

Data sheet acquired from Harris Semiconductor SCHS042C – Revised July 2003

CD4045B Types

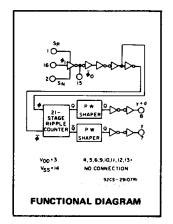
CMOS 21-Stage Counter

High-Voltage Types (20-Volt Rating)

string of 21 counter stages, two outputshaping flip-flops, two inverter output drivers, and input inverters for use in a crystal oscillator. The CD4045B configuration provides 21 flip-flop counting stages, and two flipflops for shaping the output waveform for a 3.125% duty cycle. Push-pull operation is provided by the inverter output drivers.

The first inverter is intended for use as a crystal oscillator/amplifier. However, it may be used as a normal logic inverter if desired. A crystal oscillator circuit can be made less sensitive to voltage-supply variations by the use of source resistors. In this device, the sources of the p and n transistors have been brought out to package terminals. If external resistors are not required, the sources must be shorted to their respective substrates (Sp to VDD, Sn to VSS). See Fig. 1. The first inverter in conjunction with an outboard inverter, such as 1/6 CD4069, and R_X, C_X, and RS can also be used to construct an RC oscillator. The following data is supplied as a guide in the selection of values for RX, R_S, and C_X used in Fig. 11:

- 1. R_X max = 10 $M\Omega$ with R_S = 10 $M\Omega$ and C_X = 50 pF
- 2. C_X max = 25 μ F with R_S = 560 k Ω and R_X = 50 k Ω


The CD4045B types are supplied in 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline package (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

Applications:

- Digital equipment in which ultra-low dissipation and/or operation using a battery source is required.
- Accurate timing from a crystal oscillator for timing applications such as wall clocks, table clocks, automobile clocks, and digital timing references in any circuit requiring accurately timed outputs at various intervals in the counting sequence.
- Driving miniature synchronous motors, stepping motors, or external bipolar transistors in push-pull fashion.

Features:

- Very low operating dissipation
 <1 mW (typ.) @ VDD = 5 V, fø = 1 MHz</p>
- Medium speed (typ.) . . . $f\phi$ = 25 MHz @ V_{DD} = 10 V
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, Standard Specifications for Descripiton of 'B' Series CMOS Devices"

MAXIMUM RATINGS, Absolute-Maximum Values:

LEAD TEMPERATURE (DURING SOLDERING):

DC SUPPLY-VOLTAGE RANGE, (V_{DD})

Voltages referenced to V_{SS} Terminal)

INPUT VOLTAGE RANGE, ALL INPUTS

CINPUT CURRENT, ANY ONE INPUT

E10mA

POWER DISSIPATION PER PACKAGE (P_{D}):

For T_{A} = -55°C to +100°C

For T_{A} = +100°C to +125°C.

Derate Linearity at 12mW/°C to 200mW

DEVICE DISSIPATION PER OUTPUT TRANSISTOR

FOR T_{A} = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)

100mW

OPERATING-TEMPERATURE RANGE (T_{A})

-55°C to +125°C

STORAGE TEMPERATURE RANGE (T_{SIQ})

-65°C to +150°C

At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max+265°C

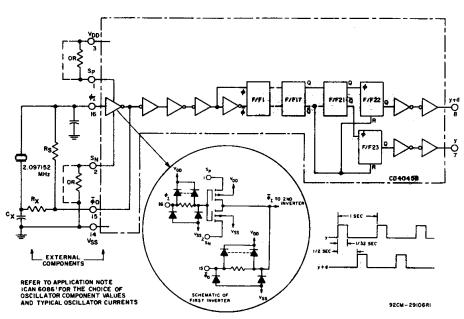


Fig. 1 - CD4045B and outboard components in a typical 21-stage counter application.

CD4045B Types

STATIC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)							U N
	٧o	VIN	V_{DD}					+25			Т
	(v)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.	s
Quiescent Device	_	0,5	5	5	5	150	150	_	0.04	5	
Current, IDD Max.	<u> </u>	0,10	10	10	10.	300	300	_	0.04	10	L _A
1.		0,15	15	20	20	600	600		0.04	20	۱ ۱۳
	_	0,20	20	100	100	3000	3000	-	0.08	100	
Output Low (Sink)	0.4	0,5	5	4.5	4.3	2.9	2.5	3.6	7	1	\Box
Current IOL Min.	0.5	0,10	10	11.2	10.5	7.7	6.3	9.1	18	_]
	1.5	0,15	15	29.4	28	19.6	16.8	23.8	47	-	mA
Output High (Source)	4.6	0,5	5	-4.5	-4.3	-2.9	-2.5	-3.6	-7	-]'''^
Current, IOH Min.	9.5	0,10	10	-11.2	-10.5	-7.7	-6.3	-9.1	-18	-]
	13.5	0,15	15	-29.4	-28	-19.6	-16.8	-23.8	-47	_] [
Pin 15 Output	0.4,4.6	0,5	5			_	±0.1	±0.18			
Low and High	0.5,9.5	0,10	10			_	±0.2	±0.3	_	mΑ	
Current, IOL, IOH	1.5,13.5	0,15	15			_	±0.5	±1	_		
Output Voltage:		0,5	5		_ =	0.05	-	-	0.05	П	
Low-Level,	_	0,10	10	;	- (0.05		_	_	0.05	1
VOL Max.		0,15	15	0.05				_	_	0.05	۱۷
Output Voltage:		0,5	5	4.95 4.95					. 5	_	
High-Level,	_	0,10	10	-		9.95	9.95	10	_		
V _{OH} Min.	-	0,15	15	14.95 1					15	_	1
Input Low	0.5,4.5		5			1.5	-		1.5		
Voltage	1,9	1	10	1		3	_	_	3	1	
VIL Max.	1.5,13.5	-	15	4				-	_	4	
Input High	0.5,4.5	_	5			3.5	3.5	_	_	"	
Voltage,	1,9	-	10			7	7	_	_		
V _{IH} Min.	1.5,13.5	-	15			11	11		_		
Input Current I _{IN} Max.		0,18	18	±0.1	±0.1	±1	±1	_	±10 ⁻⁵	±0.1	μΑ

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges

CHARACTERISTIC	V _{DD}	LIN	IITS	UNITS
— — — — — — — — — — — — — — — — — — —	(v)	Min.	Max.	
Supply-Voltage Range (For T _A = Full Package- Temperature Range)	_	3	18	٧
Minimum Input-Pulse Width, tw	5 10 15	_ _ _	100 50 40	ns
Maximum Input—Pulse Frequency, fφ (External Pulse Source)	5 10 15	5 12 15	_ _ _	MHz

CD4045B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C; input $t_r,\,t_f$ = 20 ns, C_L = 50 pF, R_L = 200 $k\Omega$

	TEST			LIMITS		
CHARACTERISTIC	CONDITIONS	V _{DD} V	Min.	Тур.	Max.	UNITS
Propagation Delay Time:		5	_	2.2	5.5	
ϕ_{\parallel} to y or y+d out		10	l –	0.9	2.7	μs
^t PHL ^{, t} PLH	•	15	-	0.65	2	
Transition Time:		5	_	25	50	
	1	10	_	- 13	25	
^t THL ^{, t} TLH	<u> </u>	15	-	10	20	ns
Minimum Input-Pulse Width		5		50	100	113
		10	-	25	50	
^t W		15	-	20	40	
Input-Pulse Rise or Fall Time:		5			500	
		10		l –	500	μs
$t_r \phi$, $t_f \phi$		15		–	500	·
Maximum Input-Pulse		5	5	10	_	
Frequency:		10	12	25	_	MHz
(External Pulse Source) f _φ		15	15	30	_	
Input Capacitance, CIN	Any Input	-		5	7.5	pF
Variation of Output Frequency		5	-	0.05	_	- ·
(Unit-to-Unit)	f = 5 MHz	10	l – 1	0.03	_	%
		15	_	0.1	_	
RC Oscillator Operation						
Maximum Oscillator Frequency	$R_X = 50 k\Omega$,	5	45	60	75	
(See Fig. 11)	$R_S = 560 \mathrm{k}\Omega$,	10	45	60	75	kHz
fosc	$C_X = 50 pF$	15	45	60	75	

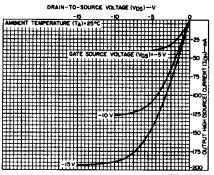


Fig. 4 — Typical output high (source) current characteristics.

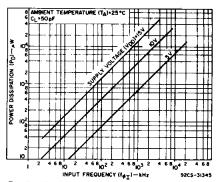


Fig. 7 — Typical power dissipation as a function of input frequency (21 counting stages).

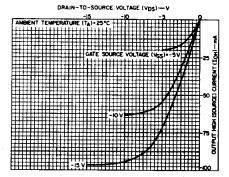


Fig. 5 – Minimum output high (source) characteristics.

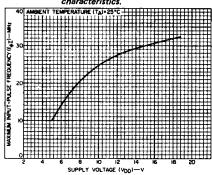


Fig. 8 — Typical maximum input-pulse frequency as a function of supply voltage.

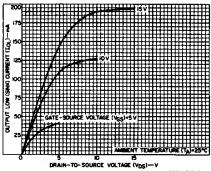


Fig. 2 — Typical output low (sink) current characteristics.

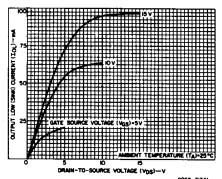


Fig. 3 – Minimum output low (sink) current cheracteristics.

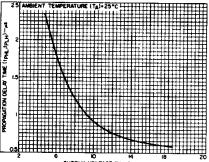


Fig. 6 — Typical propagation delay time as a function of supply voltage (\$\phi_p\$). Voltage (\$\phi_i\$ to y or y + d out vs. V_DD).

Fig. 9 — Typical RC oscillator frequency as a function of capacitance (C_X), See Fig. 11.

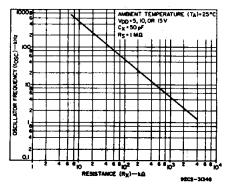


Fig. 10 — Typical RC oscillator frequency as a function of resistance (R_X),
See Fig. 11.

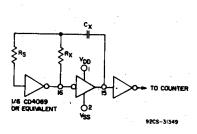


Fig. 11 - Typical RC circuit.

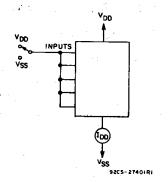


Fig. 12 - Quiescent-device-current test circuit.

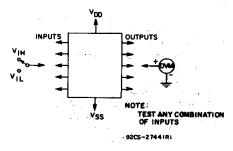


Fig. 13 - Noise-immunity test circuit.

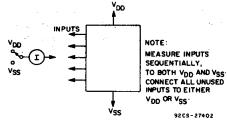
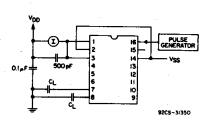
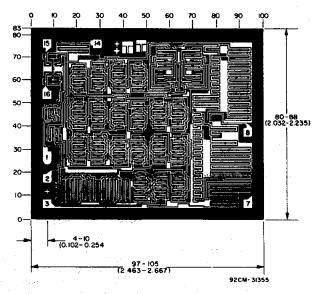
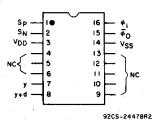


Fig. 14 - Input-leakage-current test circuit.


Fig. 15 - Dynamic power dissipation test circuit.

Chip dimensions and pad layout for CD4045B

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch),

TERMINAL DIAGRAM Top View

NC - NO CONNECTION

NOTE Observe power-supply terminal connections, V_{DD} is terminal No. 3 and V_{SS} is terminal No. 14 (not 16 and 8 respectively, as in other CD4000B Series 16-lead devices).

i.com 18-Feb-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD4045BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD4045BNSR	ACTIVE	SO	NS	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
CD4045BPW	ACTIVE	TSSOP	PW	16	90	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
CD4045BPWR	ACTIVE	TSSOP	PW	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

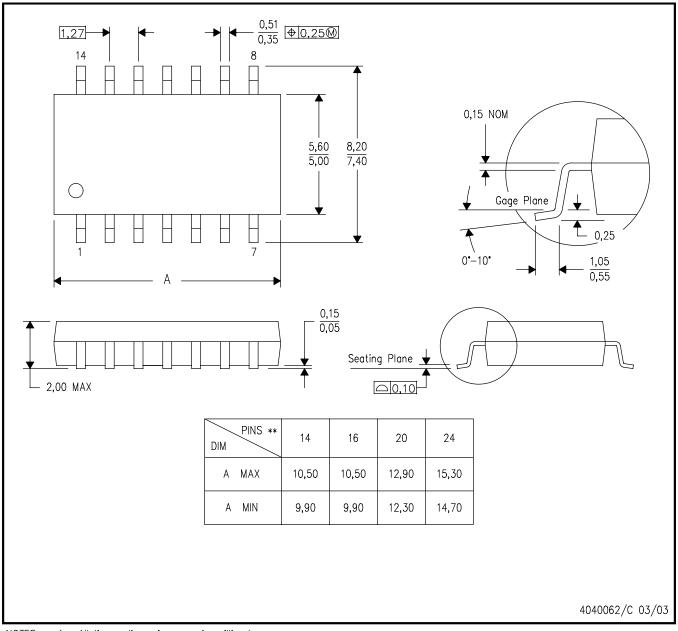
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.



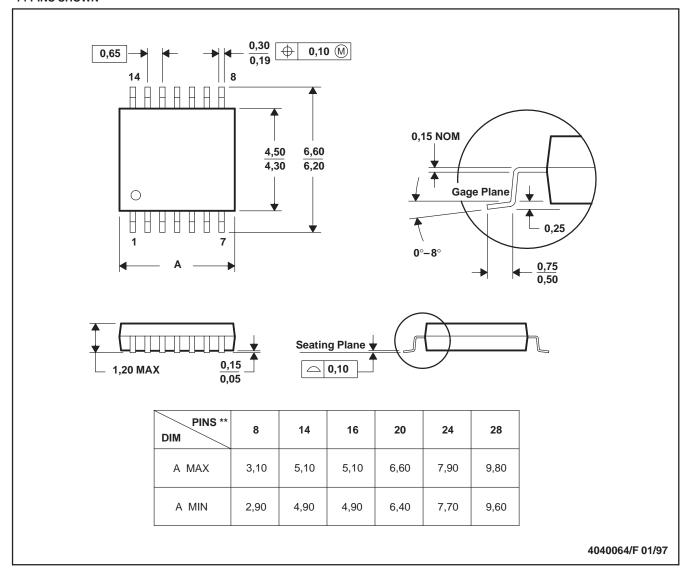
MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.