilbert, the most influential pro-
ponent of the axiomatic method in mathematics, illustrated the power
of that method by re-casting Euclid’s work into a precise and rigorous
modern treatment which eventually put geometry on sound axiomatic
foundations (see Hilbert, 1950). It was preceded by axiomatic investiga-
tions of the foundations of geometry at the end of the 19th century by
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Peano, as well as Pieri, 1908; Veblen, 1904; Veblen, 1914 and Pasch,
1882, who analyzed various axiomatic systems and the mutual rela-
tionships between the primitive notions of Euclidean geometry. How-
ever, the axiomatic method in geometry only reached its logical ma-
turity with the seminal work of Tarski and his students and followers
Szczerba, Szmielew, Schwabhäuser, Scott, Monk, Givant and others (see
Schwabhäuser et al., 1983 for comprehensive details) in the 1920-70’s.
Tarski developed systematically the logical foundations of elementary
geometry , which is “that part of Euclidean geometry that can be formu-
lated and established without the help of any set-theoretical devices” (see
Tarski, 1959). Essentially, that means the first-order theory of Euclidean
geometry, developed over a suitably expressive first-order language (see
further). In particular:

Tarski, 1951; Tarski, 1967 demonstrated how the elementary ge-
ometry of the real plane can be formally interpreted into the ele-
mentary (i.e. first-order) theory of real-closed fields. Furthermore,
Tarski showed the completeness and decidability of the theory of
real-closed fields by means of quantifier elimination, and conse-
quently obtained a decision procedure for the elementary Euclidean
geometry. He then extended these results to Euclidean planes over
arbitrary real-closed fields.

Tarski, 1959 showed that the whole elementary geometry can be
developed axiomatically using just two geometric relations, viz.
betweenness and equidistance (used as the only primitives also by
Veblen, 1904). He thus obtained an explicit axiomatization of
the first-order theory of the Euclidean geometry in terms of these
primitives and showed that it is complete and decidable, though
not finitely axiomatizable.

In a similar fashion, Szmielew, 1959 studied the first-order theory
of the metric hyperbolic geometry, obtained by negating Euclid’s
axiom in Tarski’s first-order axiomatization of the Euclidean ge-
ometry.

Szczerba and Tarski, 1965; Szczerba and Tarski, 1979 studied and
characterized the first-order theories of the fragments of the Eu-
clidean, hyperbolic and absolute geometries based on betweenness
alone, for which they established explicit axiomatizations.

Beth and Tarski, 1956; Tarski, 1956 studied the problem of which
geometric relations are sufficient to be adopted as primitive notions
in terms of which the whole Euclidean geometry can be developed.
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Szmielew, 1983 developed the theory of point-based collinearity
structures and showed how to build up the Euclidean geometry
from that theory, while Schwabhäuser and Szczerba, 1975 studied
line-based structures for elementary geometry.

While the post-Tarski period in the logical foundations of geometry
is less active and spectacular, still there are several research lines which
deserve discussion. Besides the notable works of Tarski’s students men-
tioned above, they include:

study of classical and constructive axiomatizations of fragments
of projective, affine, absolute, Euclidean, elliptic, hyperbolic, etc.
geometries, with emphasis on simplicity and minimality, in Pam-
buccian, 1989; von Plato, 1995; Lombard and Vesley, 1998; Pam-
buccian, 2001a; Pambuccian, 2001b; Pambuccian, 2006, etc. For
a general discussion of the axiomatics of affine and projective ge-
ometry, see Bennett, 1995.

investigation of primitive relations sufficient for the elementary
affine, projective, absolute, etc. geometries; the expressiveness of
such relations; and axiomatizations in terms of such relations, in
Scott, 1956; Pambuccian, 1995; Pambuccian, 2003; Pambuccian,
2004, etc.

development of practical methods and algorithms for theorem prov-
ing in algebra and geometry: quantifier elimination based methods,
such as Seidenberg’s implementation of Tarski’s method, Seiden-
berg, 1954, the method of cylindrical algebraic decompositions (see
e.g. Caviness and Johnson, 1998; Buchberger et al., 1988), and the
more recent and efficient Heintz et al., 1990; Renegar, 1992; Basu
et al., 1996; Basu, 1999; Gröbner basis method (Buchberger, 1985),
the characteristic set method (Chou and Gao, 1990), and others.
For more details and references see Sec. 9.2.

Most of the studies and results mentioned above apply to geomet-
ric structures of which the logical languages are rich enough to express
properties of ordering and metric. However, there are various weaker,
yet natural and important, geometric structures such as parallelism, or-
thogonality, incidence and collinearity structures, which involve points
and lines in a real or abstract geometric space. The elementary theo-
ries of these latter structures are considerably less studied, mainly from
the perspective of discrete and combinatorial geometry. We will discuss
these structures and their theories in some detail here, as they play an
important role in various models of qualitative spatial reasoning.
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While affine and absolute spaces are too general to allow the devel-
opment of a full-fledged elementary geometry in them, they are still
amenable to algebraic treatment by means of coordinatization, which
enables the study of affine and projective spaces by studying algebraic
structures called ternary rings (see e.g. Blumenthal, 1961; Heyting,
1963; Szmielew, 1983; Hughes and Piper, 1973; Mihalek, 1972). Since
the coordinatization is a first-order interpretation, it is instrumental for
the algebraic investigation and characterization of the logical theories
of affine spaces, and can be used to establish various logical properties,
such as independence results, representation theorems, (lack of) finite
model property, decidability and complexity results of these theories.

In this chapter we survey and discuss from a logical perspective struc-
tures and theories of parallelism, orthogonality, incidence and order,
gradually building the full elementary geometry of Euclidean spaces, in
Tarski’s sense. Besides traditional geometric properties and construc-
tions, we discuss various logical issues such as: definability of relations
and properties, expressiveness of concepts, axiomatic theories and their
models, representation results and completeness, finite model property,
decidability, categoricity and other model-theoretic properties.

The chapter consists of two parts. In the first part we discuss clas-
sical, first-order theories of geometric structures, starting with very
weak structures of parallelism (Sec. 3), orthogonality (Sec. 4), incidence
(Sec. 5) and collinearity, for which we show how to develop some geo-
metric concepts, such as independence, basis, planarity and dimension.
In Sec. 6 and Sec. 7 we outline coordinatization of projective and affine
planes as a general method of interpreting them into algebraic struc-
tures called planar ternary rings, and discuss the relationship between
geometric and algebraic properties, and generally between the logical
theories of planes and the associated coordinate rings. We also discuss
collineations and general affine transformations, and the associated (in-
variant) affine concepts and properties. In Sec. 8 we then add between-
ness and order in affine planes, discuss definability in these planes, and
the relationship of these planes with ordered coordinate rings, as well as
the results from Szczerba and Tarski, 1965; Szczerba and Tarski, 1979
on axiomatic theories of betweenness. Eventually we consider some rich
languages, i.e. languages containing primitive notions in terms of which
the whole elementary geometry can be developed, and present Tarski’s
axiomatization of the Euclidean geometry in terms of betweenness and
equidistance. The first part of the chapter, dealing with elementary
theories of geometry, ends with a brief discussion in Sec. 9.2 of the de-
velopment of decision methods for elementary geometry since Tarski’s
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seminal decidability results, and automated reasoning for elementary
geometry.

The second part of the chapter is devoted to modal logics arising
from classical, mainly two-dimensional geometrical structures. After a
short general discussion of spatial modal logics in Sec. 10, we consider
modal logics of several sorts: point-based (Sec. 11), line-based (Sec. 12),
and point-line based logics (Sec. 14) with incidence relations between
the sorts, defining affine or projective incidence structures. In Sec. 13
we show how two-sorted relational structures based on points and lines
can be replaced by one-sorted relational structures containing the same
geometrical information, and how modal logic can be developed on such
structures. In Sec. 14 we discuss point-line spatial logics and show how
modal languages can be interpreted on two-sorted relational structures.

2. Preliminaries

2.1 Some terminology and notation

The following notions will be introduced more than once in this chap-
ter. Here we only fix the notation and terminology used further (unless
otherwise specified) for the convenience of the reader.

We deal with two basic geometric objects, points and lines.

Points. Points are usually considered primitive concepts, but as we
shall see, they can also be defined in terms of co-punctual lines. Specific
points will be denoted as A, B, C etc. and typical point variables will
be X, Y , Z, etc. Basic relations on points are collinearity, denoted
as Col(XY Z), meaning that the points X, Y and Z lie on a com-
mon line (sometimes generalized to n points); betweenness, denoted
as B(XY Z), meaning that Y lies on the line segment joining X and Z
(with possibly Y coinciding with X or Z); and equidistance, denoted
XY ≡ ZU and meaning that the line segment formed by X and Y has
the same length as the line segment formed by Z and U . Using any
of these, one can define the triangle relation, which holds when three
points are non-collinear.

Lines. Lines can be introduced as primitive concepts, or defined
in terms of pairs of different points, or as equivalence classes of points
in collinearity structures. Specific lines will be denoted as a, b, c, etc.
Typical line variables will be x, y, z etc. Basic relations on lines are:

Incidence denoted as x Inc y, meaning that the lines x and y share
a common point, and may even coincide. Incidence may be generalized
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to co-punctuality (concurrence), denoted Cop(x1 . . . xn), meaning
that the lines x1, . . . , xn have exactly one point in common.

Intersection of two lines, denoted x Int y and meaning that x and
y are incident but different.

Co-planarity of lines, denoted Pl(xy) for two lines and generalized
to Pl(x1 . . . xn) for n lines, meaning that the lines lie in the same plane.

Strict (irreflexive) parallelism, denoted x ‖ y, meaning that the
lines x and y are parallel and different, and weak (reflexive) paral-
lelism, denoted x q y, meaning that x and y are parallel or coincide.

Orthogonality, denoted x ⊥ y, meaning that the lines x and y are
orthogonal, but not necessarily intersecting, and perpendicularity, de-
noted x ⊥̇ y, meaning that the lines x and y are orthogonal and coplanar
(and hence intersecting).

Skewness, denoted x ⊲⊳ y, meaning that x and y are not co-planar.

Lines can also be defined as sets of points collinear with a pair of
points: given two distinct points P and Q, the line determined by P
and Q, denoted l(P, Q), is defined as the set of all points X such that
Col(PQX) holds.

Given a point X and a line y, the claim that X is incident with y
will be denoted as XIy or simply as X ∈ y, while, assuming Euclid’s
parallel postulate, the unique line parallel with y and containing X will
be denoted p(X, y). The unique line incident with two distinct points X
and Y will be denoted as l(X, Y ) or simply as XY , while the line segment
between X and Y will be denoted |XY | and the length of that segment
as ‖XY ‖. Given intersecting lines x and y, their point of intersection
will be denoted P(x, y).

For every integer n ≥ 1, Diffn(X1 . . . Xn) will be the formula stating
that X1, . . . , Xn are distinct, i.e.

Diffn(X1 . . . Xn) :=
∧

i6=j
1≤i,j,≤n

Xi 6= Xj ,

and likewise for Diffn(x1 . . . xn).

2.2 Algebraic background

The terminology on algebraic structures varies considerably in the
literature, so we fix ours here. The reader is referred to any standard
text in abstract algebra, or to Szmielew, 1983 for more details.

Consider the structure (G; 0, +) where G is a non-empty set, + is a
binary operation on G and 0 is some distinguished element in G. Then
(G; 0, +) is called an (additive) loop (with zero 0) if
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1. a + 0 = a = 0 + a for all a ∈ G;

2. a + b = c uniquely determines any of a, b, c from the other two.

Likewise we refer to (G; 1, ·) as a multiplicative loop with unit 1.
If the operation + is associative as well, then (G; 0, +) is called a

group. Note that the second property above guarantees the existence
of additive inverses in any group. A group will be called abelian when
the operation defined in it is commutative.

A structure (F ; 0, +, ·) is called a ring if (F ; 0, +) is an abelian group
and the multiplication · is both associative and distributive over +.

A structure (G; 0, 1, ·) (where 0 and 1 are distinct distinguished ele-
ments from G) is called a multiplicative loop with zero if

1. (G\{0}, 1, ·) is a multiplicative loop with unit 1;

2. a · 0 = 0 = 0 · a for all a ∈ G.

Here 0 is the zero of (G; 0, 1, ·) and 1 is its unit. Again (G; 0, 1, ·) will
be called a multiplicative group with zero when · is associative.

(F ; 0, 1, +, ·) is called a double loop when

1. (F ; 0, +) is an additive loop;

2. (F ; 0, 1, ·) is a multiplicative loop with zero.

A double loop (F ; 0, 1, +, ·) is called a left division ring (respectively,
right division ring) when (F ; 0, +) is an abelian group and · is left-
distributive (respectively, right-distributive) over +. A division ring
is a double loop that is both a left and right division ring. A division
ring (F ; 0, 1, +, ·) with associative multiplication · is called a skew field,
and if · is also commutative then (F ; 0, 1, +, ·) becomes a field. Note
that there is some variation in the literature regarding these terms; for
example, division rings are called in Szmielew, 1983 quasi-fields. By a
classical result of Wedderburn, every finite skew field is a field.

A structure (G; 0, +,≤) will be called an ordered loop if (G; 0, +) is
a loop and ≤ is a linear ordering on the set G such that

1. a ≤ b ⇒ c + a ≤ c + b (left additive monotony)

2. a ≤ b ⇒ a + c ≤ b + c (right additive monotony)

for all a, b, c ∈ G. If (G; 0, +) is a group then (G; 0, +,≤) will be called
an ordered group, etc.

A structure (F ; 0, 1, +, ·,≤) will be called an ordered double loop
if (F ; 0, 1, +, ·) is a double loop and ≤ is a linear ordering on the set F
such that both left and right additive monotony holds, and
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1. a ≤ b ⇒ c · a ≤ c · b (left multiplicative monotony)

2. a ≤ b ⇒ a · c ≤ b · c (right multiplicative monotony)

for all a, b, c ∈ G with c ≥ 0. Likewise if (F ; 0, 1, +, ·) is instead, say,
a left division ring, then (F ; 0, 1, +, ·,≤) will be called an ordered left
division ring, etc. It is easy to see that if (F ; 0, 1, +, ·) is an ordered
double loop then 0 < 1 and hence F has infinite cardinality since for
every x ∈ F , x < x + 1.

An ordered structure (F ; 0, 1, +, ·,≤) is Euclidean, if for every a ∈ F
with a ≥ 0 there exists b ∈ F such that a = b2; real closed, if it is
Euclidean and every polynomial of odd degree over F has a zero in F .

2.3 Logical background

In the treatment of some logical issues, we assume that the reader
has background on the basic model theory of first-order logic, suitable
references on which include Doets, 1996; Enderton, 1972 and the very
comprehensive and more advanced Hodges, 1993. Here we only mention
a few more specific concepts and results used in the chapter.

Theories. A (first-order) theory is any set of first-order sentences. A
theory T is complete if every two models of the theory are elementarily
equivalent, i.e., satisfy the same first-order sentences. A typical example
of a complete theory is the set TH(A) of all first-order sentences satisfied
in a given structure A. A theory T is ω-categorical (or, countably
categorical) if all countable models of T are isomorphic; T is decidable
if there is an algorithm which can determine if a given sentence is a
logical consequence of T . By the ÃLoś-Vaught Test (see e.g. Doets, 1996)
every ω-categorical theory is complete and decidable.

Padoa’s method. Let L be a first-order language over some sig-
nature S, let s be a symbol not in S and T a theory over the signature
S∪{s}. If A and B are models of T with A|S = B|S but sA 6= sB then s
cannot be defined by T in L. More generally, if A is a model of the theory
T and if there exists an automorphism of A|S that fails to preserve the
symbol s, then s cannot be defined by T in L. For example, consider the
structure (Z; +). The constant 0 is explicitly definable using the formula
ϕ0(x) := ∀y(x+y = y). From this we can then explicitly define subtrac-
tion using the formula χ−(x, y, z) := ∃u∃v(ϕ0(u)∧y+v = u∧x+v = z).
To show that multiplication · is not definable in (Z; +), simply note that
the automorphism h of (Z; +) given by h(x) = −x does not preserve
multiplication, since in general −(x · y) 6= (−x) · (−y).
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Interpretations. Let S be any signature with SA, SB ⊆ S, and con-
sider the structures A = (A; SA) and B = (B; SB). An n-dimensional
interpretation of B in A consists of the following (the vectors x̄ will
refer to n-tuples of variables):

1. A formula ϕ(x1, . . . , xn) over the signature SA which defines some
relation DB ⊆ An representing the domain of B interpreted in A;

2. A surjective (“decoding”) function f : DB → B, such that:

(i) for every constant symbol c ∈ SB, a formula ϕc(x̄) in LA that
defines some element cB ∈ DB such that f(cB) = cB;

(ii) for every m-ary relation symbol r ∈ SB, a formula ϕr(x̄1, . . . , x̄m)
in LA that defines some relation rB ⊆ Dm

B such that f [rB] = rB

(likewise for the equality symbol);

(iii) for every m-ary function symbol g ∈ SB, a formula
ϕg(x̄1, . . . , x̄m, x̄m+1) in LA that defines some function gB : Dm

B →
DB such that f(gB(ā1, . . . , ām)) = gB(f(ā1), . . . , f(ām)).

A classical example is the 2-dimensional interpretation of the rationals
Q = (Q; +, ·) in the integers Z = (Z; +, ·), as ordinary fractions. Inter-
pretations will be used in Sec. 6, where affine planes will be interpreted
in algebraic structures called ternary rings.

3. Structures and theories of parallelism

We begin our study with very weak and simple structures which con-
sist of a set of lines subject only to the relation of parallelism (besides
equality). We will provide a definitive axiomatic description of such
structures which can be extracted from the real Euclidean space of any
dimension. In particular, it will turn out that the relation of line paral-
lelism is too weak to distinguish dimensions greater than n = 1.

By a line parallelism frame, or simply a parallelism frame, we
mean any structure of the form 〈Li, ‖〉, where ‖ is a binary relation called
parallelism over a non-empty set Li of which the elements are called
lines. When the relation ‖ holds for two lines x and y, we will use
phrases such as x is parallel to y, etc.

A pre-model of parallelism is a parallelism frame 〈Li, ‖〉 satisfying
the following conditions:

Sym
‖
: ∀x∀y(x ‖ y → y ‖ x) (symmetry)

PTran
‖
: ∀x∀y∀z(x ‖ y∧y ‖ z → x = z∨x ‖ z) (pseudo-transitivity)

A pre-model of parallelism in which the parallelism relation is reflexive
(respectively, irreflexive) will be called a model of weak parallelism,
(respectively, a model of strict parallelism). Thus, models of weak
and strict parallelism must satisfy respectively the axioms:
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Ref
‖
: ∀x (x ‖ x), and Irr

‖
: ¬∃x (x ‖ x).

Hereafter, unless otherwise specified, by parallelism we will mean
strict parallelism, and weak parallelism will be denoted by the symbol
q. Clearly, these are definable in terms of one another:

x q y ⇔ x ‖ y ∨ x = y, x ‖ y ⇔ x q y ∧ x 6= y.

Thus models of weak parallelism are simply equivalence relations,
while models of strict parallelism are isomorphic to disjoint unions of
relational structures of the form 〈W, 6=〉, where 6= is the difference re-
lation over some non-empty set W. Given a model of strict parallelism
〈Li, ‖〉 and any line x ∈ Li, the set of lines {x} ∪ {y ∈ Li : y ‖ x}
will be called the parallel class (containing x). The property that a
model of strict parallelism contains infinitely many parallel classes can
be modelled using the scheme Par

‖
consisting of the axioms

∃x1 . . .∃xk



Diffk(x1 . . . xk) ∧
∧

i6=j

xi 6‖ xj





for every natural k ≥ 1.
In models of strict parallelism, it is possible for a line to be parallel

with no other line. A model of parallelism will be called k-serial if it
satisfies the property

∀x∃y1 . . .∃yk

(

Diffk(y1 . . . yk) ∧ ∧k
i=1yi ‖ x

)

.

A model that is k-serial for every natural k ≥ 1 will be called infinitely
serial, and the scheme specifying that a model is infinitely serial, con-
sisting of all the above axioms for k ≥ 1, will be denoted as Ser

‖
.

A model of strict parallelism is real if it consists of (not necessarily
all) lines in the real plane, with the usual relation of strict parallelism.

Given a line u, let u denote the parallel class of u. Now, with every
such parallel class u we associate a real number mu meant to represent
the slope of the lines in u in some arbitrarily fixed orthogonal coordinate
system in the real plane, so that the mapping m is to be injective. Then,
each line v in the class u can be mapped to a unique real number bv, and
the line v is identified with the line in the real plane having equation
y = mux + bv. Thus, we have the following elementary characterization
of line parallelism in Rn.

Proposition 1.1 Every model of strict parallelism of cardinality not
greater than the continuum is isomorphic to a real model.
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By taking the mappings m and b to be surjective, after setting aside
a parallel class for the vertical lines, we obtain:

Proposition 1.2 Every model of strict parallelism in which there are
continuum many parallel classes, each of them with the cardinality of the
continuum, is isomorphic to the model of strict parallelism consisting of
all lines in R2.

Corollary 1.3 For every natural n ≥ 2, the model of strict paral-
lelism consisting of all lines in Rn is isomorphic to the model of strict
parallelism consisting of all lines in R2.

Proposition 1.4 The theory of the class of models of strict parallelism
which satisfy the schemes Par

‖
and Ser

‖
is ω-categorical, and hence com-

plete and decidable.

Indeed, let A and B be two countable models of strict parallelism
satisfying the schemes Par

‖
and Ser

‖
. Then A contains countably many

parallel classes, each of them of countable cardinality, and likewise for
B. Let ϕ be any bijection between the parallel classes of A and the
parallel classes of B, and for every parallel class x in A, let ψx be a
bijection between the lines in x and the lines in ϕ(x). Then the line u
in A lying in the parallel class x is mapped to the line ψx(u) in B, and
this establishes an isomorphism between A and B.

The completeness and decidability now follow by the ÃLoś-Vaught Test.
Since the theory of strict parallelism is reducible to the first-order

theory of equality, from Stockmeyer, 1977 it follows that the theory of
strict parallelism is PSPACE-complete.

4. Structures and theories of orthogonality

4.1 Orthogonality frames and dimension

By a line orthogonality frame, or simply orthogonality frame,
we will mean any structure of the form 〈Li,⊥〉, where Li is a set, the
elements of which will be called lines, and ⊥ is a binary relation on
Li, called the orthogonality relation. Lines x and y satisfying x ⊥ y
will be called orthogonal. If x and y are both orthogonal as well as
incident, then they will be called perpendicular, denoted x⊥̇y. For
n ≥ 1, dimension can be defined in an orthogonality frame using the

conjunction of the sentences dim
(n)
⊥ and Dim

(n)
⊥ , given as

dim
(n)
⊥ : ∃x1 . . .∃xn

(

∧

i6=j xi ⊥ xj

)

;

Dim
(n)
⊥ : ¬∃x1 . . .∃xn∃xn+1

(

∧

i6=j xi ⊥ xj

)

.
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Clearly Dim
(n)
⊥ = ¬dim

(n+1)
⊥ . An orthogonality frame satisfies the

property of n-dimensionality (for n ≥ 1) if both sentences dim
(n)
⊥ and

Dim
(n)
⊥ hold in that frame. A frame that satisfies 2-dimensionality will

also be called planar.
When dealing with orthogonality frames, the expression x1 q x2 will

be an abbreviation for the formula

∀y (y ⊥ x1 ↔ y ⊥ x2) . (1.1)

In the context of orthogonality frames, by parallelism we will mean weak
parallelism, and will say that lines x1 and x2 are parallel when x1 q x2

in the sense of (1.1). Clearly, the binary relation defined by q is an
equivalence relation.

From the class of all orthogonality frames, we single out those which
satisfy the additional axiom

Pen⊥ : ∀x1∀x2 (x1 6= x2 → x1 6q x2).

Such orthogonality frames will be called pencils, by analogy with a
pencil being a collection of co-punctual lines. However, our pencils of
orthogonality are not pencils in the strict sense. The axiom Pen⊥ sim-
ply states that there may be no parallel lines, and this mimics pencil
structure. But the axioms do not exclude models where the lines are
not all co-punctual. In fact, incidence is not even definable from or-
thogonality, so that it is futile to try and axiomatize co-punctuality of
lines in orthogonality frames. For example, let Rn

M
be the set of all lines

in the Euclidean space Rn, and define Rn
M

:= (Rn
M

;⊥), where ⊥ is the
Euclidean orthogonality relation. By using the method of Padoa (i.e.
finding an automorphism of Rn

M
which fails to preserve incidence) we

can obtain the following.

Proposition 1.5 For n ≥ 3, the relation of line incidence is not defin-
able in Rn

M
.

Orthogonality pencils can be obtained from orthogonality frames by
factoring over parallel classes: if A is any orthogonality frame, then A/

q
,

the quotient structure of A induced by the parallelism relation defined
by (1.1), is an orthogonality pencil; parallelism reduces to equality in
orthogonality pencils.

We will call an n-dimensional orthogonality frame real if it can be iso-
morphically embedded in Rn with the Euclidean orthogonality relation,
where two lines are orthogonal when the dot product of their direction
vectors is 0.
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4.2 Planar orthogonality frames

Definition 1.6 A 2-dimensional model of orthogonality, or sim-
ply a planar model of orthogonality, is an orthogonality frame 〈Li,⊥〉
with Li non-empty and subject to the following axioms:

Irr⊥ : ¬∃x (x ⊥ x)
Sym⊥ : ∀x∀y (x ⊥ y → y ⊥ x)

prd
(2)
⊥ : ∀x∃y (y ⊥ x)

Prd
(2)
⊥ : ∀x∀y1∀y2

(

∧

i=1,2 yi ⊥ x → y1 q y2

)

The axioms Irr⊥ and Sym⊥ specify respectively the irreflexivity and sym-

metry of ⊥, while prd
(2)
⊥ and Prd

(2)
⊥ combined state that, up to paral-

lelism, every line has a unique line orthogonal to it. It can easily be

verified that the axioms dim
(2)
⊥ and Dim

(2)
⊥ hold in these structures. It

is useful to note that in Goldblatt, 1987 they study orthogonality struc-
tures which admit self-orthogonal lines (lines which lie orthogonal to
themselves) as well as singular lines (lines which lie orthogonal to all
lines in the structure).

We will also make use of the following axiom schemes:

Inf∞ := {λk}k∈N, stating the existence of infinitely many lines,
where λk := ∃x1 . . .∃xk (∧i6=jxi 6= xj);

Ser∞, stating that every parallel class has infinite cardinality, con-
sisting of the axioms ∀x∃y1 . . .∃yk

(

Diffk(y1 . . . yk) ∧ ∧k
i=1yi q x

)

for every k ∈ N;

Par∞, stating that there are infinitely many parallel classes, con-
sisting of the axioms ∃x1 . . .∃xk (∧i6=jxi 6q xj) for every k ∈ N.

Using a similar approach as with the proof of Proposition 1.1, we can
map lines in an abstract planar orthogonality model to lines in the real
plane, to obtain the following.

Proposition 1.7 (Representation Theorem) Every planar model
of line orthogonality with cardinality at most the continuum is isomor-
phic to a real planar model of line orthogonality.

By bijectively associating pairs of mutually orthogonal parallel classes
in any two countable planar orthogonality models, we furthermore obtain
the following.

Proposition 1.8 The theory of the class of planar orthogonality models
satisfying the schemes Ser∞ and Par∞ is ω-categorical.

Corollary 1.9 The theory of the class of planar orthogonality models
satisfying the schemes Ser∞ and Par∞ is complete and decidable.
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4.3 Orthogonality frames in higher dimensions

Given an n-dimensional orthogonality frame, a set of lines x1, . . . , xk

in that frame (with n ≥ 1 and k ≤ n) will be called independent when
the formula

LI
(n)
k : ¬∃z1 . . .∃zn−k+1 (∧i6=j zi ⊥ zj ∧ ∧i,j zi ⊥ xj) (1.2)

is satisfied. Lines which are not independent will be called dependent.
The formula (1.2) takes k ≤ n arguments. For k > n define the lines

x1, . . . , xk to be dependent and the formula LI
(n)
k (x1, . . . , xk) to be false.

Say that y lies in the span of x1, . . . , xk when the following formula
holds:

Span(x1, . . . , xk, y) := ∀z
(

∧k
i=1 z ⊥ xi → z ⊥ y

)

. (1.3)

Independence and span of lines is an abstraction of the notion of linear
independence and span of vectors in a vector space.

Definition 1.10 An orthogonality frame 〈Li,⊥〉 with Li non-empty
will be called an n-dimensional model of orthogonality, where n ≥

3, if it satisfies the axioms Irr⊥, Sym⊥ and Dim
(n)
⊥ , together with the

axioms
prd

(n)
⊥ : ∀x1 . . .∀xn−1∃y

(

∧n−1
i=1 y ⊥ xi

)

Prd
(n)
⊥ : ∀x1 . . .∀xn−1

(

LI
(n)
n−1(x1, . . . , xn−1) →

∀y1∀y2

(

∧

i,j yi ⊥ xj → y1 q y2

))

From the axiom prd
(n)
⊥ it is immediate that the axiom dim

(n)
⊥ will hold

in all n-dimensional orthogonality models, and in the case where n = 3 it

can also be shown that the axiom Dim
(3)
⊥ may be dropped. The axioms

prd
(n)
⊥ and Prd

(n)
⊥ imply that every n-dimensional orthogonality model

has the property

∀x1 . . .∀xn−1

(

LI
(n)
n−1(x1, . . . , xn−1) →

∃y
(

n−1
∧

i=1

y ⊥ xi ∧ ∀z
(

n−1
∧

i=1

z ⊥ xi → z q y
)))

(1.4)

i.e. every n − 1 independent lines x1, . . . , xn−1 have a unique parallel
class, which we shall call the product of x1, . . . , xn−1 - denote it as
x1 × · · · × xn−1 - that lies orthogonal to all of the xi. Line products
are an abstraction of the vector cross product in R3. In the context
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of pencils, x1 × · · · × xn−1 will not be a parallel class, but simply a
single line. Note that the operation × is not total, but only defined on
tuples of independent lines. In the 3-dimensional case, the formula (1.4)
reduces to ∀x1∀x2 (x1 6q x2 → ∃y (y ⊥ x1, x2 ∧ ∀z (z ⊥ x1, x2 → z q y))),
i.e. every two non-parallel lines have a unique parallel class orthogonal
to both of them.

The axioms used above for the formalization of orthogonality in higher
dimensions illustrate the novel expressive power of orthogonality, but
they do not constitute a complete first-order axiomatization of the class
of orthogonality structures in dimension n ≥ 3. To our knowledge,
the complete axiomatization of the first-order theory of orthogonality
in these dimensions has not been established yet. Unlike the case for
planar orthogonality models, it can be shown that the theory of line
orthogonality in Euclidean n-space is not countably categorical for n ≥ 3,
and this negative result indicates that the problem of identifying this
theory is presumably difficult.

Since orthogonality is a metric notion - arguably the simplest and most
intuitive of all metric line notions - it has great expressive power, and
one anticipates that its theory will capture a non-trivial and substantial
fragment of that of the full Euclidean geometry, as witnessed by the
fact that notions like linear independence and span of vectors can be
abstracted and expressed in the language of orthogonality.

5. Two-sorted point-line incidence spaces

In this section, we consider point-line incidence structures, described
by a two-sorted first-order language with equality, equipped with sorts
for points and lines and the intersort relation of incidence.

5.1 Point-line incidence frames

A point-line incidence frame is a two-sorted structure 〈Po,Li, I〉
where Po and Li are non-empty sets and I ⊆ Po × Li is a symmet-
ric incidence relation between them. The elements of Po are called
points, and the elements of Li are called lines. If the relation I holds
for a point X and a line x then we use expressions like X is incident
with x, X lies on x, X belongs to x, x passes through X, x contains
X etc. When XIz and Y Iz we also say that the line z connects the
points X and Y while the point X is in the intersection of the lines y
and z will mean that XIy and XIz.
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We say that the lines x and y are incident, denoted x Inc y, if they
are incident with a common point, formally

x Inc y := ∃Z(ZIx ∧ ZIy).

Further, we say that the lines x and y are intersecting, denoted
x Int y, if they are incident and different. Formally

x Int y := x 6= y ∧ x Inc y.

Given an arbitrary incidence frame 〈Po,Li, I〉, we also introduce the
relation of collinearity of three points

Col(XY Z) := ∃x(XIx ∧ Y Ix ∧ ZIx)

and that of co-punctuality of lines

Cop(x1 . . . xn) := ∃X

(

n
∧

i=1

XIxi

)

.

Thus incidence of lines is a special case of co-punctuality of lines.

5.2 Linear spaces of incidence

Linear spaces (not in sense of vector spaces) are the most general
incidence structures which are geometrically meaningful. It is instructive
to note that a number of fundamental concepts in vector spaces, such as
independence, basis and dimension can be generalized to linear spaces.
The following definition reflects Hilbert’s axioms for incidence.

Definition 1.11 (see Karzel et al., 1973) A linear space (aka inci-
dence geometry or incidence basis in Mihalek, 1972) is an incidence
frame 〈Po,Li, I〉 in which the following axioms hold:

LS1 Every two distinct points are incident with a unique common line.
LS2 Every line passes through at least two points.

Given distinct points X and Y in a linear space, the unique line inci-
dent with both of them will be denoted by l(X, Y ). Thus, the expression
l(X, Y ) assumes that X and Y are distinct. Furthermore, if two lines x
and y in a linear space intersect, then by LS1 they have a unique com-
mon point, hereafter denoted as P(x, y) and called the intersection of
x and y. We will only use this notation in the case of intersecting lines.
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5.3 Linear subspaces, independence, bases and
dimension

To begin with, linear spaces can be regarded as two-sorted algebraic
structures, with two partial operations: one applied to two different
points produces the unique line passing through them, and the other
applied to two intersecting lines produces their intersection point. Thus,
a subspace of a linear space could be defined as a non-empty substructure
which is closed under these partial operations. However, this definition
also allows subspaces consisting of just one line from the space, and two
or more, but not all, points on that line. It is more natural to require
that a subspace contains with every line in it all points on that line.
Therefore, by a (linear) subspace (linear variety in Gemignani, 1971)
of a linear space L we will mean every substructure L′ = 〈Po′,Li′, I〉 of
the incidence frame L, which is itself a linear space, and all points lying
on lines in Li′ are in Po′. Note that any non-empty intersection of a
family of subspaces (i.e. incidence structure in which the sets of lines and
points are the respective non-empty intersections of the families of lines
and points of the spaces in the family) is a subspace itself. The subspace
L′ of L is generated by the pair of sets of points and lines (P,L)
in L, denoted here L′ = ⌊P,L⌋, if it is the smallest subspace (i.e., the
intersection of all these) of L containing the points (lines). Alternatively,
L′ can be obtained from (P,L) by a finite number of successive steps of
adding the line passing through two given points and adding all points
lying on a given line. Clearly, it suffices to generate subspaces starting
from sets of points only; then we write simply L′ = ⌊P⌋.

A set of points P in a linear space is independent if none of the
points of P belongs to the subspace generated by the rest of P. An
independent set of points which generates (paired with the empty set of
lines) a given subspace is called a basis of that subspace. The reader
is also referred to Ch. ?? for a discussion of matroids and independent
sets.

Note that, unlike vector spaces, not all bases in a linear space need
to have the same cardinality; for an example, see e.g. Batten, 1986,
Sec. 2.1. However, as shown there:

Proposition 1.12 All bases of a linear space L = 〈Po,Li, I〉 have the
same cardinality provided that the space satisfies the following exchange
property: for any P ⊂ Po and X, Y ∈ Po, if X 6∈ ⌊P⌋ and X ∈
⌊P ∪ {Y }⌋ then Y ∈ ⌊P ∪ {X}⌋.

A dimension of a subspace L′ of a linear space L is the least number
n such that L′ can be generated by a (clearly independent) set of n + 1
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points. Thus, every subspace containing just one line has a dimension
1; a subspace containing three non-collinear points has a dimension at
least 2. A subspace with dimension 2 of a linear space L is a (linear)
plane in L.

Examples of linear spaces include the usual Euclidean plane and 3D-
space, as well as the points in any open disc in the Euclidean plane or
space, where lines are the intersections of the usual lines in the plane
(space) with that disc. Besides, there is a huge variety of finite linear
spaces (see e.g. Batten, 1986; Mihalek, 1972). For instance, take the
vertices of a tetrahedron as points, and the sides of the tetrahedron as
lines, where incidence is standard. Note that this is the simplest example
of a linear space of dimension greater than 2.

5.4 Linear transformations and collineations

Given linear spaces L = 〈Po,Li, I〉 and L′ = 〈Po′,Li′, I′〉, a mapping
f from L to L′ is a pair of mappings fpo : Po −→ Po′ and fli : Li −→ Li′.
Such mapping is a linear transformation if it preserves incidence both
ways, i.e. XIx iff fpo(X)I′fli(x). Thus, the action of a linear transfor-
mation on a line is determined by its action on any two distinct points
of the line, and therefore it suffices to consider linear transformations as
mappings on the set of points of a linear space. It is immediate from
the definition to see that if L has dimension greater than 1 then every
linear transformation on L is injective on the set of points, and on the
set of lines, of L. Thus the notion of linear transformation is the natural
notion of a mapping between linear spaces that preserves their structure.

An isomorphism between linear spaces is a bijective (on each of the
sets of points and lines) linear transformation. A collineation is an
automorphism of linear space, i.e. an isomorphism of a linear space
onto itself. With ι as the identity and function inverse and composition
as basic operations, the set of all collineations of a linear space L is a
group, called the group of collineations Aut(L) of L. Many properties
of a linear space can be determined by its group of collineations; for
more detail see e.g. Gemignani, 1971; Behnke et al., 1974; Coxeter,
1969; Hughes and Piper, 1973.

5.5 Parallelism and planarity in linear spaces

Given a linear space L =〈Po,Li, I〉, one way to define parallel lines
in it is to take intuition from the Euclidean space, where two lines are
parallel if they are co-planar but do not intersect. Thus, we call two lines
in L (strictly) quasi-parallel if they have no common incident point
and belong to a subspace of dimension 2. Note that this relation need
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not be transitive. For technical reasons, however, we consider separately
the case where every line in the space is incident with exactly 2 points.
We will call such spaces meagre. In meagre spaces, by strict quasi-
parallelism we will mean simply non-incidence.

An alternative definition is based on another intuition from the ‘real
Euclidean geometry’: two lines are parallel if they are not incident,
but the diagonals of every quadrilateral with a pair of opposite sides
lying on these lines must intersect. Formally, we define the relation ‖ of
(strictly) parallel lines in L as follows:

x ‖ y := ¬x Inc y ∧ ∀X1∀X2∀Y1∀Y2

(

(

x = l(X1, X2) ∧ y = l(Y1, Y2)
)

→
(

l(X1, Y1) Int l(X2, Y2) ∨ l(X1, Y2) Int l(X2, Y1)
)

)

.

Then we define weak parallelism:

x q y := x ‖ y ∨ x = y.

Again, in the special case of meagre linear spaces, by strict parallelism
we mean non-incidence.

The relation ‖ is irreflexive and symmetric but not necessarily tran-
sitive either. Still, if two lines in a linear space are parallel, then they
are quasi-parallel too: take any two pairs of distinct points, one on each
of the lines, and take the intersection point of the respective ‘diagonals’;
that point together with the pair of points on any of the lines generates
a subspace of dimension 2 containing both lines. The converse need not
hold, which can be shown by an example from Batten, 1986, Sec. 2.1
of a linear space of dimension 2 which contains a set of 4 independent
points, mentioned in Sec. 5.3.

Given a linear space L =〈Po,Li, I〉, two lines x, y ∈ Li are called
co-planar, denoted Pl(xy), if they are incident or parallel:

Pl(xy) := x Inc y ∨ x ‖ y.

A linear space is planar if every two lines in it are co-planar.
Thus, by convention, every meagre linear space is planar.
It is easy to see that a non-meagre linear space L is planar iff it satisfies

the following property:

∀X1∀X2∀X3∀X4

(

l(X1, X2) Inc l(X3, X4) ∨

l(X1, X3) Inc l(X2, X4) ∨ l(X1, X4) Inc l(X2, X3)
)

, (1.5)

saying that the diagonals of every quadrilateral must intersect.



22

We now have two different notions of a ‘plane’ in a linear space, one
based on dimension, the other on planarity. Note, that the tetrahe-
dron is a meagre (and hence planar) space of dimension 3. However,
if a non-meagre linear space L is planar, then it has dimension 2. In-
deed, let A, B, C be any three non-collinear points in it. Then for any
point D in the space, at least one of the pairs of lines (l(A, B), l(C, D)),
(l(A, C), l(B, D)) and (l(A, D), l(B, C)) are incident, say l(A, B) Inc l(C, D),
and let X = P(l(A, B), l(C, D)). Then X belongs to the line l(A, B) and
D belongs to the line l(C, X).

The converse of the claim above need not hold, again by the example
from Batten, 1986 mentioned above; note that any independent set of 4
points in a non-meagre space violates the planarity condition above.

5.6 Projective spaces and planes

Definition 1.13 (see also Lenz, 1954) A projective space is linear
space satisfying the following additional axioms:

PS1 If A, B, C are distinct points and a line l intersects AB and AC
in two distinct points, then it intersects BC as well.
PS2 There are at least four points, no three of which are collinear.

Projective spaces satisfy the exchange property (see Batten, 1986,
Sec. 3.9), and hence, by Proposition 1.12, every two bases in a projective
space have the same cardinality, called the rank of the space. The
dimension of the space is thus defined as 1 less than its rank.

A projective plane is a projective space of rank 3, i.e. dimension 2.
Equivalently, a projective plane is a projective space in which every two
lines intersect; in particular, projective planes contain no parallel lines.

Conversely, one can re-define projective spaces of higher dimension in
terms of the sub-planes that they contain. For instance, the projective
3D-space can be defined (see Hartshorne, 1967; Mihalek, 1972) as a
projective space with the following additional axioms:

PS3 There exist at least 4 non-coplanar points.
PS4 Every three non-collinear points lie on a unique sub-plane.
PS5 Every line meets every sub-plane in at least one point.
PS6 Every two sub-planes have at least a common line.

Since every line in a projective plane intersects all other lines in dif-
ferent points, and every point is line-connected with every other point in
the plane, it follows that in a finite projective plane every line is incident
with the same number of points, and every point is incident with the
same number of lines.
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If ϕ is any statement about a projective plane formulated in terms of
‘point’, ‘line’ and ‘incidence’ then the statement ϕ∗, formed from ϕ by
interchanging the words ‘point’ and ‘line’, is called the dual statement
(with respect to ‘point’ and ‘line’) of ϕ. A statement ϕ is self-dual
if ϕ = ϕ∗. A theorem about projective planes formulated in terms of
the notions ‘point’, ‘line’ and ‘incidence’ is a projective validity if
it is true in the class of all projective planes, i.e. it is derivable from
the axioms for projective planes. One reason why projective planes are
interesting is the following ‘two for the price of one’ result (see e.g.,
Mihalek, 1972; Hughes and Piper, 1973; Batten, 1986):

Theorem 1.14 (Duality Principle for Projective Planes) Let ϕ be a
projective validity. Then the dual ϕ∗ of ϕ is also a projective validity.

To prove the duality principle it suffice to note that the duals of the
axioms for projective planes provide an equivalent axiomatization, and
hence the ‘dual’ of every proof in the (first-order) theory of projective
planes is a proof in that theory, too. For instance, it follows from the
duality principle that in every projective plane there are at least four
lines, no three of them incident with the same point. The reader is
also referred to the self-dual axiomatizations of Esser, 1951; Esser, 1973;
Kordos, 1982; Menger, 1948; Menger, 1950.

To illustrate the power of the duality principle, consider the following
combinatorial example. Suppose we have some projective plane with the
property that every line contains n points. Now fix any line l and any
point P not on l. Then every point X on l determines a line PX and
since l contains n points then there must be n distinct lines of the form
PX. Furthermore, note every point in the plane must lie on exactly one
of these lines PX. If all these lines were disjoint (as sets of points) then
there would be n2 points in total, but since the point P is counted n times
then the total number of points in the plane is n2− (n−1) = n2−n+1.
Thus, we have just shown that the following is a projective validity:

If every line is incident with n points, then there are n2 − n + 1
points in the entire plane.

By the duality principle, we can conclude the dual of this result:

If every point is incident with n lines, then there are n2 − n + 1
lines in the entire plane.

Finally, note that axiom PS2 implies that every line in a projective
plane is incident with at least 3 points, and therefore, by the result
above, the least projective plane, known as Fano plane, given on Fig.
1.1, has 7 points and 7 lines.
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Figure 1.1.

5.7 Affine spaces and planes

Definition 1.15 (see also Lenz, 1954; Lenz, 1989) An affine struc-
ture is a linear space L =〈Po,Li, I〉 in which the relation of weak par-
allelism q is an equivalence relation.

An affine space is an affine structure with at least 3 non-collinear
points, in which the following axiom (Euclid’s Fifth postulate) holds:

V : Given a line x and a point X not on x, there is a unique line
through X that is (strictly) parallel to x, denoted by p(X, x).

A slightly more general, but essentially equivalent, definition is:

V′ : Given a line x and a point X, there is a unique line through X
that is weakly parallel to x, denoted by p(X, x).

An (affine) subspace of an affine space L is every linear subspace
of L satisfying V itself, i.e. closed under the operation p.

Examples of affine spaces include the usual Euclidean plane and 3D-
space, but not the open disc in the Euclidean plane or space, as the axiom
V fails there. An example of a finite affine space is the tetrahedron. For
other examples, see e.g. Batten, 1986 and Coxeter, 1969.

Note that, usually the literature on affine and projective geometry
deals only with affine planes, and only occasionally introduces higher-
dimensional affine spaces. Thus, our definition is somewhat more gen-
eral, as it is not based on coordinatization of the space, neither on the
earlier defined notion of affine plane. A small price to pay for that gen-
erality was the adjustment of the definitions of parallelism and planarity
in the special case of meagre spaces.

Planes and planarity can be re-defined in non-meagre affine spaces us-
ing the following observations. Any ‘triangle’ (three non-collinear points)
together with the three lines determined by these points, must define a
plane. By the Fifth Postulate, every line in that plane must be incident
with at least two of these three lines, i.e. every line is determined by a
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pair of different points, each incident with some of these lines. Further-
more, every point in that plane belongs to at least one line constructed
in this way, e.g. any line determined by that point and a vertex of
the original triangle, which intersects the side opposite to that vertex
(there will be at least one, by planarity). Turning these observation
around, we obtain the following definition: a plane in an affine space
L is an incidence structure S constructed as follows: take three non-
collinear points P1, P2, P3 in L and the lines in L determined by them,
say x1, x2, x3, where xi = l(Pj , Pk), for i, j, k pairwise different. Let P
be the set of points in L incident with at least one of the lines x1, x2, x3.
Then the lines in S are exactly those lines in L incident with at least
two different points from P, and the points in S are those points in L in-
cident with at least one of these lines. It is not difficult to see that every
such plane is an affine subspace of L, which will be called the (affine)
plane in the space L generated by the points P1, P2, P3. In particular,
every plane in an affine space is closed under the affine operations of
taking lines through two points, intersections of lines, and construction
of lines passing through a given point and parallel to a given line, based
on the axiom V.

Now, an affine space is called planar, or an affine plane, if it coin-
cides with some plane in it. It is easy to show (see e.g. Batten, 1986)
that every affine space satisfies the exchange property, and hence all
bases in an affine space have the same cardinality. Rank and dimension
are introduced as in projective spaces. As for the tetrahedron, despite
being of dimension 3, we have a good excuse (to become clear further)
to consider it an affine plane as well, and that is the main reason to
adjust the definition of parallelism and planarity for meagre spaces. In
fact (see Batten, 1986, Sec. 4.1), it is the only affine plane of dimension
more than 2. Moreover, as shown there, every line in a finite affine space
is incident with the same number of points, and vice versa.

Thus, if an affine space is planar then the relation of non-incidence
of lines is pseudo-transitive, hence it is a relation of a strict parallelism.
To summarize:

Proposition 1.16 A non-meagre affine space L is an affine plane iff it
has a dimension 2 iff the relations of non-incidence and strict parallelism
between lines in L coincide.

5.8 Relationship between affine and projective
planes

Affine planes do not have the duality property. For example, the dual
of LS1 does not hold as it violates Euclid’s Parallel Postulate V. Still,
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there is an intimate relationship between affine planes and projective
planes, given by the following two theorems, the proofs of which can be
found e.g. in Gemignani, 1971; Hughes and Piper, 1973; Mihalek, 1972.

Theorem 1.17 Let P = 〈Po,Li, I〉 be a projective plane and let l∗ be
a line in Li. Define Po− := {X ∈ Po : X 6∈ l∗}, Li− := Li\{l∗} and
I− := I|Po−×Li−. Then the structure P− =

〈

Po−,Li−, I−
〉

is an affine
plane, called the (deletion) affine subgeometry of P induced by l∗.

Theorem 1.18 Let A = 〈Po,Li, I〉 be any affine plane and let l∗ be any
set, disjoint with Po and Li, and of the same cardinality as the number
of parallel classes in A. To every parallel class [l]q in A, assign some
distinct element P[l]q ∈ l∗ to [l]q. Define

1. Po+ := Po ∪ l∗;

2. Li+ := Li ∪ {l∗};

3. I+ := I ∪ {(P[l]q , l) : l 6= l∗} ∪ {(P, l∗) : P ∈ l∗}.

Then the structure A+ =
〈

Po+,Li+, I+
〉

, which we will call the projec-
tive extension of A, is a projective plane.

Thus, affine and projective planes are separated by a single line, the
so-called “line at infinity”. The tetrahedron and Fano plane (Fig. 1.1)
illustrate the latter two results. It is because of the Fano plane that we
insisted the tetrahedron, being its deletion subgeometry, should be an
affine plane.

Note that the constructions between affine and projective planes de-
scribed above are mutually inverse, up to isomorphism. These construc-
tions can be described in logical terms, relating the first-order theories of
the affine and projective planes. On the one hand, every affine plane is
first-order interpretable into its projective extension in an obvious way;
on the other hand, the first-order theory of a projective plane can be re-
duced to the first-order theory of its affine subgeometry. Consequently,
given a class of projective planes, its elementary theory is decidable iff
the elementary theory of the class of respective affine subgeometries is
decidable, too. Likewise, the elementary theory a class of affine planes is
decidable iff the elementary theory of the class of respective projective
extensions is decidable, too.

6. Coordinatization

In this section we give an overview on the coordinatization and sub-
sequent algebraization of affine planes. We will introduce a special class
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of algebraic structures called “ternary rings”, the elements of which can
serve as coordinates of points in the plane. It will turn out that affine
planes and ternary rings are inter-definable in the sense that from every
affine plane one can extract a ternary ring while every ternary ring gives
rise to an affine plane. In fact, these constructions are essentially logical
(first-order) interpretations, which thus relate their first-order theories.
In particular, we will see that natural and important geometric proper-
ties of affine planes, viz. Desargues’ and Pappus’ properties, correspond
to natural algebraic properties in these ternary rings. Furthermore, we
will demonstrate the interaction between special dilations of affine planes
and the properties of Desargues and Pappus, and will discuss the logi-
cal consequences of the coordinatization. In particular, we will extract
the axiomatizations and (un)decidability of the first-order theories of
some important affine planes and classes of planes from their associated
coordinate rings.

The method of coordinatization applies likewise to projective planes,
and most of the results obtained below have their close projective ana-
logues. Since both constructions are very similar, we will only present
here coordinatization of affine planes. For a more detailed account of
coordinatization of affine and projective planes and the relationships
(with proofs) between geometric and algebraic properties, the reader
is referred to Blumenthal, 1961; Artin, 1957; Heyting, 1963; Szmielew,
1983; Mihalek, 1972; Hughes and Piper, 1973, etc.

6.1 Coordinate systems in affine planes

We adopt weak parallelism in the discussion for the rest of this section.
Let any affine plane A = 〈Po;Li; I〉 be given. The following procedure

assigns coordinates to the plane.

Take any triplet of non-collinear points O, X and Y . The point O
will be called the origin and the triplet OXY will be called the
coordinate system.

Let I be the point of intersection of the line in the parallel class
of OX containing Y , with the line in the parallel class of OY
containing X. The point I will be called the unit point while
the lines OX, OY and OI will be called respectively the x-axis,
y-axis and unit line.

Let Γ be any abstract set, containing elements 0 and 1, of the same
cardinality as the number of points on the unit line. In fact, since
all lines in an affine plane contain the same number of points, Γ
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can have the cardinality of any line in the plane. We call the set
Γ the coordinate set.

Now let γ be any bijection between points on the unit line and Γ
and such that γ(O) = 0 and γ(I) = 1.

Points in the plane are assigned coordinates consisting of ordered pairs
from Γ2 in the following manner:

If P is a point on the unit line and γ(P ) = p then the coordinates
of P are (p, p).

Let P be any point not on the unit line. Suppose the line in the
parallel class of the y-axis, containing P , intersects the unit line in
the point with coordinates (a, a), and suppose that the line in the
parallel class of the x-axis, containing P , intersects the unit line
in the point with coordinates (b, b). Then the coordinates of P are
(a, b) (refer to Fig. 1.2).
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Figure 1.2. Figure 1.3.

The point P with coordinates (x, y) will be denoted as P (x, y), and
points will be identified with their coordinates (P(x, y) may also refer to
the point of intersection of lines x and y, but the context should make it
clear what the intended meaning is). For example, the points O, X, Y
and I can be given simply as (0, 0), (1, 0), (0, 1) and (1, 1). The value x
is called the abscissa of P and y is called the ordinate of P . Any line
not in the parallel class of the y-axis will intersect the y-axis in some
point (0, c). This value c is called the y-intercept of the line.

Next we define the slope of a line, using what will be called the line
of slopes, which is that line in the parallel class of the y-axis intersecting
the unit point I. Every point on the line of slopes will have coordinates
(1, m) for some m ∈ Γ. There are two types of line to consider:



Logical Theories for Fragments of Elementary Geometry 29

1. If l is a line parallel to the y-axis, its slope is left undefined.

2. Consider any line l not in the parallel class of the y-axis. There
will be a unique line l′ parallel to l and incident with O. This line
l′ will intersect the line of slopes in some point (1, m). The slope
of l is defined as the value m (refer to Fig. 1.3).

Thus the slope of the x-axis is 0 and the slope of the unit line is 1.
The equation of a line is any equation formulated in terms of vari-

ables x and y such that all and only those points (x, y) belonging to the
line satisfy the equation. For example, the line parallel to the x-axis
with y-intercept b has equation y = b, and the line parallel to the y-axis
intersecting the x-axis in the point (a, 0) has equation x = a. The unit
line has equation y = x. But we need further algebraic machinery to
describe the equations of lines other than these trivial examples. This is
provided by the operation T : Γ3 → Γ, defined as follows. Let the triple
of values (m, a, c) ∈ Γ3 be given. To compute the value of T (m, a, c)
consider the line l of slope m and y-intercept c. Then l intersects the
line parallel to the y-axis, and containing the point (a, 0), in the point
(a, T (m, a, c)) (refer to Fig. 1.4).
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Figure 1.4.

T enables us to obtain an equation for any line in the plane. If the
line has undefined slope, it has an equation x = a for some a ∈ Γ, while
the line with slope m and y-intercept c has equation y = T (m, x, c). The
above definition of T uses a geometric construction, but T can also be
described purely algebraically using the structure of ternary ring.
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6.2 Ternary rings and coordinate systems

Definition 1.19 A ternary ring (also known as a Hall planar ternary
ring in reference to Marshall Hall Jr.) is an algebraic structure T =
(F ; 0, 1, T ) consisting of a set F together with distinguished elements
0, 1 ∈ F and a ternary operation T on F subject to the following axioms:

T0 : 0 6= 1

T1 : T (a, 1, 0) = a

T2 : T (1, b, 0) = b

T3 : T (a, 0, c) = c

T4 : T (0, b, c) = c

T5 : T (a, b, x) = d has a solution for x

T6 : If T (a, b, c) = T (a, b, c′) then c = c′

T7 : If b 6= b′ then the simultaneous equations T (x, b, y) = d and
T (x, b′, y) = d′ have a solution for x and y.

T8 : If a 6= a′ then T (a, x, c) = T (a′, x, c′) has a solution for x

T9 : For b 6= b′, if T (a, b, c) = T (a′, b, c′) and T (a, b′, c) = T (a′, b′, c′)
then a = a′ and c = c′

It is easy to see that the ternary operation T satisfies all the axioms
T0 − T9 hence we have the following important result.

Theorem 1.20 Let the affine plane A be coordinatized with coordinate
system OXY and coordinate set Γ and let T be the resulting ternary
operation on Γ. Then the structure (Γ; 0, 1, T ) is a ternary ring.

The ternary ring (Γ; 0, 1, T ) above will be called a (coordinate) ring
attached to the plane A (by means of the coordinate system OXY ),
denoted T

OXY
(A). Given the coordinate system OXY , there is only

one, up to isomorphism, ternary ring attached to the plane by means of
OXY . A ternary ring T is said to be attached to the affine plane A

provided there is some coordinate system OXY such that T ∼= T
OXY

(A).
A converse to the last theorem is also true.

Theorem 1.21 For any ternary ring T = (F ; 0, 1, T ), the plane A(T)
with point universe F 2, and line universe consisting of all sets of the
form {(a, y) : y ∈ F} and {(x, T (m, x, c)) : x ∈ F} for every a, m, c ∈ F ,
is an affine plane, called the affine plane over the ternary ring T.
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The constructions given in the two theorems above are inverse in
the following sense. Let an affine plane A be given and fix some co-
ordinate system OXY . Then A(T

OXY
(A)) ∼= A. Let a ternary ring

T = (F ; 0, 1, T ) be given. Then T
(0,0)(0,1)(1,0)

(A(T)) ∼= T.
If two ternary rings are isomorphic then so will be the affine planes

over those ternary rings. But surprisingly, there are non-isomorphic
ternary rings such that the affine planes over those ternary rings are still
isomorphic. In particular, coordinatizing an affine plane with different
coordinate systems may sometimes give rise to non-isomorphic ternary
rings attached to the same plane, and later on we will give a sufficient
condition for uniqueness of the coordinate rings.

Given a ternary ring (F ; 0, 1, T ), addition + and multiplication ·
are defined on F as follows:

a + b = T (1, a, b); a · b = T (a, b, 0).

The structure (F ; 0, 1, +, ·) thus formed is actually a double loop.
Hence the class of double loops contains the class of ternary rings.

The geometric analogue to addition is the translation of a line in the
plane, that of multiplication is the rotation of a line in the plane. To
calculate a+b proceed as follows. Take the points A(a, a) and B(b, b) that
lie on the unit line. Intersect the line parallel to the x-axis containing B
with the y-axis to obtain the point Q(0, b). Then take the line parallel
to the unit line containing the point Q and intersect it with the line
parallel to the y-axis containing the point A to obtain the point P (a, c).
The line parallel to the x-axis containing P intersects the unit line in the
point C(c, c). We define C = A+B and c = a+ b (refer to Fig. 1.5). To
calculate a·b proceed as follows. Take the points A(a, a) and B(b, b) that
lie on the unit line. Intersect the line parallel to the x-axis containing A
with the line of slopes to obtain the point Q(1, a). Then the line parallel
to the y-axis containing the point B will intersect the line OQ in some
point P . Intersect the line parallel to the x-axis containing P with the
unit line to obtain the point C(c, c). We define C = A · B and c = a · b
(refer to Fig. 1.6).

We are now able to give the linear equations of two more classes of
lines. The line of slope 1 with y-intercept c will have equation y = x + c
while the line of slope m and y-intercept 0 will have equation y = m · x.

Call a left division ring strong if it satisfies the additional property

m1 6= m2 ⇒ ∀c1∀c2∃x (m1 · x + c1 = m2 · x + c2) ,

informally lines with different directions intersect. We can define a
ternary operation T in the strong left division ring (F ; 0, 1, +, ·) as
T (a, b, c) := a · b+ c. Then it turns out that (F ; 0, 1, T ) will be a ternary
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ring. Hence the class of ternary rings contains the class of strong left
division rings. It is easy to see that every division ring (with full dis-
tributivity) is strong. Let T , LD, D, SF and F denote respectively the
classes ternary rings, strong left division rings, division rings, skew fields
and fields. Then we have the following chain if inclusions:

T ⊇ LD ⊇ D ⊇ SF ⊇ F .

6.3 The properties of Desargues and Pappus

The theorems of Desargues and Pappus, known from Euclidean geom-
etry, turn out to hold in a more general, affine setting. While retaining
their elementary nature, these properties of the Euclidean plane will lose
their status as theorems when taken in arbitrary affine planes, as they
may or may not hold true depending on the affine plane concerned. The
Desargues and Pappus properties deal with configurations of six points,
in the former case lying in pairs on three lines, and in the latter case
lying in triples on two lines. We distinguish cases where the lines (i)
are parallel, or (ii) are mutually incident. The specific geometric prop-
erties thus described will correspond to specific classes of the algebraic
structures described above.

Definition 1.22 An affine plane satisfies the First Desargues Prop-
erty D1, if the following holds (see Fig. 1.7).

D1 :
(

¬Col(AA′B) ∧ ¬Col(AA′C) ∧ AA′ q BB′ ∧ AA′ q CC ′

∧ AB q A′B′ ∧ AC q A′C ′
)

→ BC q B′C ′

The Euclidean plane satisfies D1. As an example (see Blumenthal,
1961) of a plane that does not satisfy D1, consider the real plane R2
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with lines modified as follows. Any line of either undefined slope or
non-positive slope will be left unaltered, but any line y = mx + c with
strictly positive slope m > 0 is changed to the union of the two rays

y = mx + c when y < 0,

y = 1
2mx + 1

2c when y ≥ 0.

It is easy to see that this modified plane is affine. Fig. 1.8 gives a
configuration of points that falsify D1.
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rr rrr r
BC AB0C 0 A0

x-axis
Figure 1.8.

We have the following representation theorem.

Theorem 1.23 If an affine plane A satisfies D1 then A ∼= A(F) for
some strong left division ring F ∈ LD. Conversely, if F ∈ LD is any
strong left division ring, then A(F) satisfies D1.

The First Desargues Property allows us to give the linear equation
for any line with slope m and y-intercept c. Say that a ternary ring
(R; 0, 1, T ) is linear if T (a, b, c) = a · b + c for all a, b, c ∈ R (where +
and · are interpreted in the expanded structure (R; 0, 1, +, ·, T )).
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Theorem 1.24 An affine plane A satisfies the property D1 if and only
if every ternary ring (Γ; 0, 1, T ) attached to A is linear.

If A is an affine plane satisfying D1, then every line of undefined slope
has the form x = a while the line of slope m with y-intercept c has
equation y = m · x + c. This concludes the task of finding a linear
equation for every line of the plane.

Let P be the quaternary parallelogram relation defined by

P(ABCD) ⇔ AB ‖ CD ∧ AC ‖ BD.

The property D1 guarantees that P will be transitive in the sense

P(ABCD) ∧ P(ABEF ) ⇒ P(CDEF )

where the points are so as to exclude obvious degenerate cases.

Definition 1.25 An affine plane is said to satisfy the Second Desar-
gues Property D2 if the following holds (see Fig. 1.9).

D2 :
(

Diff7(OABCA′B′C ′) ∧ ¬Col(ABC) ∧ ¬Col(A′B′C ′)

∧ Col(OAA′) ∧ Col(OBB′) ∧ Col(OCC ′) ∧ BC q B′C ′

∧ AC q A′C ′ ∧ AC q OB
)

→ AB q A′B′
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Figure 1.9. Figure 1.10.

D2 (also known in the German-language literature as Trapezdesargues)
endows the attached ternary ring with right distributivity.

Theorem 1.26 Let an affine plane A satisfy both the properties D1 and
D2. Then every ternary ring attached to A is a division ring.
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Definition 1.27 An affine plane is said to satisfy the Third Desar-
gues Property D3 if the following holds (see Fig. 1.9 and Fig. 1.10):

D3 :
(

(O 6= A, B, C, A′, B′, C ′) ∧ ¬Col(AA′B) ∧ ¬Col(AA′C)

∧ Col(OAA′) ∧ Col(OBB′) ∧ Col(OCC ′)

∧ AB q A′B′ ∧ AC q A′C ′
)

→ BC q B′C ′

Clearly D3 ⇒ D2 and it can also be shown that D3 ⇒ D1.
D3 endows the ternary ring attached to a plane with associative mul-

tiplication. We have the following representation theorem.

Theorem 1.28 If an affine plane A satisfies D3 then A ∼= A(F) for
some skew field F ∈ SF . Conversely, if F ∈ SF is any skew field, then
A(F) satisfies D3.

For any point O, let TO be the quaternary trapezium relation:

TO(ABCD) ⇔ Col(OAB) ∧ Col(OCD) ∧ AC ‖ BD.

The property D3 guarantees that TO will be transitive in the sense

TO(ABCD) ∧ TO(ABEF ) ⇒ TO(CDEF )

where the points are taken so as to exclude obvious degenerate cases.
In particular, note that in any affine plane satisfying the Third Desar-

gues Property the midpoint of a line segment AB, being the intersection
point of the diagonals AB and CD of any parallelogram ACBD, is de-
finable in terms of A and B.

As shown in Szmielew, 1983, if the plane satisfies D3, then the coordi-
nate ternary ring attached to the plane is invariant, up to isomorphism,
of the coordinate system used; equivalently, every skew field can be re-
stored uniquely from the affine plane over it. Formally:

Theorem 1.29 ( Szmielew, 1983, Sec. 4.6)
If F, T are skew fields such that A(F) ∼= A(T) then F ∼= T.

Corollary 1.30 If A satisfies D3 and OXY , O′X ′Y ′ are two coordi-
nate systems in A then T

OXY
(A) ∼= T

O′X′Y ′ (A).

Hereafter, whenever A satisfies D3 we will denote the unique coordi-
nate ring attached to A by T(A).

Definition 1.31 An affine plane satisfies the First Pappus Property
P1 if the following holds (see Fig. 1.11).

P1 :
(

Col(ABC) ∧ Col(A′B′C ′) ∧ AB ‖ A′B′

∧ AB′ q A′B ∧ AC ′ q A′C
)

→ BC ′ q B′C.
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Definition 1.32 An affine plane satisfies the Second Pappus Prop-
erty P2 if the following holds (see Fig. 1.12).

P2 :
(

(O 6= A, B, C, A′, B′, C ′) ∧ Col(OABC) ∧ Col(OA′B′C ′)

∧ AB 6= A′B′ ∧ AB′ q A′B ∧ AC ′ q A′C
)

→ BC ′ q B′C

It can be shown that P2 ⇒ P1. A famous theorem by Hessenberg
establishes the implication P2 ⇒ D3. In fact, the following string of
implications holds:

P2 ⇒ D3 ⇒ D1 ⇒ P1.

From algebraic considerations one can also derive

D1 6⇒ D3 6⇒ P2.

For instance, the affine plane over the skew field of quaternions satisfies
D3, but not P2, because of Theorem 1.33 below. It remains an open prob-
lem whether P1 implies (and hence is equivalent to) D1. See Szmielew,
1983 and Menghini, 1991 for further details.

The property P2 endows the attached ternary ring with commutative
multiplication, and the following representation theorem holds.

Theorem 1.33 If an affine plane A satisfies P2 then A ∼= A(F) for
some field F. Conversely, if F is a field, then A(F) satisfies P2.

In this section we have followed the terminology from Blumenthal,
1961. Other names for the First and Third Desargues Properties, used
in the literature are respectively the Minor, or Weak, and Major, or
Strong, Desargues Properties; likewise for the First and Second Pappus
Properties ( Szmielew, 1983). Hereafter, by ‘the Desargues Property’ we
will mean the Third Desargues Property, and by ‘the Pappus Property’
we will mean the Second Pappus Property. Accordingly, we will speak
about Desarguesian and Pappian affine planes.

Finally, we note that the Desargues and Pappus properties of affine
planes have precise analogues for projective planes, satisfying the same
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relationships with their algebraic counterparts. In fact, the projective
versions of Desargues and Pappus properties are simpler, since they need
not take into account the cases of parallel vs intersecting lines. For in-
stance, all affine Desargues’ properties turn out to be particular cases in
projective extensions of affine planes of the projective Desargues’ prop-
erty which simply states that ‘If two triangles are perspective from a
point (meaning that the three pairs of respective vertices are co-punctual),
then they are perspective from a line (meaning that the three intersecting
points of the respective pairs opposite sides of these pairs of vertices are
collinear).’ Actually, this property holds in a projective plane iff it can
be embedded into a projective 3D-space. Likewise, the two affine Pappus
properties are combined in one projective Pappus property. For more
details, see e.g. Blumenthal, 1961, Hartshorne, 1967, Mihalek, 1972,
Blumenthal and Menger, 1970, Hughes and Piper, 1973.

6.4 Analytic geometry and affine
transformations of affine planes over a field

Affine planes with the Pappus Property are close enough to the real
affine plane that one can introduce not only coordinatization, but even
develop analytic geometry of points and lines in them. In fact, for most of
what follows it suffices to assume the Desargues Property, i.e. to consider
planes A(F), where F is a skew field, but to avoid having to deal with
the non-commutative multiplication, we assume that F is a field. Recall
from Sec. 6.1 (see also e.g. Gemignani, 1971, Sec. 3 or Blumenthal,
1961, Sec. V.9) that, given a coordinate system OXY in such an affine
plane A(F), any line l is determined by an equation y = ax + m if
not parallel to the line OY , otherwise by x = c, where a, m, c ∈ F

are fixed parameters. In either case, the line has a general equation
ax + by + c = 0 where at least one of a, b is not 0, and conversely,
every such equation represents a line in A(F) in the standard analytic
geometric sense. Furthermore, a change of the coordinate system to a
new one O′X ′Y ′, with coordinate axes O′X ′ and O′Y ′ having equations
in the old system respectively a1x+ b1y + c1 = 0 and a2x+ b2y + c2 = 0,
leads to change of the coordinates (x, y) of a given point in the plane
according to the following equations:

x′ = u(a1x + b1y + c1), y′ = v(a2x + b2y + c2),

where u = (a1ex+b1ey+c1)
−1 and v = (a2ex+b2ey+c2)

−1 where (ex, ey)
are the coordinates of the new unit point I ′ in the old coordinate system
OXY . The non-parallelism of the new coordinate axes is analytically

expressed by the condition

∣

∣

∣

∣

a1 b1

a2 b2

∣

∣

∣

∣

= a1b2 − a2b1 6= 0.
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Thus, change of the coordinate system in A(F) can be represented
(after multiplying out in the equations above) as a transformation of
the plane, determined by affine equations:

α(x) = ax + by + c, α(y) = a′x + b′y + c′,

where a, b, c, a′, b′, c′ ∈ F are such that ab′−a′b 6= 0. Such transformation
is called an affine transformation, or an affinity. Conversely, we will
see further that every affine transformation can be viewed as a change
of the coordinate system.

It is easy to see that every affine transformation is a collineation on
the plane. Moreover, using coordinatization, we can characterize explic-
itly all collineations in an affine plane over a field A(F). First, recall
that collineations of linear spaces preserve incidence, and therefore par-
allelism, of lines, and collinearity of points. Actually, a bijection α of
the points in the plane is a collineation iff it preserves line parallelism,
i.e. if α maps the point P to the point Pα then:

AB q CD ⇔ AαBα q CαDα.

Now, consider a collineation α in A(F) and let OXY be any coordinate
system in A(F). Since α preserves every line (as a set of points), in
particular the unit line, it determines a bijection h : F −→ F by sending
the point from the unit line (x, x) to the point (h(x), h(x)). Recall, that
addition and multiplication in F were geometrically defined in Sec. 6.2 on
the unit line by means of the ‘affine operations’ (Sec. 5.7) of taking the
intersection point of two lines, producing the line through two points,
and producing the line parallel to a given line through a given point.
These constructions are preserved by collineations, and therefore h is
an automorphism of F. Now, for any point P with coordinates (x, y) in
the system OXY , its image under α is the point Pα with coordinates
(h(x), h(y)) in the system O′X ′Y ′, because the point P can be obtained
(see Sec. 6.1) from the points (x, x) and (y, y) by affine operations.

We can now obtain an explicit algebraic characterization of the colli-
neation α. Suppose the images of O, X, Y under α are O′(c, c′), X ′(a +
c, a′ + c′), Y ′(b + c, b′ + c′). (Note that such a, b, c, a′, b′, c′ ∈ F always
exist.) It is easy to check that O′, X ′, Y ′ are non-collinear iff ab′ 6= a′b.
Now, following the construction on Fig.1.2 (or, as a standard exercise in
linear algebra) one can compute the coordinates of α(P ) in OXY :

α(x) = ah(x) + bh(y) + c, α(y) = a′h(x) + b′h(y) + c′.

Conversely, it is immediate to check that every mapping defined by such
equations in a given coordinate system, where h is an automorphism of
F and ab′ − a′b 6= 0, is a collineation.
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Thus, we have obtained the following (see Gemignani, 1971, Sec. 3):

Theorem 1.34 A mapping α in the plane A(F), where F is a field, is a
collineation, iff it can be defined in some coordinate system by equations

α(x) = ah(x) + bh(y) + c, α(y) = a′h(x) + b′h(y) + c′,

where h is an automorphism of F and a, b, c, a′, b′, c′ ∈ F are such that
ab′ 6= a′b.

Therefore, every collineation of A(F) is uniquely determined by its
action on any three non-collinear points O, X, Y in the plane, i.e. by
their images O′, X ′, Y ′, and any mapping in A(F) that sends the three
non-collinear points O, X, Y respectively to three non-collinear points
O′(c, c′), X ′(a + c, a′ + c′), Y ′(b + c, b′ + c′) can be uniquely extended to a
collineation of A(F) defined by the equations above.

We now see that affine transformations form a special case of collinea-
tions, corresponding to the identity automorphism of F.

Note that the affinities of a plane form a subgroup of its group of
collineations. In the case when F is rigid, i.e. has no non-trivial auto-
morphisms, as is the field of reals R, every collineation in A(F) is an
affinity, but in general this need not be the case, e.g. (see Gemignani,
1971, Sec. 3.2) the complex conjugate mapping h(z) = z is an automor-
phism of the field of complex numbers C, and therefore any collineation
of A(C) associated with h , e.g. (x, y) → (x, y), is not an affinity.

A particular case of affine transformations is dilation (or dilatation).
This is a collineation δ which sends every line to a parallel one, i.e.,

AδBδ q AB.

The set of dilations of an affine plane A will be denoted as Dil(A). It
can be easily shown (see Gemignani, 1971; Behnke et al., 1974; Coxeter,
1969; Hughes and Piper, 1973) that every dilation of A(F) can be defined
in a suitable coordinate system by equations

α(x) = ax + c, α(y) = ay + c′,

for some a, c, c′ ∈ F such that a 6= 0. Therefore, if a dilation is different
from the identity dilation ι (for which every point is a fixed point), then
it has either no fixed points (if a = 1 and (c, c′) 6= (0, 0)) or exactly
one fixed point C((1 − a)−1c, (1 − a)−1c′); accordingly, it will be called
respectively a translation or homothety with center C. The set of
all translations of A will be denoted Tr(A) while the set of homotheties
with center C will be denoted HtC(A); the set of all homotheties will be
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denoted Ht(A). When the plane is fixed, we will sometimes omit it from
these notations. The identity dilation is taken by definition as both a
translation as well as a homothety with any point taken as its center.

If α is any non-identity translation and P , Q are any points in the
plane then PPα q QQα. Hence, all lines PPα lie in the same ‘direction’,
which will be called the direction of the translation α. Given any line
l, we define the set of translations with direction l:

Trl := {α ∈ Tr : α has direction l} ∪ {ι},

Another important class of affine transformations is the class of ro-
tations, given by equations

α(x) = ax + by, α(y) = a′x + b′y,

for some a, b, a′, b′ ∈ F such that

∣

∣

∣

∣

a b
a′ b′

∣

∣

∣

∣

= 1. Rotations are not

dilations, but have a fixed point, viz. O(0, 0).
For any line l and any point O in a given affine plane, we have:

Trl ≤ Tr ≤ Dil ≤ Aut, HtO ≤ Dil ≤ Aut,

where ≤ means subgroup.
A set of dilations D is transitive on a set of points S if, for every

A, B ∈ S the equation Aδ = B has a solution for δ in D. Given any
line l, the set Trl will be called transitive if it is transitive on the set of
points in the line l. The set Tr will be called transitive if it is transitive
on the entire universe of points. The set HtO will be called transitive
when, for every line l containing O, the set HtO is transitive on the set of
points l\{O}. Finally Ht will be called transitive when HtO is transitive
for every point O.

A set of dilations D is called commutative when compositions of
dilations in D commute. It can be shown that (i) the set Tr will be
commutative if and only if the set Trl is commutative for every l, and
(ii) if Tr is transitive then it is also commutative.

Transitivity and commutativity of the dilations of a given affine plane
are closely related to the Desargues and Pappus properties satisfied in
that plane. For a more comprehensive discussion on these relations, the
reader is referred to Szmielew, 1983, from where we cite the following.

Theorem 1.35 An affine plane satisfies

i) D1 iff the set Tr is transitive;

ii) D3 iff the set Ht is transitive;

iii) P2 iff the set HtO is transitive and commutative for every point O.
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7. On the first-order theories of affine and
projective spaces

Here we will discuss some logical results about definability in affine
spaces and axiomatization and decidability of the first-order theories of
affine and projective spaces, that can be obtained as consequences from
the method of coordinatization.

7.1 On affine relations in affine spaces

Two lines x and y in an affine structure are called crossing or skew,
denoted x ⊲⊳ y, if they are not incident and not parallel. Thus, each
of the relations Int , q and ⊲⊳ in affine spaces is definable in terms of
incidence between a point and a line. Therefore, affine spaces and planes
can be defined with these relations taken as primitives, but that would
not enhance the expressiveness of the language.

Note that every relation in an affine plane, definable in terms of inci-
dence alone, is preserved under collineations. Therefore, using collinea-
tions one can show e.g. that orthogonality of lines in Rn is not definable
in terms of the relation of incidence alone, for any n ≥ 2. Indeed, the
mapping in Rn that halves the first coordinate of a point is clearly a
collineation, but it does not preserve orthogonality.

Further, we can define an affine relation in affine planes as one
which is preserved under affine transformations. Thus, incidence and
parallelism are affine relations, while orthogonality is not.

Note on the other hand, that many not obviously affine concepts can
be defined in affine terms, or constructed with purely affine means, in
affine planes satisfying special additional properties, e.g. in A(R). For
example, the equidistance relation on strictly parallel line segments, de-
note it here as ≡1, is given by the formula

X1X2 ≡1 Y1Y2 ⇔ X1 = X2 ∧ Y1 = Y2 ∨
(

l(X1, X2) ‖ l(Y1, Y2)

∧
(

l(X1, Y1) ‖ l(X2, Y2) ∨ l(X1, Y2) ‖ l(X2, Y1)
))

(see Fig. 1.13), while equidistance on arbitrary parallel line segments,
denote it here as ≡2, is given by the formula

X1X2 ≡2 Y1Y2 ⇔ ∃Z1∃Z2 (X1X2 ≡1 Z1Z2 ∧ Y1Y2 ≡1 Z1Z2)

(see Fig. 1.14). In particular, the midpoint operation between two
points, ⊕, is given by the formula

X = Y1 ⊕ Y2 ⇔ XY1 ≡2 XY2.
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Figure 1.13. Figure 1.14.

As we will note in Sec. 8, betweenness of points in Rn for n ≥ 1 is an
affine relation, but is not definable in terms of incidence alone, because
it may not be preserved by collineations which are not affinities.

7.2 Coordinatization as logical interpretation

Every coordinatization of an affine plane A defines an interpretation A

in the corresponding ternary ring T = (Γ; 0, 1, T ) attached to it. Indeed,
if we treat the plane as a collinearity structure 〈Po,Col〉, then A can
be 2-dimensionally interpreted in T as follows:

i) The domain of A interpreted in T is given by the formula

ψ(x1, x2) := (x1 = x1).

ii) The pair (a, b) in Γ2 is mapped to the point P (a, b) in A.

iii) Collinearity of points in A is given by the formula

ψCol(x1y1x2y2x3y3) := ∧i,j=1,2,3 xi = xj

∨ ∃m∃c (∧i=1,2,3 yi = T (m, xi, c)) .

If the plane is regarded as a two-sorted incidence structure 〈Po,Li, I〉
then A can be 4-dimensionally interpreted in T as follows:

i) The domain of A interpreted in T is given by the formula

ψ(x1, x2, x3, x4) := (x1 = x1).

ii) The quadruple (a, b, c, d) in Γ4 is mapped to the point P (a, b) if
(a, b) = (c, d), and to the line determined by the points P (a, b) and
Q(c, d) otherwise.

iii) Incidence of a point and a line in A is given by the formula

ψI(x1x2x3x4y1y2y3y4) :=
(

(x1 = x3 ∧ x2 = x4) ∧ (y1 6= y3 ∨ y2 6= y4)
)

∧
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(

∃m∃c
(

x2 = T (m, x1, c) ∧ y2 = T (m, y1, c)

∧ y4 = T (m, y3, c)
)

∨ (x1 = y1 ∧ y1 = y3)
)

(informally: x̄ is a point, ȳ is a line and x̄ lies on ȳ).

Alternatively, lines in planes satisfying D1 can be interpreted in the
coordinate ring as triples of coefficients, by their general equations.

Conversely, any ternary ring can be interpreted in the affine plane
over it, by taking the points on the unit line as a domain of the interpre-
tation, and defining addition and multiplication by means of first-order
formulae in the language of incidence, constructed following the geomet-
ric description of these operations, as described above and illustrated by
Fig. 1.5 and Fig. 1.6.

7.3 Decidability and undecidability of affine and
projective theories

The interpretations between affine planes and coordinate rings enable
effective translation of first-order formulae from one to the other lan-
guage and transfer of various logical properties between the first order
theories of these classes of structures.

Theorem 1.36 For every affine plane A and every ternary ring T:

1. If the first order theory of A(T) is decidable then the first order
theory of T is decidable, too.

2. If the first order theory of T
OXY

(A) is decidable for some coordi-
nate system OXY in A, then the first order theory of A, expanded
with point-constants for O, X, Y , is decidable, too.

Given a class of ternary rings T we denote by A(T ) the class of affine
planes over these rings; likewise, given a class of affine planes A with
the Desargues property, we denote by T(A) the class of ternary rings
attached to the planes in A.

Theorem 1.37 For every class of ternary rings T and every class of
affine planes A satisfying the Desargues property the following holds:

1. If the first order theory of A(T ) is decidable then the first order
theory of T is decidable, too.

2. If the first order theory of T(A) is decidable, then the first order
theory of A is decidable, too.
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As shown in Tarski, 1949a; Tarski and Mostowski, 1949; Tarski, 1949b
and Tarski et al., 1953, the first order theories of all fields, and the field
of rationals, are undecidable, while the first order theory of real closed
fields, being the same as the first order theory of the field of reals is
complete and decidable. Therefore, we obtain the following.

Corollary 1.38

1. The first order theories of all Pappian affine planes, and of the
rational affine plane are undecidable.

2. The first order theories of all affine planes over real closed fields,
and of the real affine plane are decidable.

A simple argument shows that if a first-order theory T has an unde-
cidable extension by means of finitely many axioms T ′, then it is itself
undecidable. Indeed, let φ be the conjunction of all axioms extending
T to T ′. Then for any sentence ψ, T ′ ⊢ ψ iff T ⊢ φ → ψ, hence any
decision method for T yields a decision method for T ′. Thus, we obtain
the following results:

Corollary 1.39 The following first-order theories are undecidable: the
theory of all Desarguesian planes; the theory of all affine planes; the
theory of all affine spaces; the theory of all linear spaces; the theory of
all incidence structures.

Analogous results hold for first-order theories of projective planes and
spaces (see Ziegler, 1982).

7.4 On the axiomatizations of the first-order
theories of the real projective and affine
planes

The real affine plane A(R) is simply the Euclidean plane with the
standard points, lines and incidence relation. The real projective plane
P(R) can be obtained from A(R) by the extension construction de-
scribed earlier, but also e.g. by the well-known central projection of the
affine plane onto a sphere touching that plane (see Coxeter, 1969).

Here we briefly discuss the questions: what are the first-order axiom-
atizations of the real projective and affine planes P(R) and A(R) in the
language with incidence?

The first-order theory of R has a well-known axiomatization (the the-
ory of real-closed fields, see e.g. Tarski, 1967, Chang and Keisler, 1973).
It extends the axioms for fields with the following axiom schemes:
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RealFields : -1 is not a sum of squares:

∀x1 . . .∀xn¬(x2
1 + . . . + x2

n = −1)

for every integer n > 0.

RealClosedFields : Every polynomial of odd degree has a zero:

∀a0 . . .∀an(¬an = 0 → ∃x(a0 + a1x + . . . + anxn = 0))

for every odd integer n > 0.

PythagoreanFields :
∀x∃y(y2 = x ∨ y2 = −x).

In view of the mutual interpretability between R and each of P(R)
and A(R), and the uniqueness of the coordinate field for each of these
planes, translating the axioms above to the geometric language should in
principle suffice to axiomatize their first-order theories. Still, it is natural
to search for explicit and geometrically meaningful axiomatizations of the
real projective and affine planes, rather than a translation of the axioms
of real closed fields to the geometric language.

When betweenness is added to the language, such a complete ax-
iomatization (involving an infinite axiom scheme of continuity) for the
real affine plane has been obtained by Szczerba and Tarski, 1965 and
Szczerba and Tarski, 1979, and will be presented in Sec. 8. The lan-
guage with betweenness, however, is substantially more expressive, so
the question is: what affine properties of R2 can be expressed in terms
of incidence alone, in projective and affine settings.

We already know that there are rather non-trivial universal properties
true in P(R) and A(R), such as the Pappus property which guarantees
that their coordinate ring is a field.

Furthermore, there is a geometrically natural axiom, known as the
Fano axiom, which is true in P(R) but does not follow from the Pap-
pus property. In order to state the Fano axiom, we define complete
quadrangle in a projective plane to be a configuration of 7 points and
6 lines obtained as follows: take 4 points A, B, C, D, no 3 of which are
collinear, consider the 6 lines determined by pairs of these points, and
add the 3 ‘diagonal points’ of intersection P(AB, CD), P(AC, BD) and
P(AD, BC).

Fano : The three diagonal points in any complete quadrangle are never
collinear.

The Fano axiom is true in every projective plane over a field of char-
acteristic different from 2 (see e.g. Coxeter, 1969), but it fails in the
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Fano plane. An affine version of the Fano axiom can be formulated, too.
In the particular case where the denied collinearity is along the infinite
line, it claims precisely that the diagonals of every parallelogram in the
plane must intersect.

The Pappus property and Fano axiom are the only additional axioms
to those for projective planes offered in Coxeter, 1969, Sec. 14.1 for
the real projective plane. However, as shown in an exercise following
Coxeter, 1969, Sec. 14.1, for every prime p there is a finite projective
plane PG(2, p) of p2 + p+1 points and as many lines satisfying all these
axioms, so this system is far from complete.

In fact, there are infinitely many other geometric axioms which should
be added to the theory of Pappian planes, in order to obtain the com-
plete theory of A(R), because it follows from results in Szczerba and
Tarski, 1979 that the latter theory is not finitely axiomatizable. For
further discussion and results on this, see von Plato, 1995; Pambuccian,
2001b. Still, the question of finding an explicit and geometrically nat-
ural axiomatizations for P(R) and A(R) apparently remains, as far as
we know, unclosed. The same questions can be raised about the first-
order theories of the n-dimensional real affine spaces A(Rn) (with n ≥ 3)
generated over the field of reals.

8. Betweenness structures and ordered affine
planes

We now consider the geometric language in which the only primitive
relation is the ternary relation B of betweenness on points. B(XY Z)
means that the points X, Y and Z are collinear and Y lies between X
and Z (with possibly Y coinciding with X or Z). The language con-
sisting of the betweenness relation is significantly more expressive than
the language with collinearity, and yet, as we will see later, betweenness
is very much an affine notion so that it makes sense to add it to the
language of affine geometries, as was done by Tarski.

From the results in Sec. 6.4 is easy to see that collineations on the real
affine plane preserve ratios of parallel line segments and consequently
also betweenness on points, so that axiomatizing the real affine plane
using betweenness does not leave the realm of affine geometry.

8.1 Betweenness structures and ordered
geometry

A structure (S;B) consisting of a non-empty set S and a ternary re-
lation B on S will be called a linear betweenness structure provided
the following axioms are satisfied:
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B1 : ∀X∀Y ∀Z(B(XY Z) ∨ B(Y ZX) ∨ B(ZXY )) (connectivity)

B2 : ∀X∀Y (B(XY X) → X = Y )

B3 : ∀X∀Y ∀Z(B(XY Z) → B(ZY X)) (symmetry)

B4 : ∀U∀X∀Y ∀Z(B(UXY ) ∧ B(UY Z) → B(XY Z))

(inner transitivity)

B5 : ∀U∀X∀Y ∀Z(X 6= Y ∧ B(UXY ) ∧ B(XY Z) → B(UY Z))

(outer transitivity)

The relation B is called the betweenness relation of the linear
betweenness structure. In Szmielew, 1983 it is shown that these axioms
are independent, although when the cardinality of the set S is different
from 4, the axiom B5 becomes redundant.

Linear orderings and linear betweenness structures are closely related
as follows. Let a linear ordering (S;≤) be given. Then the structure
(S;B≤) with B≤ defined as

B≤(XY Z) ⇔ X ≤ Y ≤ Z ∨ Z ≤ Y ≤ X

is a linear betweenness structure. Conversely, let a linear betweenness
structure (S;B) be given and take any distinct A, B, C ∈ S such that
B(ABC). Then the structure (S;≤B) with ≤B defined as

X ≤B Y ⇔
(

B(XY B) ∧ B(XBC)
)

∨

(

B(XBC) ∧ B(ABY )
)

∨
(

B(ABY ) ∧ B(BXY )
)

is a linear ordering. The purpose of the parameters A, B, and C is to
fix the direction of ≤B, since clearly every linear betweenness structure
gives rise to a pair of mutually converse linear orderings. In fact, the
parameters A, B, C are inessential in the sense that if Ai, Bi, Ci ∈ S are
distinct with B(AiBiCi) (i = 1, 2) then the orderings ≤B determined by
these two triples of parameters will be identical. Betweenness structures
and linear orderings related as above will be called adjoint. Thus,
every linear betweenness structure has a pair of mutually converse linear
orderings adjoint to it, and every linear ordering has a linear betweenness
structure adjoint to it.

A linear betweenness structure (S;B) is dense if it satisfies the axiom

∀X1∀X2 (X1 6= X2 → ∃Y (B(X1Y X2) ∧ X1 6= Y ∧ X2 6= Y )) .
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A linear betweenness structure (S;B) is called Dedekind complete
if it satisfies the second-order axiom

∀P1∀P2

(

∃Y B(Y P1P2) → ∃ZB(P1ZP2)
)

,

stating that if all points of the set P1 precede all points of the set P2, i.e.
if B(Y X1X2) for all X1 ∈ P1 and X2 ∈ P2, then there is a point which
separates P1 and P2. Accordingly, a linear ordering (S;≤) is called
Dedekind complete if the following second-order axiom is satisfied:

∀P1∀P2

(

∧

i=1,2

Pi 6= ∅ ∧ P1 ∪ P2 = S ∧ P1 ∩ P2 = ∅ ∧ P1 ≤ P2

→ ∃X
(

P1 ≤ X ≤ P2

)

)

.

This axiom states that if P1 and P2 are non-empty disjoint sets that cover
the entire set S and if all elements in P1 are dominated by all elements
in P2, then there is a point that separates P1 and P2. Szmielew, 1983
shows that if a linear betweenness structure (S;B) is adjoint to a linear
ordering (S;≤) then (S;B) will be Dedekind complete if and only if
(S;≤) is Dedekind complete.

A linear betweenness structure (respectively a linear ordering) is called
continuous if it is dense and Dedekind complete.

Now, a betweenness relation is defined on a collinearity structure
〈Po,Col〉 by defining it on every line in that structure. Thus we deal
with a geometric structure C = 〈Po,Col,B〉 such that

1. B is a linear ternary relation on Po, i.e. B ⊆ Col;

2. (l(X, Y );B) is a linear betweenness structure for every line l(X, Y )
from Li(C).

Point collinearity can be defined in terms of betweenness:

Col(X1X2X3) :=
∨

6=(i,j,k)

B(XiXjXk).

Then, the axioms for betweenness in a collinearity structure are adjusted
by adding the axiom B6 and replacing the axiom B1 with the axiom B7:

B6 : ∀X∀Y ∀Z(B(XY Z) → Col(XY Z)) (linearity)

B7 : ∀X1∀X2∀X3(Col(X1X2X3) →
∨

6=(i,j,k) B(XiXjXk))

(connectivity on lines)
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Consequently, betweenness can serve as the only primitive relation in
ordered collinearity structures and their axioms can be phrased exclu-
sively in terms of betweenness. A collinearity structure with a between-
ness relation imposed on it will be called an ordered collinearity ge-
ometry. In case the collinearity structure has dimension ≥ 2, and in
particular when dealing with the real collinearity plane, it turns out that
the axiom B2 becomes redundant.

The betweenness relation has great expressive power; as will be seen in
the next section, betweenness was both Veblen’s and Tarski’s primitive
of choice for formalizing affine notions in first-order logic. For example,
given points X and Y one can define the following types of line segment:
closed intervals [X, Y ] := {Z : B(XZY )}; open intervals (X, Y ) :=
[X, Y ] \{X, Y }; the ray from X away from Y (when X 6= Y ) X/Y :=
{Z : B(Y XZ)}; the line containing X and Y (when X 6= Y ) XY :=
{Z : B(ZXY )} ∪ {Z : B(XZY )} ∪ {Z : B(XY Z)}, etc.

8.2 Definability of betweenness and order in
affine planes

Note that even if a linear betweenness structure is defined on every
line in a collinearity structure, that may not suffice to have a ‘global’
betweenness relation on the entire structure, satisfying the axioms B2

- B7, because the linear betweenness relations may not be synchroniz-
able across the structure. To guarantee that, we should guarantee that
betweenness is preserved under parallel projections between lines. This
property is formalized by the following three axioms:

Pasch : (Invariance - see Fig. 1.15.)

(

¬Col(X1X2X3Y1Y2Y3) ∧ Col(X1X2X3) ∧ Col(Y1Y2Y3)

∧ B(X1X2X3) ∧
∧

i,j=1,2,3 XiYi q XjYj

)

→ B(Y1Y2Y3)

oPasch : (Outer invariance - see Fig. 1.16.)

(

¬Col(X1X2X3Y2Y3) ∧ Col(X1X2X3) ∧ Col(X1Y2Y3)

∧ B(X1X2X3) ∧ X2Y2 q X3Y3

)

→ B(X1Y2Y3)

iPasch : (Inner invariance - see Fig. 1.17.)

(

¬Col(X1X2X3Y1Y3) ∧ Col(X1X2X3) ∧ Col(Y1X2Y3)
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∧ B(X1X2X3) ∧ X1Y1 q X3Y3

)

→ B(Y1X2Y3)

����������������AAAAA AAAAAA AAAAAAAr r r
r r rX1 X2 X3
Y1 Y2 Y3
Figure 1.15.

�������������
���AAA AAAAAr r rr rX1 X2 X3

Y2 Y3 �������������
���AAA AAAr r rr rX1 X2 X3Y1

Y3
Figure 1.16. Figure 1.17.

It turns out (see Szmielew, 1983) that in an ordered affine plane, not
only are the three Pasch axioms pairwise equivalent, but they are also
all equivalent to the Pasch axiom Ax.B5 to be described below.

We now briefly investigate the relationship between ordered affine
planes and ordered division rings (see Szmielew, 1983 for details). Let
an ordered strong left division ring F = (F ; 0, 1, +, ·,≤) be given, and
let F− = (F ; 0, 1, +, ·) be the unordered reduct of F and B be the be-
tweenness relation on F adjoint to ≤. Then A(F−) is an affine plane
which satisfies the axiom D1. We can treat A(F−) as a collinearity
structure

〈

F 2,Col
〉

. Put A(F) =
〈

F 2,Col,BF

〉

, where BF is a ternary
relation on the points in A(F−) defined by stipulating that for any
A = (xA, yA), B = (xB, yB), C = (xC , yC) ∈ F 2,

BF(ABC) iff Col(ABC) & B(xAxBxC) & B(yAyByC).

On the other hand, let A = 〈Po,Col,B〉 be any ordered affine plane
satisfying the axiom D1 and let A− = 〈Po,Col〉 be the unordered reduct
of A. Fixing some coordinate system OXY in A−, the ternary ring
FOXY (A−) = (F ; 0, 1, +, ·) attached to A− will be a strong left division
ring. Since B is a betweenness relation in A then B will be a betweenness
relation on every line in A, and hence also on the set F . Thus (F ;B) is a
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linear betweenness structure and it will have a pair of mutually converse
linear orderings adjoint to it. Suppose ≤ is the linear ordering on F
adjoint to B and such that 0 ≤ 1. Put FOXY (A) = (F ; 0, 1, +, ·,≤).

The property that every line in a plane contains at least three points
can be axiomatized as follows:

B8 : ∀X∀Y ∃Z(Z 6= X ∧ Z 6= Y ∧ Col(XY Z))

Szmielew, 1983 gives the following representation results.

Theorem 1.40 Let A be an ordered affine plane satisfying Pasch and
B8. If A also satisfies D1 (respectively, D3; P2) then A ∼= A(F) for some
ordered strong left division ring (respectively, skew field; field) F.

Theorem 1.41 If F is an ordered strong left division ring (respectively,
skew field; field) then A(F) is an ordered affine plane satisfying the ax-
ioms Pasch, B8, and D1 (respectively, D3; P2).

8.3 Axiomatizing betweenness in R2

Szczerba and Tarski, 1965 and Szczerba and Tarski, 1979 study the
affine fragment AE2, called the elementary affine Euclidean geome-
try, of the Euclidean plane. AE2 is the elementary geometry formalized
in the language with only the betweenness relation B, where a sentence
is valid in AE2 if and only if it is valid in the Euclidean plane E2. They
give a complete axiomatization of AE2 which will be outlined below (all
axioms below are implicitly universally quantified over all occurring free
variables).

Ax.B1 : Identity axiom

B(XY X) → X = Y

Ax.B2 : Transitivity axiom

Y 6= Z ∧ B(XY Z) ∧ B(Y ZW ) → B(XY W )

Ax.B3 : Connectivity axiom

V 6= W ∧ B(V WX) ∧ B(V WY ) → (B(V XY ) ∨ B(V Y X))

Ax.B4 : Extension axiom

∃X(X 6= Y ∧ B(XY Z))

Ax.B5 : (Outer form of) Pasch axiom

B(XY ′Z) ∧ B(Y Z ′Y ′) → ∃X ′(B(ZX ′Y ) ∧ B(XZ ′X ′))
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(given a triangle Y Y ′Z, a point X on the extension of the side
Y ′Z and a point Z ′ on the inner side (with respect to X) of the
triangle, the line XZ ′ must intersect the triangle in its outer side
(with respect to X) |Y Z| - see Fig. 1.18.)

Ax.B6 : Desargues axiom

¬Col(TXY )∧ ¬Col(TXZ) ∧ ¬Col(TY Z)∧B(TXX ′)∧B(TY Y ′)

∧ B(TZZ ′)∧B(Y XU)∧B(Y ′X ′U)∧B(XZW )∧B(X ′Z ′W )

∧ B(Y ZV )∧B(Y ′Z ′V ) → B(UV W )

(triangles perspective from a point are perspective from a line - see
Fig. 1.19.)

Ax.B7 : Lower 2-dimensional axiom

∃X∃Y ∃Z(¬B(XY Z) ∧ ¬B(Y ZX) ∧ ¬B(ZXY ))

Ax.B8 : Upper 2-dimensional axiom (See Fig. 1.20.)

∃V ((B(Y V Z) ∧ Col(XV W )) ∨ (B(XV Z) ∧ Col(Y V W ))

∨ (B(XV Y ) ∧ Col(ZV W )))

As.B9 : Elementary continuity axiom schema

∀W (∃U∀X∀Y (ϕ(X, W ) ∧ ψ(Y,W ) → B(UXY )) →

∃V ∀X∀Y (ϕ(X, W ) ∧ ψ(Y,W ) → B(XV Y )))

The variables W are distinct from U, V, X, Y , and ϕ(X, W ) and
ψ(Y,W ) are first-order formulae over B with free variables only
amongst X, W in the case of ϕ, and Y,W in the case of ψ. This
schema comprises the parametrically first-order definable instances
of the full second order continuity axiom (see Ax.11 further). Note
that Ax.B9 is an infinite schema, and it cannot be replaced by a
finite one, as Tarski has shown.

The axiom system given so far is denoted GA2 and the geometry it
describes is called by Szczerba and Tarski the general affine geome-
try. It does not reflect Euclid’s parallel postulate at all and it is shown
in Szczerba and Tarski, 1979 that:

GA2 is incomplete and has continuum many complete extensions.

In particular, GA2 is a proper subtheory of the elementary affine
absolute geometry AA2 (the affine fragment in the language of
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B of the absolute geometry A2, which is the reduct of the Euclidean
geometry obtained by dropping Euclid’s parallel postulate).

However, GA2 is complete with respect to universal sentences, i.e.
if a universal sentence σ is true in some model of GA2 then σ is
true in every model of GA2.

GA2 is not finitely axiomatizable.
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GA2 is hereditarily undecidable, meaning that both GA2, as well
as all its subtheories, are undecidable.

GA2 is decidable with respect to inductive sentences. Therefore,
GA2 is not an inductive theory.

Here is a form of Euclid’s postulate in the language of B:

Ax.E : Euclid’s axiom

Z 6= V ∧ B(ZV T ) ∧ B(UV W ) →

∃X∃Y (B(ZUX) ∧ B(ZWY ) ∧ B(Y TX)).

The axiom Ax.E says that through any point T in the interior of an angle
there is a line intersecting both sides of that angle (see Fig. 1.21).

������ZZZZZZZZ�������AAAAAAr rr rrrrX YT
ZU V W

Figure 1.21.

Szczerba and Tarski show that adding that axiom Ax.E to GA2 renders
a complete axiomatization of the elementary affine Euclidean geometry
AE2, and hence also a complete axiomatization of the real affine plane.

Finally, here is a representation result for models of GA2. Let F =
(F ; 0, 1, +, ·,≤) be any ordered field and define ⊕ and ⊙ as

(x1, y1) ⊕ (x2, y2) := (x1 + x2, y1 + y2), (x1, y1) ⊙ α := (x1 · α, y1 · α),

for any (x1, y1), (x2, y2) ∈ F 2 and α ∈ F . We can define a betweenness
relation BF in the Cartesian square F 2 over the field F as follows: given
a, b, c ∈ F 2, we stipulate that

BF(abc) ⇔ b = [a ⊙ (1 − λ)] ⊕ [c ⊙ λ]

for some λ ∈ F with 0 ≤ λ ≤ 1. The structure A(F) = (F 2;BF) thus
formed will be called the affine plane over the ordered field F. Using
the class of all interiors of triangles as a basis, we define a topology on
the set F 2. Now let S be any non-empty, convex, open subset of F 2.
The structure A(F; S) = (F 2|S ;BF|S) will be called the S-restricted
affine plane over F. A plane over some field will simply be called a
restricted affine plane if it is an S-restricted affine plane for some S.
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Theorem 1.42 1. Every model of GA2 is isomorphic to a restricted
affine plane over some real closed ordered field.

2. Every restricted affine plane over the ordered field of reals is a
model of GA2.

3. If F is an ordered real closed field not isomorphic to the field of
reals, then there is a restricted affine plane over F which is not a
model of GA2.

9. Rich languages and structures for elementary
geometry

We will call a geometric language rich if the whole elementary geom-
etry in Rn is definable in that language. Perhaps the first study on rich
primitive notions in elementary geometry is Pieri, 1908, where the Pieri
relation ∆ is introduced, defined as

∆(XY Z) := ‖XY ‖ = ‖XZ‖ ,

meaning that the configuration of points XY Z forms an isosceles triangle
with base |Y Z| (in the degenerated cases either Y = Z or X is the
midpoint of |Y Z|). Pieri showed that ∆ can be used as the only primitive
relation in Rn for n ≥ 2. This result easily implies the richness of many
other relations in terms of which ∆ is definable, for example the ternary
relation of closer-than

|XY | ≤ |XZ|,

which states that either the point Y is closer to X than what Z is to X
or that Y and Z lie equally far from X. This furthermore implies that
the quaternary relation shorter-than

|XY | ≤ |ZU |,

which states that the line segment |XY | is shorther than the segment
|ZU |, or that they are of equal length, is also rich.

Veblen, 1904 considered the two primitive relations of betweenness
B and equidistance ≡ (or δ), which are the same primitives that Tarski
later used. Veblen showed that these primitives are sufficient for the ele-
mentary geometry, although he believed to have proved, falsely, that the
relation of equidistance is definable in terms of the relation of between-
ness (see Tarski and Givant, 1999). In fact, using the coordinatization
of the Euclidean plane, and applying Padoa’s method, it is easy to see
that the equidistance relation ≡ is not definable in terms of betweenness,
not only in first-order languages, but even in higher-order logic. Indeed,



56

the linear transformation f : R2 → R2, defined by f(x, y) = (x, 2y),
preserves betweenness, but not equidistance.

On the other hand, Pieri showed that B is first-order definable in
terms of the quaternary closer-than relation ≤ defined above:

B(XY Z) ⇔ ∀U ((|XU | ≤ |XY | ∧ |ZU | ≤ |ZY |) → U = Y ) ,

meaning that if U and Y are intersection points of spheres with centers
X and Z then they must coincide (see Fig. 1.22).

&%'$"!# q q qX ZY U &%'$"!# q q qqX ZYU
Figure 1.22.

�����AAAAAq q q �����HHHHHq qqX Y Z U
W V

Figure 1.23.

Furthermore, the quaternary shorter-than relation ≤ is definable in
terms of ≡ as follows:

|XY | ≤ |ZU | ⇔ ∀V (ZV ≡ UV → ∃W (XW ≡ Y W ∧ Y W ≡ UV )) ,

meaning that if there is an isosceles triangle with base |ZU | and a given
side, then an isosceles triangle with the same side and base |XY | exists
too (see Fig. 1.23). It follows that ≡ can be taken as the only primitive
for the elementary geometry.

Regarding primitive relations with smaller arities, for every n ≥ 2, no
binary relation can be rich for Rn (see Beth and Tarski, 1956). Also,
as noted earlier, the relation B alone is not sufficient for the whole
elementary geometry in R2. Still, Beth and Tarski show in Beth and
Tarski, 1956 that the ternary relation E, where E(XY Z) means that
the configuration XY Z forms an equilateral triangle (or degeneratively
that the points X, Y and Z coincide), is rich for every Rn with n ≥ 3, by
expressing Pieri’s relation in terms of E in the system R3. However, they
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also show that the relation E alone is not sufficient for the geometries
Rn with n = 1 or n = 2. Similar results hold for the ternary relation
specifying that three points determine a rectangular isosceles triangle,
and the quaternary relation specifying that four points are the vertices
of a square. However, it was shown in (see Beth and Tarski, 1956; Scott,
1956) that the completely symmetric ternary relation R, where R(XY Z)
means that the points X, Y and Z are distinct and form, in some order,
a rectangular triangle, is rich for every Rn with n ≥ 2.

Schwabhäuser and Szczerba, 1975 investigate line relations which can
be taken as primitives for the elementary Euclidean geometry. They
establish simple rich systems of such relations for every Rn, n ≥ 2. For
the dimension-free Euclidean geometry they show that the binary re-
lation ⊥̇ of perpendicularity together with the ternary relation Cop of
co-punctuality suffice. For dimensions higher than 3 perpendicularity
alone suffices, while for R2 it does not, following Tarski’s result men-
tioned above. For R3 perpendicularity and the binary relation Cop of
co-punctuality suffice. Later, Kramer, 1993 proves that ⊥̇ alone does
not suffice as a primitive for R3, because co-punctuality is not defin-
able there in terms of it. Finally, the question of primitive geometric
relations and definability in the case of R1 turns out to be rather more
complicated; the reader is referred to Tarski and Givant, 1999.

9.1 Tarski’s system of elementary geometry
based on B and δ

In mid 20th century Tarski developed systematically an axiomatic sys-
tem for the elementary geometry based on the only primitive concept of
point, and the two primitive relations betweenness B and equidistance ≡
(or δ). Over many years, Tarski and his students refined, simplified, and
minimized that system, and a detailed account of that development can
be found in Tarski and Givant, 1999, which we follow here for the choice
of axioms and notation. Again, all axioms are implicitly universally
quantified over all occurring free variables.

Ax.1 : Reflexivity of equidistance.

X1X2 ≡ X2X1

Ax.2 : Transitivity of equidistance.

(X1X2 ≡ Y1Y2 ∧ X1X2 ≡ Z1Z2) → Y1Y2 ≡ Z1Z2

Ax.3 : Identity of equidistance.

XY ≡ ZZ → X = Y
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Ax.4 : Equal segments construction. (See Fig. 1.24) There is a

segment of length ‖Y1Y2‖ beginning at X1 in direction of
−−→
ZX1:

∃X2(B(ZX1X2) ∧ X1X2 ≡ Y1Y2)

Ax.5 : Five-segment axiom. (See Fig. 1.25) The corresponding line
segments built on two congruent triangles are equal:

(X 6= Y ∧ B(XY Z) ∧ B(X ′Y ′Z ′) ∧ XY ≡ X ′Y ′ ∧ Y Z ≡ Y ′Z ′

∧ XW ≡ X ′W ′ ∧ Y W ≡ Y ′W ′) → ZW ≡ Z ′W ′

Ax.71 : (Outer form of) Pasch axiom. (See Ax.B5 above.)

B(XY ′Z) ∧ B(Y Z ′Y ′) → ∃X ′(B(ZX ′Y ) ∧ B(XZ ′X ′))

Ax.8(2) : Lower 2-dimensional axiom

∃X∃Y ∃Z(¬B(XY Z) ∧ ¬B(Y ZX) ∧ ¬B(ZXY ))

Ax.8(n) : Lower n-dimensional axiom for n ≥ 3

∃U∃V ∃W ∃X1 . . .∃Xn−1

(

Diffn−1(X1 . . . Xn−1)

∧ ¬B(UV W ) ∧ ¬B(V WU) ∧ ¬B(WUV )

∧
n−1
∧

i=2
UX1 ≡ UXi ∧

n−1
∧

i=2
V X1 ≡ V Xi ∧

n−1
∧

i=2
WX1 ≡ WXi

)

The axiom Ax.8(n) claims that there exist n − 1 distinct points
X1, . . . , Xn−1, and three non-collinear points U, V, W , each of them
equidistant from X1, . . . , Xn−1, which implies that the dimension
of the space is at least n. Using these axioms, one can express that
the dimension of the space is n:

Dimn := (Ax.8(n)) ∧ ¬(Ax.8(n+1)).

Ax.101 : (Form of) Euclid’s axiom. (See the axiom Ax.E above.)

Z 6= V ∧ B(ZV T ) ∧ B(UV W ) →

∃X∃Y (B(ZUX) ∧ B(ZWY ) ∧ B(Y TX))

Ax.11 : Second-order continuity axiom. (See also Sec. 8 above.)

∃Y (B(Y X1X2)) → ∃Z(B(X1ZX2))

This axiom says that if all elements of the set X1 precede all el-
ements of the set X2 on a line, then there is a point on that line
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which separates X1 and X2. This property is not definable in the
first-order language of B and ≡. Its first-order approximation is
the corresponding axiom schema.

As.11 : Continuity axiom schema. See As.B9 above.

Ax.15 : Inner transitivity axiom for betweenness.

B(XY W ) ∧ B(Y ZW ) → B(XY Z)

���������
�r rr r rX1
X2

Y1 Y2Z
Figure 1.24.
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Figure 1.25.

Theorem 1.43 (Tarski, 1967) The set of axioms Ax.1 – Ax.5, Ax.71,
Ax.101, Ax.15 plus Dimn, taken with the second order axiom Ax.11, char-
acterizes up to isomorphism the full n-dimensional Euclidean geometry
FG(n) for every n ≥ 2. Furthermore, if As.11 is taken instead of Ax.11,
the resulting first-order axiomatic system is a complete axiomatization
of the first-order theory of the full n-dimensional Euclidean elementary
geometry EG(n) for any n ≥ 2. If, moreover, the dimension axiom Dimn

is omitted, then, according to Scott, 1959, a complete axiomatization of
the dimension-free Euclidean geometry is obtained.

9.2 Decision methods and automated reasoning
for elementary geometry

The algebraic approach in geometry goes back at least to Descartes,
who introduced the coordinate method in his study of geometry. The
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first modern development of general algebraic methods used in construc-
tive solutions to classes of geometric problems in affine geometry is due
to Hilbert, 1950. However, the first explicit decision method for elemen-
tary Euclidean geometry, i.e. a general method for deciding the truth
of any first-order sentence in this geometry, was developed in Tarski,
1951. Tarski’s decision method is based on a decision procedure for the
first-order theory of the field of real numbers, which is also the first-order
theory of the class of real-closed fields. For that theory Tarski established
quantifier elimination, i.e. it was proved that every first-order sentence
formulated in the class of real-closed fields is equivalent, over the class
of real-closed fields, to a boolean combination of algebraic equations and
inequalities. Equations are simply conjunctions of inequalities, and ev-
ery inequality can be expressed in the form t ≥ 0 for some term t in
the first-order language of rings (i.e. t will be a polynomial). Therefore,
eventually, every first-order sentence of that language is equivalent, over
the class of real-closed fields, to a boolean combination of formulae of
the type ∃x(x2 = t), where t is a term not containing x. Subsets of Rn

definable by such formulae are called semi-algebraic sets. In particular,
Tarski’s result implies that the parametrically first-order definable re-
lations in Rn are precisely the semi-algebraic sets of Rn. For a sketch
of an algebraic proof of this result based on Sturm’s theorem, see e.g.
Hodges, 1993.

Tarski’s decision procedure is practically inefficient as it has non-
elementary complexity. More efficient, elementary decision procedures
were developed later, first by Monk, followed by Solovay, Collins, and
others.

Currently there are several well-developed and applied automated the-
orem proving decision methods for the first-order theory of the field of
reals and the theory of elementary geometry.

Probably the most popular decision method for the theory of real
closed fields, and the first one amenable to practical automation (it has
in fact been implemented), is Collins’ method of Cylindrical Algebraic
Decompositions (CAD), based on quantifier elimination (see Caviness
and Johnson, 1998; Collins, 1975; Collins, 1998). Given a boolean com-
bination B of algebraic equations and inequalities, this algorithm com-
putes a so-called cylindrical algebraic decomposition of the solution set
of B. This cylindrical algebraic decomposition partitions the solution set
of B into a finite disjoint union of spatial regions called cells, which have
the property that all polynomials occurring in B preserve sign on each of
these cells. Cells in Rn can be defined inductively on n as follows: a cell
in R is an open interval or a singleton; a cell in Rn+1 is either the graph
of a continuous function defined over a cell in Rn, or a region bounded
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between the graphs f(x) and g(x) of two such functions f and g defined
on the same cell in Rn, and such that f < g on that cell. In particular,
each of these functions can be taken as −∞ or +∞.

Collins’ algorithm has a double exponential worst-case time complex-
ity as a function of the number of variables in B. Later, Heintz et al.,
1990 and Renegar, 1992 constructed algorithms for quantifier elimination
that are double exponential only in the number of quantifier alternations;
see also Davenport and Heintz, 1988. Currently the most efficient algo-
rithms for quantifier elimination known to us can be found in Basu et al.,
1996 and Basu, 1999; the latter employs uniform quantifier elimination.

The Characteristic Set method, rooted in work by Ritt and later
developed independently by Wu (see Chou, 1984; Chou, 1988; Chou,
1990; Chou and Gao, 1990; Wu, 1984; Wu, 1986), and the Gröbner Ba-
sis method, developed by Buchberger (see Buchberger, 1985; Buchberger
et al., 1988; Chou, 1990), work only on problems that can be formalized
by systems of equations, and are only complete for algebraically closed
fields. A related alternative method, based on Hilbert’s Nullstellensatz,
has been proposed by Kapur, 1986.

Another method, based on ideas coming from quantifier elimination
in linear and quadratic formulae over the reals, has been proposed in
Dolzmann et al., 1998. Unlike the Characteristic Set and Gröbner Basis
methods, it is also applicable to geometric problems in the Euclidean
plane and Euclidean n-space whose complex analogues may fail.

Chou, 1984 shows how the Wu-Ritt method of characteristic sets can
be applied to finding locus equations, and in Chou, 1987 it is also shown
how this method can be used for the mechanical derivation of formulae in
elementary geometry. All of these methods require large computational
resources and can easily become unfeasible for more complex formulae.
For an overview of automated reasoning in geometry see Chou and Gao,
1990.

This concludes our discussion of first-order theories of geometry.

10. Modal Logic and Spatial Logic

In the remainder of this chapter we will survey some modal logics
related to classical geometric structures, and from now on we assume
some familiarity with basic modal logic and Kripke semantics.

Modal logics related to spatial structures are also considered in Ch. ??
and Ch. ??. The former is mainly oriented towards the topological inter-
pretation of modal logic whereas the latter deals with the combination
of spatial logics and temporal logics.
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Basic modal logic. In order to fix the notations and terminology
in basic modal logic we will give a short list of definitions and facts.
For all notions mentioned without definitions the reader is invited to
consult the book by Blackburn, de Rijke and Venema (see Blackburn
et al., 2001) or Hughes and Cresswell, 1996.

Let C be a class of relational structures of the form F = (W, R1, ..., Rn),
where W is a nonempty set whose elements are usually called possible
worlds, and R1, . . ., Rn are binary relations on W called accessibility
relations. In modal logic such relational structures are called Kripke
frames. We associate with C a modal language L which is an extension
of the standard language for propositional logic with unary connectives
[Ri], i = 1, . . . , n, called modal box operators, with the standard defini-
tion of a formula, given by the rule:

A ::= p | ⊥ | ¬A | (A ∨ B) | [R1]A | . . . | [Rn]A.

We use the classical abbreviations for ‘true’ (⊤), ‘false’ (⊥), conjunc-
tion (∧), implication (→), and equivalence (↔). We also use the dual,
diamond operators 〈Ri〉, defined by 〈Ri〉A = ¬[Ri]¬A. Standard modal
logic has only one box-modality ¤ called “necessity”, and the corre-
sponding diamond modality ♦ is called “possibility”.

The semantics of L in a given frame F = (W, R1, . . . , Rn) is based on
the notion of valuation on F , which is a function V assigning to each
proposition letter p a subset V (p) of W . Intuitively, we think of V (p) as
a set of possible worlds in which p is true. A pair M = (F , V ) where V
is a valuation on F is called a Kripke model based on F . We define the
satisfiability relation M, w |= A — in words, the formula A is satisfied
at the possible world w of the model M — as in Ch. ??. In particular
we have:

M, w |= [Ri]A iff M, w′ |= A for all w′ ∈ W such that wRiw
′.

A formula A is true in Kripke model M iff M, w |= A for all possible
worlds w in M. We say that A is valid in a Kripke frame F iff A is true
in all models defined over F ; A is valid in a class C of Kripke frames iff
A is valid in all Kripke frames of C. The set L(C) of all formulas which
are valid in C is called the logic of C and the formulas from L(C) are
called the modal laws of C. If A ∈ L(C) then we write |=L(C) A.

The above is a semantic definition of a modal logic related to a class
C of frames. Note that one and the same modal logic may be the logic
of different classes of frames.

A class C of frames of the form (W, Ri, . . . , Rn) is modally definable
if there exists a formula A such that for every frame F of the form
(W, Ri, . . . , Rn), F is in C iff A is valid in F .
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If this is true then we also say that C is modally definable by A. If the
class C is definable by a first-order condition ϕ on the relations Ri then
we also say that ϕ is modally definable by A. For instance reflexivity
of a relation R is definable by [R]p → p, symmetry of R is definable
by p → [R]〈R〉p, and transitivity of R is definable by [R]p → [R][R]p,
where p is a propositional variable. So modal definability is in some
sense a way to talk about properties of Kripke frames by means of a
propositional language. Let us note, that not all first-order properties
of Kripke frames are modally definable and that not all modal formulas
define a first-order property.

Axiomatically a modal logic is defined as the smallest set of formulas
containing a given set of axioms and closed with respect to a given set
of inference rules. The elements of a modal logic L are called theorems
of L. If A is a theorem of L then we write ⊢L A. For instance the modal
logic Kn of the class of all Kripke frames of the form (W, R1, . . . , Rn)
has the following axiomatic definition:

Axioms: all substitution instances of classical tautologies, and all
formulas of the form [Ri](A → B) → ([Ri]A → [Ri]B) for i = 1, . . . , n.

Inference rules of Kn: Modus ponens “given A and A → B, derive
B” and generalization “given A, derive [Ri]A”.

Axiomatic definitions of other logics can be obtained by adding to the
above axiomatic system additional axioms and possibly additional rules
of inference. If the axiomatic system does not contain additional infer-
ence rules it is called normal. For instance the logic S4 is an extension
of the logic K¤ with the axioms schemes ¤A → A (defining reflexivity
of R) and the axiom scheme ¤A → ¤¤A (defining the transitivity of
R). The logic S5 is an extension of S4 with the axiom scheme A → ¤♦A
(defining the symmetry of R). The statement of the equivalence of a
given semantic definition of a modal logic with a given axiomatic defi-
nition is called completeness theorem with respect to the corresponding
class of frames. There are different methods how to prove completeness
theorems. One of them is the so called method of canonical mod-
els. Important theorem related to this method is the famous Sahlqvist
theorem saying that if the axioms of the logic are of a given specified
form then these axioms define first-order conditions and that the logic is
canonically complete in the class of frames satisfying these conditions.
For instance the axioms of the logics S4 and S5 are od Sahlqvist’s type
and hence are “canonical”, so S4 is complete in the class of all pre-orders
and S5 is complete in the class of all equivalence relations. For S5 it is
known also that it is complete in the class of all frames with R = W×W ,
the universal relation in W . Another method for proving completeness
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theorems is based on the notion of bounded morphisms. By means of
this method one can prove, for instance, that two different classes of
frames, C1 and C2 define equal logics L(C1) = L(C2). Then, if by some
method (for instance by the method of canonical models) one can give
a complete axiomatization of L(C1), then we automatically obtain also
a completeness theorem with respect to the class C2. For the method
of canonical models, bounded morphisms, Sahlqvist’s theorem and some
other methods see Blackburn et al., 2001.

Important topic in Modal Logic are some algorithmic problems and
their complexity: the satisfiability problem of a given class of frames,
the provability problem with respect to a given axiomatic system etc.

The above described modal logics contain only unary modal opera-
tions. There are also modal logics with binary and in general with n-ary
modal operations called polyadic modalities with Kripke semantics using
relations with arbitrary finite arity. If, for instance, A ◦ B is a binary
modality then it can be interpreted in frames with a ternary relation
R ⊆ W 3 as follows:

M, w |= A◦B iff there exist w′ and w′′ such that wRw′w′′, M, w′ |= A
and M, w′′ |= B.

Modal logic and applied modal logic. A major aim of modal
logic is to study modal logics of different classes of frames, mainly with
respect to modal definability, axiomatization, decidability, complexity.

The broad applicability of modal logics rests, inter alia, on the fact
that while they are based on propositional languages, every modal for-
mula corresponds in terms of frame validity to a universal monadic
second-order formula, and thus can be used to express properties of
relational structures. An important discipline of modal logic related to
this issue – correspondence theory (see van Benthem, 1984) – is mostly
about using modal formulas to define classes of relational structures.
Thus, as noted in Blackburn et al., 2001, modal languages are simple
yet expressive languages for talking about relational structures.

Another thing making some modal logics applicable is the fact that
they represent tractable decidable fragments of first- or second-order
logic, which makes them computationally efficient. Namely, the prob-
lem of computational efficiency stimulates recently an active research in
modal logic in the realm of complexity theory.

The most important thing of the modal approach is that modal logic
presents formal methods of reasoning based on modal operators specific
for given practical domains. Often the linguistic meaning of these opera-
tors, coming from their use in the everyday language, is quite unprecise,
therefore giving the exact semantics for the corresponding logic supplies
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these modalities with exact meaning. The complete axiomatization with
respect to a given formal semantics presents a formal system for reason-
ing in the corresponding semantic domain and the completeness theorem
with respect to the given interpretation can be considered as a tool for
establishing the adequacy of the proposed semantics.

In summary, applied modal logic is an integral name for modal sys-
tems naturally arising from some practical domains. The machinery of
applied modal logic contains all tools developed so far in modal logic.
Very often the analysis of some new area of application of modal logic
needs to invent some new methods, stimulating in this way the general
development of the field.

Spatial modal logics. One of the origins of the classical modal
logic of necessity and possibility arises from the analysis of the meaning
of these modalities in natural languages. There are many other modes of
truth which can be treated as different kinds of modalities: time modal-
ities, space modalities, knowledge modalities, deontic modalities and so
on. Examples of time modalities are: always, sometimes, always in the
future, always in the past, at the next moment, tomorrow, since, un-
til, etc. Examples of space modalities, related to geometrical relations
in the space, are: everywhere, everywhere else, somewhere, somewhere
else, near, far, on the left, on the right, on the top, in the middle, be-
tween, parallel, etc. Although geometry, as a mathematical theory of
space, is one of the oldest branches of mathematics, and that the the-
ory of time is not even a mathematical discipline, the logic of time is a
much better established branch of modal logic than the modal logic of
space. One explanation of this fact, as noted in Balbiani, 1998; Venema,
1999, is rooted in the use of temporal logic in computer science, espe-
cially in program verification and specification, concurrent programming
and databases. Another reason is probably in the simpler mathemat-
ical structure of time, very suitable for a modal treatment by Kripke
semantics: a set of moments of time together with a precedence rela-
tion between moments. In contrast, the structure of space is much more
complex. For instance, the structure of the classical Euclidean geometry
consists of several sorts of objects as points, lines, planes, with various
binary relations between them like for instance collinearity and betwee-
ness in the set of points, parallelism, concurrence and orthogonality in
the set of lines and the intersort relations of incidence between different
sorts of objects. At first sight, many-sorted mathematical structures are
not suitable for modal treating in the above described sense, because
the standard Kripke semantics is based on one-sorted structures. But
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as we shall see later, the modal approach has been extended also to
many-sorted geometric structures.

Recently, in connection with new directions in artificial intelligence
and information science, such as geometrical information systems and
qualitative spatial reasoning Cohn and Hazarika, 2001, application of
logic and in particular of modal logic to the theory of space, have become
more popular, and this stimulates the development of a new branch of
applied modal logic, commonly called spatial modal logic.

In 1998, Lemon and Pratt, 1998 produced a criterion by which one
can judge the spatial character of a modal logic and observed in the
light of their criterion that several of the existent modal logics of space
were not spatial at all. According to Lemon and Pratt, a spatial modal
logic is one, the models of which are based on mathematical models of
space. Obviously, affine geometry and projective geometry and some of
their fragments constitute mathematical models of space par excellence.
Some of these geometrical structures considered as first-order systems
are studied in the first part of this chapter. In this second part we
include some modal logics with semantics based on them. In this chapter
we will neither consider spatial modal logics based on interpretations of
modal languages in topology and metric spaces, nor logics based on the
primitive notion of a spatial region and some spatial relations between
regions like contact, part-of, overlap etc., nor modal logics related to the
relativistic interpretation of 4-dimensional space-time. The reader can
find information for such logics in other chapters of this book.

11. Point-based spatial logics

In this section we will consider modal logics related to structures,
based on a set of points.

The logic of elsewhere and everywhere. One of the first modal
logics with explicit spatial interpretation is the logic of “elsewhere” in-
troduced by von Wright, 1979. Under the reading of box given by von
Wright, ¤A means “everywhere else it is the case that A”. Thus, the
modal logic of ‘elsewhere’ may be formally identified with the validities
in the class of all Kripke frames F = (W, R) in which R is the difference
relation: ∀x∀y(xRy ↔ x 6= y). That is why the box and the diamond
of von Wright’s logic are usually written [6=] and 〈6=〉. This is not typ-
ical spatial relation, because difference can be considered in any set of
objects. But what really made von Wright’s box popular is the obser-
vation that enriching modal languages with [6=] greatly increases their
expressive power, as shown in Goranko, 1990; de Rijke, 1992; Venema,
1993.
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The logic of elsewhere can be axiomatized by adding to K the follow-
ing axioms ( von Wright, 1979):

A → [ 6=]〈6=〉A, A ∧ [ 6=]A → [ 6=][6=]A.

Another example of a simple modal logic with a spatial interpretation
is the logic S5 considered by Carnap (see Carnap, 1947) as the logic of
all structures (W, R) with universal relation R:

(U) ∀x, y: xRy.

This gives the following spatial reading of ¤A as “everywhere A”.
The condition (U) motivates the box of Carnap’s logic to be usually

written as [U ], and the diamond as 〈U〉. Note that [U ]A is definable in
the logic of elsewhere: [U ]A = A ∧ [ 6=]A. Carnap’s reading of box has
drawn the attention of many logicians, including Goranko and Passy,
1992 and Spaan, 1993, seeing that enriching modal languages with [U ]
substantially increases their expressive power, too.

Collinearity and qualitative distance. Collinearity of points is
probably one of the basic ternary relations between points. Stebletsova,
2000 considers the ternary relation of collinearity between points in pro-
jective geometry: Col(X, Y, Z) iff X, Y and Z all lie on a single line. She
has studied the spatial logic based on Col in any projective geometry of
finite dimension d ≥ 2. The ternary relation Col is used to interpret the
binary modality ◦ as follows:

M, w |= A ◦ B iff for some w′ ∈ W and for some w′′ ∈ W with
Col(w, w′, w′′) we have M, w′ |= A and M, w′′ |= B.

In this setting, the following formulas are valid:

A ◦ (B ◦ C) → (A ◦ B) ◦ C,

A ◦ B → B ◦ A,

A → A ◦ A, and

〈U〉A ∧ 〈U〉B → 〈U〉(A ◦ B)

where 〈U〉 is the existential modality between points defined by 〈U〉A =
⊤◦A. Given a finite dimension d ≥ 2, validity in the class of all projec-
tive geometries of dimension d can be axiomatized with a Gabbay-type
inference rule, see Gabbay, 1981, but it is not known whether such rules
can be replaced by a finite set of additional axioms.

The modal logic of collinearity in projective geometry is rather ex-
pressive. For instance, for all finite dimensions d ≥ 2, there exists a
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formula in the basic modal language defined above that characterizes
exactly those projective spaces of dimension d satisfying the property of
Pappus, see Sec. 6.3. Using the fact that Pappus’ theorem holds in any
finite projective geometry of finite dimension d ≥ 3, Stebletsova, 2000
has shown that this logic lacks the finite modal property: there exist sat-
isfiable formulas that cannot be satisfied in finite models. What is more,
for any finite dimension d ≥ 3, the satisfiability problem in the class of
all projective geometries of dimension d is undecidable. See Stebletsova,
2000 for further details.

Another interesting ternary spatial relation N(x, y, z) of qualitative
distance between points is considered in the paper of van Benthem, 1983,
with the following intuitive reading: “y is nearer to x than z”. Its most
obvious properties in the real plane, may be formulated as follows:

Transitivity ∀x∀y∀z∀t(N(x, y, z) ∧ N(x, z, t) → N(x, y, t)),

Irreflexivity ∀x∀y¬N(x, y, y),

Almost-connectedness ∀x∀y∀z∀t(N(x, y, z) → N(x, y, t)∨N(x, t, z)),

Selfishness ∀x∀y(x 6= y → N(x, x, y)),

Triangle inequality ∀x∀y∀z(N(x, y, z) ∧ N(z, x, y) → N(y, x, z)).

It is known, that N can serve as the basis of elementary plane Euclidean
geometry (see Tarski, 1956). Nevertheless, no complete modal spatial
logic has been developed so far with Kripke semantics based on that
relation (see Aiello and van Benthem, 2002 for further discussion).

12. Line-based spatial logics

In this section we examine some spatial logics based on lines and
some standard relations between lines: parallelism, orthogonality and
intersection of lines.

The logic of parallelism. Recall, that ‖ denotes the relation of
strict parallelism . Parallelism frames are structures in the form (Li, ‖),
where Li is a non-empty set whose elements are called lines and ‖ is the
relation of strict parallelism between lines. That relation satisfies the
following first order conditions:

∀x : x 6‖ x – no line is parallel to itself,

∀x, y : x ‖ y implies y ‖ x – the relation ‖ is symmetric,

∀x, y, z : x ‖ y and y ‖ z and x 6= z implies x ‖ z – the relation ‖ is
“pseudo- transitive”.
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Frames satisfying all these conditions are called strict models of par-
allelism and their class is denoted by CSMP . The frames satisfying the
second and the third axiom are called pre-models of parallelism and their
class is denoted by CPreMP .

Balbiani and Goranko, 2002 consider the modal logic of strict paral-
lelism, where [‖]A means “A is true at all parallel lines”. The semantics,
based on parallelism frames (Li, ‖), is in the expected way:

M, w |= [‖]A iff for all w′ ∈ Li such that w ‖ w′, M, w′ |= A.
Obviously, the following formulas modally define the class CPreMP :

A → [‖]〈‖〉A, A ∧ [‖]A → [‖][‖]A.

We denote by PAR, the axiom system obtained by adding these for-
mulas to the minimal modal logic K. Let us note that these axioms are
of Sahlqvist type and just modally define the class of frames CPreMP .
Then, by the Sahlqvist theorem PAR is sound and complete with respect
to CPreMP .

Let us remark that PAR and the logic of elsewhere are the same.
Hence, repeating the completeness proof of the logic of elsewhere given
in Segerberg, 1981, one can moreover show that PAR is also complete
with respect to the strict models of parallelism CSMP . The difficulty
in working with strict models of parallelism is that there is no formula
corresponding to the irreflexivity of the relation ‖. This lack of expressive
power of the modal language helps to show that the satisfiability problem
SAT (CSMP ) is NP-complete ( Demri, 1996).

Adding to PAR the following Sahlqvist formulas for all n ≥ 0 we
obtain the axiom system PARE :

(ϕ0) 〈‖〉⊤,

(ϕn) 〈‖〉([‖]A1) ∧ . . . ∧ 〈‖〉([‖]An) → 〈‖〉(A1 ∧ . . . ∧ An),

The formula ϕn corresponds to the first-order property on parallelism
frames:

(Φn) x ‖ y1 ∧ . . . ∧ x ‖ yn → (∃z)(x ‖ z ∧ y1 ‖ z ∧ . . . ∧ yn ‖ z).

Note that ϕn is derivable from ϕn+1.
Since the model Fn+2 = ({1, . . . , n + 2}, 6=) of strict parallelism con-

sisting of exactly n + 2 parallel lines validates ϕn but does not validate
ϕn+1, we infer that PARE is not finitely axiomatizable. Nevertheless,
since ϕn is a Sahlqvist formula for all n ≥ 0, PARE is sound and com-
plete with respect to the class C∞

PreMP of all pre-models of parallelism
satisfying (Φn), for all n = 0, 1, . . .. Repeating the line of reasoning sug-
gested by Segerberg, 1981 within the context of the logic of elsewhere,
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one can show that PARE is also complete with respect to C∞
SMP con-

sisting of all strict models of parallelism satisfying the conditions (Φn)
for all n = 0, 1, . . ..

More interesting completeness result for the logic PARE is that it
is sound and complete both in the standard parallelism frames in real
plane IP2 and in real 3-dimensional space IP3 with the usual relation of
strict parallelism. This shows that the language of strict parallelism is
not expressive enough to distinguish the standard parallelism frames in
C∞

PreMP . Despite this obvious lack of expressive power of our modal lan-
guage, the advantage of our modal approach is that the decision problem
SAT (C∞

SMP ) for satisfiability in C∞
SMP is also NP-complete (see Balbiani

and Goranko, 2002 for the details).

The logic of orthogonality. The relation of orthogonality ⊥ is
another typical binary relation between lines. We interpret [⊥]A as “A
is true at all orthogonal lines of the current line”. Let us note that in
every orthogonality frame F = (Li,⊥), the binary relation ‖, defined as
follows is an equivalence relation:

w ‖ w′ iff for all lines w′′, w ⊥ w′′ iff w′ ⊥ w′′

We consider the class CPQMO of all planar quasi-models of orthogo-
nality F = (Li,⊥) where ⊥ is symmetric and 3-transitive, i.e.:

∀w∀w′(w ⊥ w′ → w′ ⊥ w) – symmetry of ⊥,

∀w∀w′∀w′′∀w′′′(w ⊥ w′ ∧ w′ ⊥ w′′ ∧ w′′ ⊥ w′′′ → w ⊥ w′′′) –
3-transitivity of ⊥.

The class CPMLO of planar models of line orthogonality is the class of all
frames F = (Li,⊥) where ⊥ is irreflexive, symmetric and 3-transitive.
Let C∞

PQMO be the class of all planar quasi-models of line orthogonality in

which every equivalence class modulo ‖ is infinite. Similarly, let C∞
PMLO

be the class of all planar models of line orthogonality in which every
equivalence class modulo ‖ is infinite.

The modal logic ORT based on CPQMO is obtained by adding the
following axioms to K:

A → [⊥]〈⊥〉A, [⊥]A → [⊥][⊥][⊥]A.

These axioms are formulas of Sahlqvist type just defining the properties
of symmetry and 3-transitivity of the relation ⊥, so by the Sahlqvist
theorem ORT is complete in CPQMO. Using bounded morphisms one
may prove that the classes CPQMO and CPMLO define the same logic,
which shows that ORT is also complete in the class CPMLO. See Balbiani
and Goranko, 2002 for details.
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The logic which corresponds to the class of frames C∞
PQMO is finitely

axiomatizable through the axiom system ORTE obtained by adding to
ORT the axiom 〈⊥〉⊤. This axiom system is sound and complete also
with respect to validity in the Euclidean orthogonality plane consisting
of all lines in the real plane together with the usual orthogonality relation
(see Balbiani and Goranko, 2002). So the language of orthogonality is
not expressive enough to distinguish the standard orthogonality frame
in the class C∞

PQMO.

Let us note that the formula [⊥]A → [⊥][⊥][⊥]A is not valid in
the Euclidean orthogonality space, consisting of all lines in the real 3-
dimensional space together with the usual orthogonality relation. Hence,
comparing with the modal logic of parallelism, the modal logic of orthog-
onality is able to distinguish the Euclidean orthogonality plane and the
Euclidean orthogonality 3-dimension space.

A modal logic of parallelism and intersection of lines. Hav-
ing outlined the modal logics of parallelism and the modal logics of
orthogonality, we are now in a position to consider richer geometrical
structures. Next, we discuss the line-based modal logic based on the
binary relations of parallelism and intersection of lines, with the corre-
sponding modal operators [‖] and [×]. Our aim is to axiomatize the logic
of the standard two-dimensional frame consisting of all lines in the real
affine plane (called SAP ) with the strict parallelism relation ‖ and the
standard relation of intersection: a×b iff a and b have only one common
point. Let us note that the following modal formulas are true in SAP :

ϕ → [‖]〈‖〉ϕ,

ϕ ∧ [‖]ϕ → [‖][‖]ϕ,

ϕ → [×]〈×〉ϕ

[×]ϕ → [‖][×]ϕ,

ϕ ∧ [‖]ϕ ∧ [×]ϕ → [×][×]ϕ,

〈‖〉⊤,

〈‖〉ϕ1 ∧ . . . ∧ 〈‖〉ϕn → 〈‖〉(〈‖〉ϕ1 ∧ . . . ∧ 〈‖〉ϕn), n = 1, 2, . . . ,

〈×〉⊤,

〈×〉ϕ1 ∧ . . . ∧ 〈×〉ϕn → 〈×〉(〈×〉ϕ1 ∧ . . . ∧ 〈×〉ϕn), n = 1, 2, . . ..

We denote by ML(SAP ) the extension of the logic K with these ax-
ioms. Since all of them are Sahlqvist formulas, they define the following
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class C(PreSAP ) of frames (called pre-standard affine planes ) in which
ML(SAP ) is complete:

u ‖ v → v ‖ u,

u ‖ v ∧ v ‖ w ∧ u 6= w → u ‖ w,

u × v → v × u,

u ‖ v ∧ v × w → u × w,

u × v ∧ v × w → u = w ∨ u ‖ w ∨ u × w,

(∀u∃v)(u ‖ v),

u ‖ v1 ∧ . . . ∧ u ‖ vn → (∃w)(u ‖ w ∧ w ‖ v1 ∧ . . . ∧ w ‖ vn),
n = 1, 2, . . . ,

(∀u∃v)(u × v),

u×v1∧. . .∧u×vn → (∃w)(u×w∧w×v1∧. . .∧w×vn), n = 1, 2, . . ..

Let us call a structure (Li, ‖,×) general affine plane if it satisfies all
of the above first-order conditions plus the conditions of irreflexivity
of the relations × and ‖ and let us denote the class of all such struc-
tures by C(GAP ). Note that the standard affine plane SAP is in this
class. Applying the method of bounded morphisms it can be proved
that ML(SAP ) is also complete in this class. However this still does
not prove that ML(SAP ) is complete with respect to SAP . Applying
more complicate techniques from model theory it can be proved that any
two frames from C(GAP ) are modally equivalent, i.e. determine equal
logics. Since standard affine plane is in C(GAP ), this implies that the
logic ML(SAP ) is complete in its standard semantics – SAP .

The classes C(PreSAP ) and C(GAP ) are quite different. Using the
selective filtration techniques one can prove that the logic ML(SAP )
has finite model property (fmp) with respect to C(PreSAP ) and hence
is decidable, while with respect to C(GAP ) it does not have fmp – all
frames from C(GAP ) are infinite. These facts, however, help to prove
that satisfiability problem for C(GAP ) is NP-complete.

The completeness theorem of ML(SAP ) implies that the modal lan-
guage of parallelism and intersection of lines is too weak to distin-
guish standard 2-dimensional frame from the other frames in the class
C(GAP ). But the language can distinguish 2-dimensional standard
frame from the 3-dimensional standard frame, the later consisting of all
lines in the real 3-dimensional space with the standard relation of strict
parallelism and the standard relation of intersection of lines. For in-
stance the following axiom of ML(SAP ) is not true in the 3-dimension
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space: [×]A → [‖][×]A. The reason is that in the 3-dimension space
there are lines intersecting one of two parallel lines but not the other.

13. Tip spatial logics

Projective geometry and affine geometry are probably among the most
prominent mathematical models of space. They arise from the study of
points and lines by means of properties stated in terms of incidence. In
this section and in the following one, we will introduce modal logics for
incidence between points and lines. There are two different approaches
for defining a modal logic of incidence between points and lines. The
standard semantics for modal logic assumes Kripke models with only
one sort of possible worlds. Therefore, the first approach consists in the
replacement of the two-sorted structures based on points and lines by
one-sorted structures containing the same geometrical information. The
second approach consists in the extension of the modal logic formalism
allowing two sorts of formulas, point formulas and line formulas, and
two sorts of possible worlds in Kripke models. The remainder of this
section describes shortly the first approach (see Balbiani et al., 1997),
while the second approach will be considered in Section 14.

Tips. Let F = (Po,Li, I) be a point-line incidence plane, that is:

Po is a non-empty set of points with typical elements denoted by
X, Y , Z, T , etc, possibly with subscripts,

Li is a non-empty set of lines with typical elements denoted by x,
y, z, t, etc, possibly with subscripts,

I is a binary relation of incidence between points and lines.

The relationship XIx will be read “X is incident with x”, “X lies in x”,
“x is incident with X”, or “x passes through X”. We will always assume
that Po∩Li = ∅, i.e. no point is a line and no line is a point. Hereafter,
we will assume in this section that the binary relation I satisfies the
following first-order conditions:

∀X∀Y ∃z(XIz ∧ Y Iz),

∀X∀Y ∀z∀t(XIz ∧ Y Iz ∧ XIt ∧ Y It → X = Y ∨ z = t),

∀x∃Y ∃Z(Y Ix ∧ ZIx ∧ Y 6= Z),

∀X∃y∃z(XIy ∧ XIz ∧ y 6= z).

The notion of point-line incidence plane can be extended with new first-
order conditions in different directions. Two natural extensions are the
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notion of affine plane and the notion of projective plane. Consider a
point-line incidence plane F = (Po,Li, I). Let us define on Li the
binary relation ‖ in the following way:

x ‖ y iff for all points Z, if ZIx and ZIy then x = y,

A point-line incidence plane F = (Po,Li, I) is called an affine plane if
it satisfies the following additional first-order conditions:

∀X∀y∃z(XIz ∧ y ‖ z), ∀x∀y∀z(x ‖ y ∧ y ‖ z → x ‖ z).

Obviously, point-line affine planes are Euclidean in the sense that they
satisfy the following condition:

∀X∀y∀z∀t(XIz ∧ y ‖ z ∧ XIt ∧ y ‖ t → z = t).

A point-line incidence plane F = (Po,Li, I) is called a projective plane
if it satisfies the following additional first-order conditions:

∀x∀y∃Z(ZIx ∧ ZIy),

∀x∀Y ∀Z∃T (Y Ix ∧ ZIx → TIx ∧ T 6= Y ∧ T 6= Z).

It is clear from our definition that if F = (Po,Li, I) is a projective
plane then two different points are always incident with exactly one line
whereas two different lines have always one point in common.

Traditionally, the Kripke semantics of modal logics is based on one-
sorted relational structures. That is why we introduce a new kind of
relational structures, called incidence frames, which are one-sorted and
which will be used for defining the Kripke semantics of our next spatial
logics. Now consider a point-line incidence plane F = (Po,Li, I). We
shall say that the pair (X, x) in Po × Li is a tip over F iff XIx. Intu-
itively, the tip (X, x) can be considered both as the point X and as the
line x. Using tips, we can define the following binary relations:

(X, x) ≡F
1 (Y, y) iff X = Y ,

(X, x) ≡F
2 (Y, y) iff x = y.

In the expression (X, x) ≡F
1 (Y, y), (X, x) and (Y, y) are considered as

the points X and Y and the relation ≡F
1 can be seen as the equality of

points. Similarly, in the expression (X, x) ≡F
2 (Y, y), (X, x) and (Y, y)

are considered as the lines x and y and the relation ≡F
2 can be seen as

the equality of lines.
Using the binary relations ≡F

1 and ≡F
2 , we can simulate the binary

relation of incidence between points and lines and the binary relation of
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parallelism between lines in F . Let OF and ‖F be the binary relations
between tips defined in the following way:

(X, x)OF (Y, y) iff XIy,

(X, x) ‖F (Y, y) iff x ‖ y.

Obviously, the relation of incidence OF between tips is definable by
means of ≡F

1 and ≡F
2 as follows: w1O

Fw2 iff there exists a tip w such
that w1 ≡F

1 w and w ≡F
2 w2, hence OF =≡F

1 ◦ ≡F
2 where ◦ is the

composition of binary relations. Likewise, w1 ‖F w2 iff for all tips w, if
wOFw1 and wOFw2 then w1 ≡F

2 w2.

Incidence frames. Tips motivate the following definition. Consider
a point-line incidence plane F = (Po,Li, I). The incidence frame over
F is the structure W (F) = (WF ,≡F

1 ,≡F
2 ) where WF is the set of all

tips over F . It is not too difficult to see that ≡F
1 and ≡F

2 are equivalence
relations on W satisfying the following additional conditions:

(I1) ∀w∀w′(w ≡F
1 w′ ∧ w ≡F

2 w′ → w = w′),

(I2) ∀w∀w′∃w′′(wOFw′′ ∧ w′OFw′′),

(I3) ∀w∀w′∀w′′∀w′′′(wOFw′′ ∧ w′OFw′′ ∧ wOFw′′′ ∧ w′OFw′′′ →

w ≡F
1 w′ ∨ w′′ ≡F

2 w′′′),

(I4) ∀w∃w′∃w′′(w′OFw ∧ w′′OFw ∧ w′ 6≡F
1 w′′),

(I5) ∀w∃w′∃w′′(wOFw′ ∧ wOFw′′ ∧ w′ 6≡F
2 w′′).

Let us remark that ≡1 and ≡2 define = in the following way: w = w′ iff
w ≡1 w′ and w ≡2 w′. Moreover, if F is affine then:

(A1) ∀w∀w′∃w′′(wOFw′′ ∧ w′ ‖F w′′),

(A2) ∀w∀w′∀w′′(w ‖F w′ ∧ w′ ‖F w′′ → w ‖F w′′).

If F is projective then:

(P1) ∀w∀w′∃w′′(w′′OFw ∧ w′′OFw′),

(P2) ∀w∀w′∀w′′∃w′′′(w′OFw ∧ w′′OFw →

w′′′OFw ∧ w′′′ 6≡F
1 w′ ∧ w′′′ 6≡F

1 w′′).

These conditions are characteristic in the following sense: if in a set W
we have two equivalence relations ≡1 and ≡2 satisfying the conditions
(I1)–(I5) then there exists a point-line incidence plane F such that
the relational structures (W,≡1,≡2) and W (F) = (WF ,≡F

1 ,≡F
2 ) are
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isomorphic. Moreover, if (W,≡1,≡2) satisfies the conditions (A1) and
(A2) then the corresponding point-line incidence plane F = (Po,Li, I)
is affine, and, if it satisfies the conditions (P1) and (P2) then the corre-
sponding point-line incidence plane is projective. So, in order to define
the Kripke semantics of a modal logic of incidence, we can use one-sorted
structures of the form (W,≡1,≡2) instead of point-line incidence planes.

Consider a relational structure of the form (W,≡1,≡2) where ≡1 and
≡2 are equivalence relations on W . We shall say that (W,≡1,≡2) is
an incidence frame if it satisfies the conditions (I1)–(I5). Moreover,
(W,≡1,≡2) is said to be affine if it satisfies (A1) and (A2), and it is said
to be projective if it satisfies (P1) and (P2).

Let us note that the properties of Desargues and Pappus are also
expressible in the present language, so it is quite rich.

A modal logic for incidence. Our modal language for incidence
frame uses the modal operators [≡1], [≡2], [6≡1], and [6≡2]. Well-formed
formulas are given by the rule:

A ::= p | ⊥ | ¬A | (A ∨ B) | [≡1]A | [≡2]A | [ 6≡1]A | [ 6≡2]A.

Abbreviations: difference – [6=]A = [6≡1]A ∧ [ 6≡2]A, universal modality –
[U ]A = A ∧ [ 6=]A, incidence [O]A = [≡1][≡2]A, [O−1]A = [≡2][≡1]A.

The semantics is based on incidence frames in the expected way. In
particular, we have:

M, w |= [≡i]A iff for all w′ ∈ W such that w ≡i w′, M, w′ |= A,

M, w |= [6≡i]A iff for all w′ ∈ W such that w 6≡i w′, M, w′ |= A,

for i ∈ {1, 2}.
The following formulas are valid in Cinc:

(Ax1) A → [ 6≡i]〈6≡i〉A, i ∈ {1, 2},

(Ax2) A → [ 6=]〈6=〉A,

(Ax3) A ∧ [ 6=]A → [ 6=][6=]A,

(Ax4) [U ]A → [≡i]A, i ∈ {1, 2},

(Ax5) [≡i]A ∧ [ 6≡i]A → [U ]A, i ∈ {1, 2},

(Ax6) 〈6≡i〉A → [≡i]〈6=〉A, i ∈ {1, 2},

(Ax7) [≡i]A → A, A → [≡i]〈≡i〉A, [≡i]A → [≡i][≡i]A, i ∈ {1, 2},

(Ax8) [O][O−1]A → [U ]A,
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(Ax9) 〈O〉(A ∧ 〈O−1〉([6=]B ∧ C)) → ([O](〈≡2〉A ∨ [O−1]B) ∨ 〈≡1〉C),

(Ax10) A → 〈O−1〉〈6≡1〉〈O〉A,

(Ax11) A → 〈O〉〈6≡2〉〈O
−1〉A.

Let MIG (Modal Incidence Geometry) be the axiom system obtained by
adding the formulas (Ax1)–(Ax11) to the minimal normal modal logic
in our language. Note that all proper axioms of MIG are Sahlqvist
formulas and that the associated first-order properties correspond to
conditions defining incidence frames. For example, the formulas (Ax9),
(Ax10), and (Ax11) correspond to the first-order properties (I3), (I4),
and (I5) respectively. Nevertheless, MIG is not known to be complete
with respect to validity in the class Cinc of all incidence frames. The
point is that the interpretation in incidence frames of formulas in the
form [6≡1]A and [6≡2]A is based on the complements 6≡1 and 6≡2 of the
binary relations ≡1 and ≡2. The difficulty with the complementarity
relations is that there is no axiom corresponding exactly to the first-
order properties saying that:

≡i ∩ 6≡i= ∅ for i ∈ {1, 2}.

We have seen that [ 6≡1] and [6≡2] define [6=]. Moreover, notice that on
the class Cinc of all incidence frames the formula A ∧ [ 6=]¬A is satisfied
at some tip w in some incidence model M = (W,≡1,≡2, V ) iff w is the
only tip in W where A holds. Hence, A ∧ [ 6=]¬A can be considered as
a sort of proper name for w. The reader may observe that the first-
order properties saying that the binary relations ≡i and 6≡i are disjoint
are equivalent to the first-order condition of irreflexivity of the binary
relation 6≡1 ∪ 6≡2. Although irreflexivity does not correspond to a modal
formula, it can be characterized in some sense by an inference rule. In
this connection, see Gabbay, 1981, de Rijke, 1992, and Venema, 1993.
This suggests to enrich the axiom system MIG with a special inference
rule, the inference rule of irreflexivity:

“Given p ∧ [ 6=]¬p → A, prove A”,

where p is a proposition letter not occurring in A, thus obtaining the
axiom system MIG+. This inference rule has also an infinitary version:

“Given p ∧ [ 6=]¬p → A for all proposition letters, prove A”,

which gives rise to the same set of provable formulas. Soundness of
MIG+ with respect to validity in Cinc is straightforward: we already
know that MIG is sound, hence, it is enough to verify that the infer-
ence rule of irreflexivity preserves validity in the class Cinc. As for the
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completeness of MIG+, we build a special model from maximal con-
sistent sets of formulas which are closed under the infinitary version of
the rule. Since all proper axioms of MIG+ are Sahlqvist formulas and
our modal language is versatile, the underlying relational structure is
an incidence frame. See Blackburn et al., 2001; Venema, 1993 for more
details about the importance of inference rules like the inference rule
of irreflexivity. We do not know if it is possible to eliminate the in-
ference rule of irreflexivity in our axiom system: the completeness of
MIG with respect to validity in the class Cinc is still open. As well, the
decidability/complexity issue of validity in Cinc is still unresolved.

Note also that we can obtain a complete axiomatization of the projec-
tive incidence frames adding the following axioms to the system MIG:

(MPG1) 〈U〉A → 〈O−1〉〈O〉A,

(MPG2) 〈O〉(A ∧ 〈O−1〉B) → 〈6≡〉(〈O〉A ∧ 〈6≡〉B).

Extending the language with the modality [‖] we can axiomatize also
the affine incidence frames.

We note that the presented systems have rich expressiveness, contain-
ing modalities with the following intuitive readings: [U ]A – everywhere;
[ 6=]A – everywhere else; [≡1]A – in all points; [6≡1]A – in all other points;
[≡2]A – in all lines; [6≡2]A – in all other lines; [O]A – in all lines through
the current point; [O−1]A – in all points on the current line.

14. Point-line spatial logics

Standard modal languages have semantics over one sorted frames.
Within the context of dynamic logic, van Benthem, 1994, Marx, 1996,
and de Rijke, 1995 were probably the first few to use relational structures
made up of several sets of possible worlds together with binary relations
between them. One possible application of such languages are many-
sorted geometrical structures like incidence geometries based on points
and lines and inter-sort relations of incidence between them. In this
section we follow Venema, 1999.

Two-sorted modal logic. Consider, for instance, a relational
structure of the form F = (W1, W2, R) where W1 and W2 are nonempty
sets and R ⊆ W1 × W2. For the sake of simplicity, we assume that
the sets W1 and W2 are disjoint. From now on, such structures will
be called two-sorted Kripke frames. In F , the binary relation R links
elements of W1 with elements of W2. If modal languages must be used for
talking about relational structures like F , one possibility is to consider
a language with two sorts of formulas:
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A ::= p | ⊥ | ¬A | (A ∨ B) | ¤α – formulas of the first sort,

α ::= π | ⊥ | ¬α | (α ∨ β) | ¤A – formulas of the second sort.

where p and π denote propositional letters of the corresponding sorts.
Note that the modality ¤ transform the one sort into the other.

A two-sorted Kripke model based on F is nothing but a structure of
the form M = (W1, W2, R, V ) where V — the valuation of the model —
associates a subset V (p) of W1 with every propositional letter p of the
first type and a subset V (π) of W2 with every propositional letter π of
the second type. Elements of W1 being denoted by upper case letters
like X, Y , Z, etc, and elements of W2 being denoted by lower case letters
like x, y, z, etc, formulas like p, ¬A, A ∨ B, and ¤α will be interpreted
at elements of W1, whereas formulas like π, ¬α, α ∨ β, and ¤A will
be interpreted at elements of W2 according to the satisfiability relation
defined as usual. In particular:

M, X |= ¤α iff (∀y ∈ W2)(XRy implies M, y |= α),

M, x |= ¤A iff (∀Y ∈ W1)(Y Rx implies M, Y |= A).

The notion of a formula of a given sort to be true (satisfiable) in given
model can be define in an obvious way. Although the extension of the
standard techniques (canonical model, bisimulation, filtration, etc) and
results (completeness, finite frame property, definability, etc) of modal
logic to multi-sorted languages like the one we have just described has
never been seriously considered, we believe that their extension to multi-
sorted modal logics is straightforward. As for the two-sorted modal
language considered above, it is a simple matter to check that K2 – the
following axiom system – is sound and complete with respect to validity
in the class of all two-sorted Kripke frames:

Axioms of the first type: all first-type substitution instances of
classical tautologies together with all formulas of the form

¤(α → β) → (¤α → ¤β) and A → ¤♦A,

Axioms of the second type: all second-type substitution instances
of classical tautologies together with all formulas of the form

¤(A → B) → (¤A → ¤B) and α → ¤♦α,

Inference rules of the first type: Modus ponens “given A and

A → B, prove B” and generalization “given α, prove ¤α”,

Inference rules of the second type: Modus ponens “given α and
α → β, prove β” and generalization “given A, prove ¤A”.
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In the next paragraph we apply these ideas to the cases of plane projec-
tive geometry and plane affine geometry.

A two-sorted modal logic for plane projective geometry.
The point-line incidence planes defined in Sec. 13 are good candidates
to stand for the Kripke semantics of a two-sorted modal language. Let us
consider the class Cpg of all projective planes, i.e. two-sorted structures
F = (Po,Li, I) where Po is a nonempty set of points, Li is a nonempty
set of lines, and I is a binary relation between points and lines such that:

∀X∀Y ∃z(XIz ∧ Y Iz),

∀x∀y∃Z(ZIx ∧ ZIy),

∀X∀Y ∀z∀t(XIz ∧ Y Iz ∧ XIt ∧ Y It → X = Y ∨ z = t).

Of course, we will assume that the sets Po and Li are disjoint. Ac-
cording to the discussion above, we now turn to the definition of our
two-sorted modal languages for talking about projective planes. Let us
consider a countable set ΦPo of point-type proposition letters, with typ-
ical members denoted p, q, r, etc, and a countable set ΦLi of line-type
proposition letters, with typical members denoted π, ρ, σ, etc. The
well-formed formulas are defined by the following rules:

A ::= p | ⊥ | ¬A | (A ∨ B) | ¤α – point formulas,

α ::= π | ⊥ | ¬α | (α ∨ β) | ¤A – line formulas.

In some two-sorted model M = (Po,Li, I, V ), the point-formula ¤α
is satisfied at a point X iff the line-formula α is satisfied at every line
passing through X. Similarly, the line-formula ¤A is satisfied at line x
iff the point-formula A is satisfied at every point lying on x.

Seeing that two points are always incident with at least one line and
two lines are passing together through at least one point, the reader may
easily verify that the point-formula ¤¤A is satisfied at point X in M iff
the point-formula A is true everywhere in M. Similarly, the line-formula
¤¤α is satisfied at line x in M iff the line-formula α is true everywhere
in M. Hence, the universal modality [U ] for points and the universal
modality [u] for lines are definable in the following way: [U ]A = ¤¤A
and [u]α = ¤¤α.

The two-sorted modal logic defined by the class Cpg of all projective
planes has been studied first by Balbiani, 1998 and Venema, 1999. They
proved that the axiom system Kpg obtained by adding all instances of
the following axioms to K2 is complete with respect to validity in Cpg:
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Axioms of the first type: Axioms of the second type:

¤α → [U ]♦α ¤A → [u]♦A
[U ]A → A [u]α → α
[U ]A → [U ][U ]A [u]α → [u][u]α
A → [U ]〈U〉A α → [u]〈u〉α

The proof of the decidability of the set of all formulas of the first
type satisfiable in Cpg and the proof of the decidability of the set of
all formulas of the second type satisfiable in Cpg can be done using the
standard technique of the filtration. As usual, this filtration argument
implies that satisfiability of point-formulas and line-formulas within Cpg

is in NEXPTIME. What makes interesting our two-sorted modal logic
is the following result proved by Venema, 1999: satisfiability of point-
formulas and line-formulas within the class Cpg is NEXPTIME-complete.

The expressive power of our two-sorted modal language is weak. For
example, neither the difference modality between points nor the differ-
ence modality between lines are definable in it. Let us extend our two-
sorted language by allowing point-formulas like [6=]A and line-formulas
like [6=]α. In some two-sorted model M = (Po,Li, I, V ), the point-
formula [6=]A will be satisfied at point X iff point-formula A is satisfied
at every point different from X whereas the line-formula like [6=]α will
be satisfied at line x iff line-formula α is satisfied at every line different
from x. The axiomatisation/completeness and decidability/complexity
issues of validity and satisfiability of formulas in the extended two-sorted
language with respect to the class Cpg are still open.

A two-sorted modal logic for plane affine geometry. A
particular aspect of plane projective geometry is the duality between
points and lines. In plane affine geometry, points and lines are no longer
interchangeable seeing that, in point-line affine planes, although two
different points are always incident with exactly one line, parallel lines
have no point in common. This imbalance between points and lines in
affine planes is translated into additional difficulties for those who wish to
define a two-sorted modal logic for plane affine geometry. The language
of this two-sorted modal logic must be able to talk about incidence
between points and lines and parallelism between lines. The solution
in Balbiani and Goranko, 2002 is to consider the following rules that
mutually define the formulas of sort point and the formulas of sort line:

A ::= p | ⊥ | ¬A | (A ∨ B) | ¤α,

α ::= π | ⊥ | ¬α | (α ∨ β) | ¤A | [‖s]α.
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As for the two-sorted modal logic for projective geometry, point for-
mulas like ¤α are read “α is satisfied at every line incident with the
current point” and line formulas like ¤A are read “A is satisfied at ev-
ery point incident with the current line”. The unary modality [‖s] will be
interpreted by the strong, i.e. irreflexive, binary relation of parallelism
between lines defined, in any affine plane F = (Po,Li, I), by:

x ‖s y iff for all points Z, not ZIx or not ZIy.

In this setting, if V is a valuation on F then the definition of the satis-
fiability relation in the two-sorted model M = (Po,Li, I, V ) defined by
V over F now contains the following item:

M, x |= [‖s]α iff for all y ∈ Li such that x ‖s y, M, y |= α.

It is a simple matter to check that, in M, the universal modality [U ]
for points and the universal modality [u] for lines are definable in the
following way: [U ]A = ¤¤A and [u]α = ¤¤α ∧ [‖s]α. Seeing that [‖s]
corresponds to the strong relation of parallelism, we observe that for all
points X in Po and for all lines x in Li:

M, X |= ¤[‖s]¤A iff for all Y ∈ Po such that X 6= Y , M, Y |= A,

M, x |= [‖s]¤¤α iff for all y ∈ Li such that x 6= y, M, y |= α.

Hence, the difference modality [D] for points and the difference modal-
ity [d] for lines are definable in the following way: [D]A = ¤[‖s]¤A
and [d]α = [‖s]¤¤α. To illustrate the value of our two-sorted modal
language, let us remark that, in the class Cap of all affine planes, the
following formulas are valid:

Formulas of type point: Formulas of type line:

¤α → ♦α ¤A → ♦A
[U ]A → [U ][U ]A [‖s]α → 〈‖s〉α
[U ]A → [D]A α → [‖s]〈‖s〉α
A ∧ [D]A → [U ]A α ∧ [‖s]α → [‖s][‖s]α
[U ]¤α ↔ ¤α ∧ ¤[‖s]α [u]α → [d]α
A ∧ ♦(α ∧ ♦(¬A ∧ [D]A)) → ¤(¤A ∨ α) α ∧ [d]α → [u]α

[u]¤A ↔ ¤A ∧ [‖s]¤A

These formulas are Sahlqvist formulas. Hence they correspond to
first-order conditions on two-sorted structures. For example, the point
formula [U ]A → [U ][U ]A is related to the property of line-connectedness
saying that every two points are incident with a common line whereas
the point formula [U ]¤α ↔ ¤α ∧ ¤[‖s]α and the line formula [u]¤A ↔
¤A∧ [‖s]¤A are related to the existence part of Euclid’s property saying
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that every point not incident with a given line is incident with at least
one line parallel to the given line. As for the line formula A∧♦(α∧♦(¬A∧
[D]A)) → ¤(¤A∨α), it corresponds to the normality conditions saying
that every two distinct points have no more than one common incident
line. Whether adding to K2 all instances of the above formulas yields a
complete axiom system for validity in Cag is still open. However, thanks
to the possibility of defining in our language the difference modalities
between points or lines, we may axiomatize the validity by means of
irreflexivity rules. The axiom system AFF is obtained by adding all
instances of the above formulas to the basic logic together with the
following special inference rules:

Irreflexivity rule of type point: “given p ∧ [D]¬p → A, prove A”
where p is a proposition letter of sort point not occurring in A,

Irreflexivity rule of type line: “given π ∧ [d]¬π → α, prove α”
where π is a proposition letter of sort line not occurring in α,

The completeness of AFF with respect to Cap is proved by transferring
the analogous techniques based on irreflexivity rules known from the
one-sorted case. See Balbiani and Goranko, 2002 for details.

Being able to define the difference modalities between points or lines
in our two-sorted modal language, it is expressive enough to allow us to
define formulas expressing Desarguesian and Pappian properties and to
axiomatize the corresponding logics.

It is still open whether satisfiability of point formulas and line formulas
within Cap is decidable. Nevertheless, following the line of reasoning
suggested by Venema, 1999, Balbiani and Goranko, 2002 proved that
satisfiability within Cap is NEXPTIME-hard.

Finally, we note that the two-sorted modal perspective in geometry is
discussed further in van Benthem, 1996, where Henkin model for second-
order logic are considered as two-sorted geometric structures, and in van
Benthem, 1999, where space and time sorts are put together.

Concluding remarks: elementary geometry and spa-
tial reasoning

We end this chapter with two brief remarks.
First, there is an obvious disparity in the influence and utility of mod-

ern mathematical logic to algebra and geometry: while the main (and
quite deep) applications of logic to algebra are model-theoretic, the im-
mediate rôle of logic in geometry is still mainly confined to axiomatiza-
tions of geometric theories and logical independence of geometric con-
cepts and properties. While some recent model-theoretic developments
(see Hodges, 1993) have deep applications to geometry, they are still far
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from being accessible enough to enter the geometer’s toolbox. In this
chapter we have just hinted that logic can say and do more to geometry
than what it has so far.

Second, we admit that the topic of this chapter is not directly related
to practical spatial reasoning. Yet, we believe that the issues and results
discussed here are relevant to it, because quite often, spatial reason-
ing ignores many geometric attributes such as distances, angles, precise
shapes, etc. Just like topology can sometimes be more appropriate than
metric geometry for the reasoning tasks at hand, affine planes (with or
without ordering) or even plain linear incidence spaces may turn out to
be the right level of abstraction. For instance, this should be the case
when a street map is used for orientation and routing in the city, or in
designing a method for orientation in a maze. We thus see the practical
value of the study of logical theories for geometric structures discussed
here in offering a hierarchy of levels of abstraction, and providing logical
tools and techniques, to suit the particular needs of the agent for spatial
representation and reasoning.
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