
Storing and Querying

Large XML Instances

Christian Grün

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

Fachbereich Informatik und Informationswissenschaft
Mathematisch-Naturwissenschaftliche Sektion

Universität Konstanz

Referenten:

Prof. Dr. Marc H. Scholl

Prof. Dr. Marcel Waldvogel

Tag der mündlichen Prüfung: 22. Dezember 2010

http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-127142
http://kops.ub.uni-konstanz.de/volltexte/2011/12714/

Abstract

After its introduction in 1998, XML has quickly emerged as the de facto exchange format

for textual data. Only ten years later, the amount of information that is being processed

day by day, locally and globally, has virtually exploded, and no end is in sight. Corre-

spondingly, many XML documents and collections have become much too large for being

retrieved in their raw form – and this is where database technology gets into the game.

This thesis describes the design of a full-fledged XML storage and query architecture,

which represents the core of the Open Source database system BASEX. In contrast to

numerous other works on XML processing, which either focus on theoretical aspects

or practical implementation details, we have tried to bring the two worlds together:

well-established and novel concepts from database technology and compiler construction
are consolidated to a powerful and extensible software architecture that is supposed to

both withstand the demands of complex real-life applications and comply with all the

intricacies of the W3C Recommendations.

In the Storage chapter, existing tree encodings are explored, which allow XML documents

to be mapped to a database. The Pre/Dist/Size triple is chosen as the most suitable

encoding and further optimized by merging all XML node properties into a single tuple,

compactifying redundant information, and inlining attributes and numeric values. The

address ranges of numerous large-scale and real-life XML instances are analyzed to find

an optimal tradeoff between maximum document and minimum database size. The

process of building a database is described in detail, including the import of tree data

other than XML and the creation of main memory database instances. As one of the

distinguishing features, the resulting storage is enriched by light-weight structural, value

and full-text indexes, which speed up query processing by orders of magnitudes.

The Querying chapter is introduced with a survey on state of the art XML query lan-

guages. We give some insight into the design of an XQuery processor and then focus on

the optimization of queries. Beside classical concepts, such as constant folding or static
typing, many optimizations are specific to XML: location paths are rewritten to access

less XML nodes, and FLWOR expressions are reorganized to reduce the algorithmic com-

iii

plexity. A unique feature of our query processor represents the dynamic rewriting of

location paths to take advantage of available index structures. Next, we examine the

evaluation of queries and propose an adaptive approach to benefit from both the iter-
ative and atomic processing paradigm. Based on the evaluation of location paths, it is

illustrated how databases are accessed by the query processor. The concluding summary

gives an overview on the optimizations that have been applied to the most important

XQuery expressions.

In the Performance chapter, we demonstrate the efficiency and scalability of the result-

ing database system BASEX. The storage and query capabilities are tested and compared

with other database systems and query processors. The benchmark results show that the

proposed architecture and its interplay between the storage and query components em-

braces some qualities that are, to the best of our knowledge, unique and unprecedented

among comparable products.

iv

Zusammenfassung (German Abstract)

Nachdem XML 1998 das Licht der Welt erblickt hat, hat es sich sehr schnell zum Quasi-
Standard für den Austausch textueller Daten entwickelt. Nur zehn Jahre später sind

die Informationsmengen, die tagtäglich lokal und global verarbeitet werden, explodiert,

und ein Ende der Entwicklung ist noch nicht abzusehen. Demzufolge sind auch viele

XML-Dokumente und -Kollektionen längst zu groß geworden, um Sie in ihrer Rohform

abzufragen – und hier kommt Datenbanktechnologie zum Einsatz.

Diese Dissertation beschreibt das Design einer ausgereiften XML-Speicher- und Query-

Architektur, die zugleich den Kern des Open-Source Datenbanksystems BASEX darstellt.

Im Gegensatz zu zahlreichen anderen Publikationen über XML, die sich entweder the-

oretischen Teilaspekten oder praktischen Implementierungsdetails verschreiben, wurde

in dieser Arbeit versucht, beide Welten zusammenzuführen: wohlbekannte und neuar-

tige Konzepte der Datenbanktechnologie und des Compiler-Baus bilden die Basis für eine

mächtige und offene Software-Architektur, die sowohl den Anforderungen komplexer,

realer Anwendungen standhalten als auch die Feinheiten der W3C-Empfehlungen berück-

sichtigen und einhalten soll.

Im Storage-Kapitel werden existierende Baum-Kodierungen untersucht, die die Spei-

cherung von XML-Dokumenten in Datenbanken ermöglichen. Das Pre/Dist/Size-Tripel

wird als die geeignetste Kodierung ausgewählt und weiter optimiert: alle Eigenschaften

eines XML-Knotens werden in einem Tupel abgebildet, redundante Information wer-

den kompaktifiziert und Attribute und numerische Werte werden gelinlined, d.h. di-

rekt innnerhalb der Tupel abgespeichert. Die Adressbereiche zahlreicher großer, realer

XML-Instanzen werden analysiert, um einen optimalen Kompromiss zwischen maxi-

maler Dokument- und minimaler Datenbankgröße zu finden. Die Erzeugung neuer

Datenbankinstanzen wird im Detail vorgestellt; dabei werden auch hauptspeicherorien-

tierte Datenbanken und andere hierarchische Datentypen neben XML betrachtet. Eine

Besonderheit der diskutierten Speicherarchitektur stellt die Erweiterung durch schlanke

struktur-, inhalts- und volltextbasierte Indexstrukturen dar, die die Anfragegeschwindig-

keit um mehrere Größenordnungen beschleunigen können.

v

Das Querying-Kapitel beginnt mit einem Überblick über die relevanten XML-Anfrage-

sprachen und beschreibt den Aufbau eines XQuery-Prozessors. Die Optimierung von An-

fragen steht anschließend im Mittelpunkt. Klassische Techniken wie Constant Folding
oder Statische Typisierung werden durch XML-spezifische Optimierungen ergänzt: Doku-

mentpfade werden umgeschrieben, um die Zahl der adressierten XML-Knoten zu re-

duzieren, und FLWOR-Ausdrücke werden reorganisiert, um die algorithmischen Kosten

zu senken. Ein einzigartiges Feature des vorgestellten Query-Prozessors stellt die flex-

ible Umschreibung von Dokumentpfaden für indexbasierte Anfragen dar. Als nächstes

wird die Evaluierung von Anfragen untersucht und ein adaptiver Ansatz vorgestellt, der

die Vorteile der iterativen und atomaren Anfrageverarbeitung vereinigt. Anhand der

Evaluierung von Dokumentpfaden wird der Zugriff auf die Datenbank veranschaulicht.

Der abschließende Überblick fasst die Optimierungsschritte zusammen, die auf die wich-

tigsten XQuery-Ausdrücke angewandt wurden.

Die Effizienz und Skalierbarkeit des Datenbanksystems BASEX ist Schwerpunkt des Per-
formance-Kapitels. Die Speicher- und Anfrage-Architektur wird getrennt voneinander

analysiert und mit anderen Datenbank-Systemen und Query-Prozessoren verglichen.

Die Ergebnisse sollen demonstrieren, dass die vorgestellte Architektur und das Zusam-

menspiel zwischen den Speicher- und Query-Komponenten über bestimmte Qualitäten

verfügt, die unserem Kenntnisstand nach einzigartig unter vergleichbaren Produkten

sind.

vi

Acknowledgments

Most certainly, this thesis would not have been completed without the continuous help,

support and inspirations of some persons, which I am pleased to mention in the follow-

ing:

First of all, I owe my deepest gratitude to my supervisor Marc H. Scholl, who has given

me all the time and freedom I could have possibly asked for to develop and pursue

my own ideas – a privilege that I know many postgraduates can only dream of. At the

same time, Marc has always had time for discussions, and I learned a lot from both his

guidance and vast expertise. Whenever I had doubts whether I was on the right path –

or any path at all – it was Marc who backed me, and confirmed me to go on.

Next, I would like to thank Marcel Waldvogel and his disy Group. The exchange be-

tween his and our group consisted in numerous fruitful debates, joint publications and,

as I believe, brought the work of all of us forward more quickly. Another thank you is

directed to Harald Reiterer, who was the first in Konstanz to get me enthusiastic about

scientific work. The cooperation between his HCI Group and ours lasts till the present

day.

It was my colleague Alexander Holupirek who I shared most prolific ideas with during

the last years, and some more drinks in the evenings. He gave me regular feedback

on my flights of fancy (or figments), and many of the contributions presented in this

work are due to his invaluable inspirations. I am also indebted to Marc Kramis, whose

visionary approach has advised me to remain open for new ideas, and Sebastian Graf,

who has triggered our most recent cooperation with the disy Group.

The collaboration with all the students working in my project was one of the most ful-

filling experiences, and I learnt a lot about what it means to lead a project, and how

productive real team work can be. In particular, I’d like to say thank you to Volker

Wildi, Tim Petrowski, Sebastian Gath, Bastian Lemke, Lukas Kircher, Andreas Weiler,

Jörg Hauser, Michael Seiferle, Sebastian Faller, Wolfgang Miller, Elmedin Dedović, Lukas

Lewandowski, Oliver Egli, Leonard Wörteler, Rositsa Shadura, Dimitar Popov, Jens Erat,

vii

and Patrick Lang. I have chosen a somewhat chronological order, assuming that all of

you know how much I value your individual contributions. Another big thank you goes

to Barbara Lüthke, our secretary with excellent language skills who deliberately spent

countless hours proof-reading the entire thesis.

Last but not least, words cannot express my appreciation to my parents, my brother

Achim, and Milda. Your endless emotional support was the real driving force behind

this work. To give it at least another try: Danke and Ačiū!

viii

Contents

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Outline . 3

1.4 Publications . 4

2 Storage 5

2.1 Introduction . 5

2.2 History . 5

2.3 XML Encodings . 7

2.3.1 Document Object Model . 7

2.3.2 Pre- and Postorder . 8

2.3.3 Level Depth . 10

2.3.4 Number of Descendants . 10

2.3.5 Parent Reference . 11

2.3.6 Node Properties . 12

2.3.7 Namespaces . 13

2.4 Pre/Dist/Size Mapping . 14

2.4.1 Address Ranges . 15

2.4.1.1 Analysis . 15

2.4.1.2 XML Instances . 17

2.4.2 Table Mapping . 19

2.4.2.1 Attribute Inlining . 19

2.4.2.2 Bit Ranges . 20

2.4.2.3 Compactification . 21

2.4.2.4 Integer Inlining . 21

2.4.2.5 Updates . 23

2.5 Database Architecture . 25

2.5.1 Database Construction . 25

ix

Contents

2.5.2 Generic Parsing . 28

2.5.3 Main Memory vs Persistent Storage 29

2.6 Index Structures . 31

2.6.1 Names . 31

2.6.2 Path Summary . 33

2.6.3 Values . 35

2.6.3.1 Compression . 36

2.6.3.2 Construction . 36

2.6.3.3 Main Memory Awareness 37

2.6.4 Full-Texts . 37

2.6.4.1 Fuzzy Index . 39

2.6.4.2 Trie Index . 40

3 Querying 43

3.1 XML Languages . 43

3.1.1 XPath . 44

3.1.2 XQuery . 46

3.1.3 XQuery Full Text . 47

3.1.4 XQuery Update . 49

3.2 Query Processing . 50

3.2.1 Analysis . 50

3.2.2 Compilation . 52

3.2.3 Evaluation . 52

3.2.4 Serialization . 53

3.3 Optimizations . 53

3.3.1 Static Optimizations . 54

3.3.1.1 Constant Folding/Propagation 54

3.3.1.2 Variable/Function Inlining 56

3.3.1.3 Dead Code Elimination 57

3.3.1.4 Static Typing . 58

3.3.1.5 Location Path Rewritings 59

3.3.1.6 FLWOR expressions . 61

3.3.2 Index Optimizations . 64

3.3.2.1 Database Context . 65

3.3.2.2 Predicate Analysis . 66

3.3.2.3 Path Inversion . 68

x

Contents

3.3.3 Runtime Optimizations . 70

3.3.3.1 Direct Sequence Access 71

3.3.3.2 General Comparisons . 72

3.4 Evaluation . 73

3.4.1 Iterative Processing . 74

3.4.1.1 Caching . 76

3.4.1.2 Adaptive Approach . 78

3.4.1.3 Expressions . 81

3.4.2 Location Paths . 83

3.4.2.1 Staircase Join . 84

3.4.2.2 Path Traversal . 86

3.4.2.3 Optimizations . 90

3.5 Summary . 92

3.6 Examples . 100

3.6.1 Index Access . 100

3.6.2 XMark . 101

4 Performance 107

4.1 Storage . 108

4.2 Querying . 111

4.2.1 XQuery . 113

4.2.2 XMark . 116

4.2.2.1 Main Memory Processing 116

4.2.2.2 Database Processing . 118

4.2.2.3 XMark Queries . 122

4.2.3 XQuery Full Text . 126

4.3 Statistics . 130

5 Conclusion 133

Appendix 135

Bibliography . 135

List of Figures . 146

List of Tables . 148

xi

1 Introduction

1.1 Motivation

“XML is bulky”, “XML processing is slow”, “XML documents are small”: my first encoun-

ters with XML would never have pointed into the direction which I have pursued for the

past years. XML, the Extensible Markup Language introduced by the W3 Consortium in

1998 [BPSM+08], evolved from the SGML ISO standard. The initial notion was to offer

a generic meta markup language for documents. Since then, XML has become a de facto

standard for the industrial and scientific exchange of textual information.

XML allows for a hierarchic mapping of contents by representing all data in a tree struc-

ture. This flexibility led to challenges – and preconceptions – that were unfamiliar to the

world of relational databases:

• XML is bulky? Indeed: meta data in XML documents, which are encoded as

element names, attributes, comments or processing instructions, can result in a

verbose representation.

• XML processing is slow? Compared to tabular data, the processing of hierarchic

structures is not straight-forward and demands more sophisticated query algo-

rithms.

As a first consequence, XML documents were considered to be a suitable format for

handling small amounts of data, but dismissed for database storage. If we regard the

situation in 2010 – twelve years after the publication of the first edition of the XML Rec-

ommendation – this has drastically changed: The strict limitations of two-dimensional

tabular data have been more and more abandoned to give way to the paradigm of semi-
structured data [Abi97, Bun97]. Numerous DBMS are now available that support, or are

specialized in, the storage of large XML instances. Big players like DB2 and Oracle offer

native storage of XML documents, and many free and commercial text corpora – such

as Wikipedia, SwissProt or MedLine, all occupying several gigabytes of raw data – are

distributed via XML.

1

1.2. Contribution

A language for searching such large amounts of data was the next task. Many ef-

forts have been made to query XML documents [AQM+97, DFF+99, CRF00], and XPath

[CD99] and XQuery [BCF+07] have become the official W3C Recommendations. While

most of these approaches focus on the structure, it has been observed that many in-

stances are rather document-centric, containing mixed content and full-texts [BBB00].

As a result, language extensions have been proposed to bring the database and infor-

mation retrieval world closer together [TW02, GSBS03, TS04, BSAY04], a development

which eventually led to the definition of the W3C XQuery and XPath Full Text Can-

didate Recommendation [AYBB+09]. Similar to SQL, update statements are essential

in database languages. First attempts described in [LM03], [TIHW01] and [SHS04]

eventually ended up in the XQuery Update Candidate Recommendation [CDF+09]. The

success of XML has led to quite a number of other specifications, ranging from the early

XSL Transformation language [Cla99] to the upcoming Scripting Extension [CEF+08].

1.2 Contribution

In a nutshell, this thesis is about the storage and query architecture of a full-fledged

native XML database. While this might not be the first attempt, we believe that a major

contribution of this work is the thorough consideration and consequent consolidation

of both theoretical and practical aspects. Over the past years, we have observed that

numerous theoretical approaches have failed to reach a mature level, as the proposed

ideas could not cope with the complexity of real-life demands. As an example, opti-

mizations for basic features of XPath and XQuery could not be scaled and adopted to

complex query expressions. At the same time, many existing implementations would

clearly yield much better performance and scalability if they were based on a solid the-

oretical foundation (to quote Kurt Lewin: “There is nothing more practical than a good

theory.” [Lew51]). In this work, we have tried to bring the two worlds closer together.

All concepts were scrutinized not only for their efficiency and scalability, but also for

their universality. Accordingly, the resulting database architecture was supposed to:

• withstand the demands of real workloads and complex applications,

• comply with all the subtleties and intricacies of the W3C Recommendations, and

• show unique performance and scalability.

Single contributions have been summarized in the Conclusion (Chapter 5).

2

1.3. Outline

1.3 Outline

The work is structured as follows:

• Chapter 2 starts off with a short historical overview of XML storage techniques.

Various tree encodings are analyzed, and the Pre/Dist/Size encoding, which is cho-

sen as favorite, is presented in more detail. Real-life, large-scale XML documents

and collections are examined to get a feeling for the optimal tradeoff between

maximum document and minimum database size. Various optimizations are then

performed on the encoding, including the merge of all XML node properties into

a single tuple, the compactification of redundant information, and the inlining of

attributes and numerical values in the tuple. Next, the process of constructing a

database is illustrated step by step. Additional indexes are proposed as a comple-

ment to the main database structures to speedup both structural and content-based

queries.

• Chapter 3 is introduced with a survey on the most relevant XML query languages.

Some insight into the design of an XQuery processor is given, followed by a section

on static and dynamic query optimizations. Beside classical compiler concepts,

such as Constant Folding, Dead Code Elimination or Static Typing, XML specific

optimizations are described, including the rewriting of FLWOR expressions and lo-
cation paths. Special attention is directed to expressions that can be rewritten for

index access. Next, an adaptive approach is proposed for query evaluation, which

combines the advantages of the iterative and atomic processing paradigm. An ex-

tra section is devoted to the database-supported traversal of location paths. The

chapter is concluded with a summary, highlighting the optimizations of the most

important XQuery expressions, and the presentation of some original and opti-

mized query plans.

• Chapter 4 demonstrates that the proposed architecture yields excellent perfor-

mance and scalability: both the storage and query capabilities are tested and com-

pared with competing systems.

BASEX, an Open Source XML database system, is the practical offspring of this thesis

[GHK+06, GGHS09b, Grü10]. The deliberate focus on a real-life system with a steadily

growing user community allowed us to benefit from a wide range of real-life scenar-

ios, and to continuously review and ponder the usefulness of new software features.

In retrospect, feedback from the Open Source community was a decisive factor in the

development of BASEX.

3

1.4. Publications

1.4 Publications

The following texts were published as a result of this research project:

1. Sebastian Graf, Lukas Lewandowski, and Christian Grün. JAX-RX – Unified REST

Access to XML Resources. Technical Report, KN-2010-DiSy-01, University of Kon-

stanz, Germany, June 2010

2. Christian Grün, Sebastian Gath, Alexander Holupirek, and Marc H. Scholl. INEX

Efficiency Track meets XQuery Full Text in BaseX. In Pre-Proceedings of the 8th INEX
Workshop, pages 192–197, 2009

3. Christian Grün, Sebastian Gath, Alexander Holupirek, and Marc H. Scholl. XQuery

Full Text Implementation in BaseX. In XSym, volume 5679 of Lecture Notes in Com-
puter Science, pages 114–128. Springer, 2009

4. Alexander Holupirek, Christian Grün, and Marc H. Scholl. BaseX & DeepFS – Joint

Storage for Filesystem and Database. In EDBT, volume 360 of ACM International
Conference Proceedings Series, pages 1108–1111. ACM, 2009

5. Christian Grün, Alexander Holupirek, and Marc H. Scholl. Visually Exploring and

Querying XML with BaseX. In BTW, volume 103 of LNI, pages 629–632. GI, 2007

6. Christian Grün, Alexander Holupirek, and Marc H. Scholl. Melting Pot XML –

Bringing File Systems and Databases One Step Closer. In BTW, volume 103 of LNI,
pages 309–323. GI, 2007

7. Christian Grün, Alexander Holupirek, Marc Kramis, Marc H. Scholl, and Marcel

Waldvogel. Pushing XPath Accelerator to its Limits. In ExpDB. ACM 2006

8. Christian Grün. Pushing XML Main Memory Databases to their Limits. In Grund-
lagen von Datenbanken. Institute of Computer Science, Martin-Luther-University,

2006

BASEX contains numerous other features that are only partially reflected in this thesis,

or not all. The client-/server architecture is presented in Weiler’s master thesis [Wei10];

details on the XQuery Full Text implementation are covered in Gath’s master thesis

[Gat09], and Kircher’s bachelor thesis gives some insight into the implementation of

XQuery Update [Kir10]. As an addition, a user-friendly GUI interface contains several

query facilities and visualizations and offers a tight coupling between the visual frontend

and the database backend (see [GHS07], or Hauser’s bachelor thesis for details on the

TreeMap visualization [Hau09]).

4

2 Storage

2.1 Introduction

XML documents are based on tree structures. Trees are connected acyclic graphs; as

such, they need specialized storage structures, which will be discussed in this chapter.

Section 2.2 gives a short introduction to the historical development of XML storage

techniques, Section 2.3 will analyze various XML encodings, and Section 2.4 will present

the Pre/Dist/Size encoding and its optimizations in depth. An overview on the proposed

database architecture is given in Section 2.5, and Section 2.6 will conclude the chapter

with the description of additional light-weight index structures, which will speed up

many queries by orders of magnitudes.

2.2 History

Semi-structured data, as defined by [Abi97] and [Bun97], came into play when re-

lational database systems were the standard storage technology, and object-oriented

databases were in the limelight. STORED (Semistructured TO RElational Data) was one

of the first systems that focused on the storage of semi-structured documents [DFS99].

The proposed algorithm to analyze the input data was inspired by data mining tech-

niques. Regularities in the data were utilized to define a relational schema. The database

structure resulted in a mixed schema, containing relational tables for regular data and

graphs to store remaining, irregular structures. This approach worked out particularly

well for regular data instances, but reached its limits if the input was primarily irregular.

Even before, another system to enter the stage was LORE [MAG+97]. The “Lightweight

Object Repository” was based on the Object Exchange Model (OEM). OEM was intro-

duced by TSIMMIS [PGMW95], another system developed in Stanford; it served as a

unified data model for representing and exchanging semi-structured data between dif-

ferent systems. The textual OEM interchange format, as defined in [GCCM98], offered

a simple way to manually edit and modify existing data structures.

5

2.2. History

While many features were rather classical, the great benefit of LORE was that it did not

enforce a pre-defined schema on the input data. The underlying storage allowed all in-

coming data instances to have different structures. The idea to operate without schema

on the data (i.e., schema-oblivious, [KKN03]) differed fundamentally from traditional,

relational database systems, which postulated a “schema first” approach. Another inter-

esting and still up-to-date feature of the LORE architecture, such as DataGuides [GW97],

will be discussed in more detail in 2.6.2.

NATIX [KM00] was one of the first engines to incorporate the tree structure of semi-

structured data in its underlying physical storage. A tree storage manager was applied to

map complete and partial documents (subtrees) into low-level record units. Three types

of records were defined: aggregate nodes represented inner nodes of a tree, literal nodes

contained raw document contents, and proxy nodes were used to reference different

records for larger documents. In contrast to other approaches, database updates were

already taken into consideration; depending on the number of expected occupancy of

records, the maintenance policy could be fine-tuned.

In [FK99], Florescu and Kossmann analyzed various approaches for mapping XML data

to tables in relational database management systems (RDBMS), all schema-oblivious.

All element nodes were labeled with a unique oid. The Edge table referenced all edges

of a document by storing the source oid, a target reference, the edge label and an ordinal

number, which denoted the original order of the target nodes. A second, Binary mapping

scheme, inspired by [vZAW99], grouped all nodes with the same label into one table,

and the third Universal scheme, which corresponds to a full outer join of Binary tables,

stored all edges and contents in a single table. Two alternative ways were proposed to

store attribute values and text nodes: depending on the data type, separate value tables

were created and linked with the main tables. Alternatively, values were “inlined”, i.e.,

directly stored in the structure tables. A benchmark was performed, using a commercial

RBDMS, in which the binary approach with inlined values yielded the best results. Fur-

ther research has revealed that other storage patterns are often superior to the binary

mapping (see e.g. [GC07]). It can be assessed, however, that the general idea to map

XML documents to tabular relational table structures has found many supporters, as will

be shown in the following.

6

2.3. XML Encodings

2.3 XML Encodings

As outlined in the introduction, trees are the underlying structure of XML documents.

Tree encodings have a long history in computer science. To map XML trees to another

representation, we need to find an encoding E that matches the following demands:

1. The encoding must be capable of mapping a document to a database and exactly

reconstructing the original document (E−1).

2. As node order is essential in semi-structured data, such as full-texts, the encoding

must reflect the original node order.

3. Tree traversal is important in XML processing and querying, and must be efficiently

supported.

The properties, which will be analyzed in the following, represent single properties of

tree nodes. The combination of the properties results in different encodings E , the values

of which form tuples. While the tuples can be stored in different ways, we will focus on

the two following variants:

1. set-based: as a relation, i.e., a set of tuples, in a database. Here, sets are unordered

collections of distinct tuples.

2. sequential: as a sequence of tuples. In our context, sequences are ordered lists of

distinct tuples.

The set-based variant will also be called relational, as a traditional relational database

(RDBMS) with SQL as query language is assumed to exist as backend (see e.g. [STZ+99]

or [Gru02]). In contrast, the sequential variant will sometimes be referred to as the na-
tive approach, as it will be based on specially tailored storage structures to support inher-

ent XML characteristics. While the distinction may seem clear at first glance, different

approaches exist in practice that cannot be uniquely assigned to either approach: a rela-

tional database can be tuned to sequentially process nodes (as pursued by the Staircase
Join algorithms [GvKT03]), and native database backends can be extended by relational

paradigms (as done in the MONETDB database), and so on.

2.3.1 Document Object Model

The DOM, short for Document Object Model, is the most popular representation for XML

documents. It is used to map XML instances to a main memory tree structure [ABC+99].

7

2.3. XML Encodings

1

2 5

3 4 6

6

3 5

1 2 4

4

2 5

1 3 6

Figure 2.1: Preorder, postorder, and inorder traversal

With its help, the structure and contents of a document can be accessed directly and

updated dynamically. All XML nodes are represented as transient objects, which contain

direct references to parent and child nodes and have additional properties, dependent

on their node kind. While the flexible DOM structure serves well to process smaller

documents, many issues arise when data has to be permanently stored. Some early,

discontinued approaches for persistently storing DOM can be found in [HM99, EH00].

2.3.2 Pre- and Postorder

It was Knuth in his well-known monograph [Knu68] who coined the terms preorder,
postorder and inorder to describe different traversals of binary trees (see Figure 2.1). By

nature, tree traversals are defined in a recursive manner. In preorder, the root node is

visited first. Next, a preorder traversal is performed on all child nodes from left to right.

In postorder, the root is visited after traversing all children, and in inorder, the root is

touched after the left and before the right child is traversed. From these traversals, pre-

and postorder are relevant in the context of XML, as they are also applicable to trees

with more than two children.

Preorder corresponds to the natural document order, i.e., the order in which XML nodes

are sequentially parsed and new nodes are encountered. Postorder can be sequentially

constructed as well if the post value is assigned and incremented every time a node is

closed. Hence, both encodings can be assigned in a single run and in linear time. A SAX

parser [MB04] can be used to parse XML documents; details are found in 2.5.1.

As depicted in Figure 2.2, pre and post values of an XML document can be visualized in

a two-dimensional coordinate system, the so-called pre/post plane [Gru02]. This plane

visualizes interesting hierarchical relationships between XML nodes.

Dietz was the first to discover that preorder and postorder can be utilized to determine

ancestor and descendant relationships in trees [Die82]: “A vertex x is an ancestor of y

iff x occurs before y in the preorder traversal of T and after y in the postorder traver-

sal”. This observation was applied to XML and formalized for all XPath axes in Grust’s

8

2.3. XML Encodings

<A>

<C>

<D/><E/>

</C>

<F/>

A

B FC

D E

pre:1 post:6

2 1 3 4 6 5

4 2 5 3 B

C

D
E

F

pre

post

A

1

2

3

4

5

6

1 2 3 4 5 6

Figure 2.2: XML document, tree with pre/post values, pre/post plane

XPath Accelerator [Gru02]. Each XML node partitions the plane into four regions, which

correspond to four of the XPath axes (see 3.1.1) and have the following properties:

• the ancestors n′ of a node n are found in the upper, left region:

pre(n′) < pre(n) ∧ post(n′) > post(n)

• the descendants n′ of a node n are in the lower, right region:

pre(n′) > pre(n) ∧ post(n′) < post(n)

• following nodes (excluding descendants) are in the upper, right region:

pre(n′) > pre(n) ∧ post(n′) > post(n)

• preceding nodes (excluding ancestors) are in the lower, left region:

pre(n′) < pre(n) ∧ post(n′) < post(n)

In Figure 2.2, node C was chosen as n. It has node A as ancestor, D and E as descendants,

B as preceding, and F as following node.

Both in set-based and in sequential processing, all operations need constant time if single

source nodes n and single target nodes n′ are considered. If we want to find all target

nodes for a single source node, we need to check the pre and post values of all nodes of

a tree, an operation which results in linear costs. B-Trees and R-Trees can be applied to

get better performance [Gru02].

In sequential processing, all nodes can be sorted by their pre values. As pre values

are unique, they can be used as node identifiers (id property). Care has to be taken

if databases are updated, as pre values may change with node deletions or insertions.

In the worst case, the whole document will be renumbered. If unique identifiers are

needed in a database scenario (e.g., if the same nodes need to be addressed before and

after updates), additional, persistent ids can be assigned, which will not be affected by

database modifications. – The Staircase Join algorithms offer an elegant and efficient

9

2.3. XML Encodings

approach to speed up axis evaluation [GvKT03]. It will be described in more detail in

Section 3.4.2.

2.3.3 Level Depth

Not all relationships between XML nodes can be determined exclusively with pre and

post. The level is another property that represents the depth of a node within a tree, i.e.,

the length of the path from the root to the given node. It can be used to evaluate four

other XPath axes:

• the parent n′ of a node n is an ancestor, the level of which is smaller by one:

pre(n′) < pre(n) ∧ post(n′) > post(n) ∧ level(n′) = level(n)− 1

• the children n′ of a node n are descendants with a level bigger by one:

pre(n′) > pre(n) ∧ post(n′) < post(n) ∧ level(n′) = level(n) + 1

• the following siblings n′ of a node n are following nodes that have the same parent

node p and, hence, are on the same level:

pre(n′) > pre(n) ∧ post(n′) > post(n) ∧ post(n′) < post(p) ∧ level(n′) = level(n)

• correspondingly, all preceding nodes with the same parent are the preceding sib-
lings n′ of a node n:

pre(n′) < pre(n) ∧ post(n′) < post(n) ∧ pre(n′) > pre(p) ∧ level(n′) = level(n)

Similar to pre and post, the operations can be performed in constant time for single

source and target nodes, and linear time is needed for a set-based evaluation of several

target nodes.

While the self axis in XPath is trivial, the two axes descendant-or-self and ancestor-or-self
are combinations of the existing axes. The evaluation of the remaining attribute and

namespace axes are not considered in this context, as it depends on the specific design

of an implementation and does not pose any particular challenges that differ from the

existing ones1.

2.3.4 Number of Descendants

Li and Moon noticed early that the preorder and postorder encoding is expensive when

trees are to be updated [LM01]. They proposed an alternative encoding, namely the

1note that the namespace axis has been marked deprecated with XPath 2.0 [CD07]

10

2.3. XML Encodings

combination of an extended preorder and the range of descendants. In the extended pre-

order, gaps are left for new nodes, and the size property encapsulates the number of

descendant nodes. While the proposed encoding leads to new updating issues, which

arise as soon as all gaps are filled (costs on updates will be further detailed in Section

2.4.2.5), the size property brings in helpful properties, which are only partially covered

in the publication itself:

• n′ is a descendant of n if

pre(n) < pre(n′) ≤ pre(n) + size(n)

• n′ is the following sibling of n if

pre(n′) = pre(n) + size(n) + 1 ∧ level(n′) = level(n)

• correspondingly, n′ is the preceding sibling of n if

pre(n′) = pre(n)− size(n′)− 1 ∧ level(n′) = level(n)

A direct relationship exists towards pre, post and level. The size property can be calcu-

lated as follows [GT04]:

size(n) = post(n)− pre(n) + level(n)

The size property is particularly beneficial if tuples are sequentially stored and evalu-

ated. As an example, all children of a node can be traversed by a simple loop:

Algorithm 1 ProcessChildren(node: Node)

1 for c := pre(node) + 1 to pre(node) + size(node) step size(c) do
2 process child with c ≡ pre(child)
3 end for

2.3.5 Parent Reference

The parent of a node can be retrieved via pre, post and level. This operation is expen-

sive, however, as it results in linear costs, particularly if nodes are stored in a set-based

manner and if no additional index structures are created. Obviously, costs for the re-

verse parent and ancestor axes can be reduced to constant time if the parent reference is

directly stored.

As proposed in [GHK+06, Grü06], the pre value of the parent node can be used as

parent reference. Four of the XPath axes can now be evaluated as follows:

• n′ is a child of n if parent(n′) = pre(n)

11

2.3. XML Encodings

• n′ is a parent of n if pre(n′) = parent(n)

• n′ is a following-sibling of n if pre(n′) > pre(n) ∧ parent(n′) = parent(n)

• n′ is a preceding-sibling of n if pre(n′) < pre(n) ∧ parent(n′) = parent(n)

In set-based processing, post or size values are needed to evaluate the descendant, an-
cestor, following, and preceding axes. In sequential processing, however, the combination

of pre and parent constitutes a minimal encoding to traverse all existing XPath axes and

reconstruct the original document. Next, the Staircase Join algorithms can be rewritten

to utilize the parent property, as will be shown in 3.4.2.

As a slight, yet powerful variation, the absolute parent reference can be replaced with

the relative distance to the parent node. In [GGHS09b], it has been shown that this dist

property is update-invariant: subtrees preserve their original distance values if they are

moved to or inserted in new documents. In contrast, absolute parent references to pre

values need to be completely renumbered.

2.3.6 Node Properties

Some other properties are necessary to map XML documents to a database and restore

the original representation. Location steps consist of XPath axes, which are further

refined by a kind test. The kind property represents the type of an XML node and

can be document-node, element, attribute, text, comment, or processing-instruction. Each

node kind has specific properties that have to be additionally referenced or stored in a

database [FMM+07]:

• Each XML document has a non-visible document node on top. A document has

a unique document uri property, which serves as a reference to the original docu-

ment location. Next, document nodes may have an arbitrary number of children

(elements, processing instructions, and comments), but only one root element.

• Elements contain all contents between an element’s start and end tag. Tags are

represented by angle brackets (e.g. <name>...</name>). An element has a name,

a unique parent, and an arbitrary number of children (elements, processing in-

structions, comments, and texts) and attributes. While children have a fixed order

and may contain duplicates, attributes may be serialized in a different order, but

their names need to be unique. Next, namespaces may be defined for an element

node and its descendants.

12

2.3. XML Encodings

• An attribute is owned by an element, i.e., its parent is always an element. At-

tributes have a name and a value and no children. They are serialized within

element start tags: <node name="value"/>

• Texts are usually enclosed by start and end tags. They have a content property,

which contains the actual textual data: <...>content</...>.

• Processing instructions can occur all around a document. They are used to keep

information for other processors and languages unchanged in an XML document,

and they have a parent, target, and content property: <?target text?>

• Similar to processing instructions, comments may be placed anywhere in a docu-

ment. They consist of a parent and content property: <!--text-->

Table 2.1 summarizes the most important properties for all node kinds:

node kind parent children attr target content value uri name ns

document + X
element X + + X +
attribute X X X
text X X
proc.-instr. X X X
comment X X

Table 2.1: Summary of node properties (X: fixed size, +: variable size)

It turns out that the respective properties of all node kinds exhibit a great variety.

Whereas all node kinds – except document nodes – have a parent reference, other prop-

erties are only used by a few kinds. Consequently, a näıve tabular storage would result in

many empty fields, or NULL values. Next, textual fields have variable length. Even more,

some properties contain complex data types. The number of children, attributes, and

namespaces per element node is variable. The names of elements and attributes are de-

fined as QName instances, which consist of a prefix , a local name, and a namespace URI

[FMM+07]. Similarly, namespaces have their own prefix , URI and parent reference.

2.3.7 Namespaces

Namespaces allow users to uniquely name and address elements and attributes in XML

documents of different sources. Whereas the principal benefit of having namespaces is

undisputed, there has been some discontent with the actual solution, as both users and

13

2.4. Pre/Dist/Size Mapping

developers are frequently confused by its intricate details and complexity2. In a nutshell,

namespaces consist of an optional prefix and a URI. The URI serves as unique node iden-

tifier across multiple nodes and documents, whereas the prefix can be used to bind a URI

to certain nodes. As a consequence, two documents can have the same prefix and still

reference different URIs. New namespaces can be defined for each element, and they

are valid for all descendant elements unless they are overwritten by another namespace.

Prefixed names of elements or attributes are bound to the correspondent local name-

space. Elements without prefix are bound to the global namespace URI, and attributes

without prefix do not belong to any namespace. If the URI is empty, namespaces are

undeclared and reset to their default. The flexible nature of namespaces demands addi-

tional efforts on a database storage. Some details on storing namespaces can be found

in 2.4.1.1.

2.4 Pre/Dist/Size Mapping

In this section, as a result of the discussion on different mappings, the combination of

pre, dist, and size will be presented in more detail, as it both represents a compact

storage pattern and efficiently supports all XPath axes. Some normalization steps will

now be proposed to minimize the memory consumption and, as a corollary, access time.

The title of this thesis might raise the question what “large XML instances” actually are

[WG09]. In Computer Science, address spaces are always limited: no data structure can

have infinite size. Regarding Moore’s Law, the notion of size is closely intertwined with

technical progress; at the time of writing, XML documents with a few megabytes were

still regarded as large by many publications.

In the scope of this work, we propose a data structure that allows mapping up to 500

gigabytes of XML data to a single database instance. In practice, the actual size of an

instance will usually be smaller, as additional document properties may restrict the max-

imum size. As will be shown in the following, the chosen limits represent a compromise

between execution speed and the size of real-life documents. The address space of the

presented data structure can be easily extended to meet future demands.

2see www.stylusstudio.com/xmldev/201004/post40000.html, or
www.jclark.com/xml/xmlns.htm for examples

14

2.4. Pre/Dist/Size Mapping

2.4.1 Address Ranges

2.4.1.1 Analysis

The pre property has been presented as node identifier. A pre value is sequentially

assigned to each node in the document. As a result, all pre values will be dense and

sorted. The number of assigned pre values (which will be referred to as document size
from now on) is dependent on the document structure: the larger text nodes are, the less

pre values are needed. As a consequence, an address limit for pre values will be reached

earlier if a document has short texts. If nodes are sequentially stored in a database, the

pre value does not have to be stored at all, as it will be implicitly given by the node

offset. If updates are performed, the virtual pre value will not cause any extra costs.

The dist property represents the relative distance to the pre value of the parent node.

While its value will be small for many XML nodes, it can get as large as the current pre

value if a node references the root of a document. In practice, the dist value gets large

for all node kinds, except for attribute nodes, as elements have a relatively small number

of attributes. As a consequence, a smaller address range can be reserved to store the dist

values for attributes. For document nodes, the dist property can be discarded.

The size property reflects the number of descendants. For the root node, it will equal

the document size. Nodes with a small level depth (i.e., which are close to the root

node) have a larger size value than nodes that are deeply nested. The range of the size

value varies, dependent on the node kind: texts, comments, processing instructions and

attributes will never have children. Accordingly, their size value is always 0 and does

not have to be physically stored. If only one document is stored in a database, the size

value of a document node equals the document size and can be discarded as well.

If attributes are inlined in the main database structure (see 2.4.2.1 for details), an asize

property can be added to map the number of attributes. As elements are the only kinds

that have attributes, the property can be omitted for all other kinds. As a counterpart to

the dist value of attributes, asize will always be small, compared to the standard size

value.

The id property serves as unique node identifier. While its value equals the pre value if

the document is initially traversed, it will differ as soon as nodes are deleted or inserted

in the database. Its maximum value corresponds to the number of document nodes, and

increases with each node insertion. Consequently, a renumbering of the id values may

become necessary when the limit of the address space is reached. As will be discussed in

15

2.4. Pre/Dist/Size Mapping

2.6, the id is only required if both additional, content-based index structures are created

and updates need to be performed. In other words, it can be omitted if all database

operations will be read-only, or if updates are performed, but no content-based index

structures are needed to speed up queries.

The remaining node properties are independent from a specific XML encoding: Most

textual XML content is addressed by the text property, which exists for text, comment,

and processing instruction nodes. Attributes have a similar value property, which, in this

context, will be treated as text. To further unify the representation, the target values

of processing instructions will be merged with the text values, and the document uri of

document nodes will as well be treated as text. A single 0 byte is used as delimiter to

separate all strings from each other.

As text lengths can be highly variable, it seems appropriate to only store a pointer in the

main database structure. Several solutions exist for such a reference:

1. All strings can be organized by an additional index structure. As the number of

(both total and distinct) texts is always smaller than the total document size, the

index reference will never exceed the maximum pre value, respectively its address

range.

2. The indexing of complete text node imposes some overhead to the database con-

struction process – particularly if documents are too large to fit in main memory.

A straightforward alternative is to sequentially store all texts to disk. A simple

directory maps the database references to text offsets.

3. While the second solution offers a clean abstraction between document structure

and textual content, the directory structure occupies a considerable amount of

additional space. Memory can be saved if the text offset is directly referenced from

the database. The address range for textual references will have to be extended as,

in most cases, the total text length will be greater than the number of pre values.

For disk-based storage, Solution 3 will be pursued in the following, due to its simplicity

and compactness, although it is worth mentioning that the other solutions could speed

up querying and be more flexible regarding updates. For instance, Solution 1 seems

more appropriate for a main memory database representation, as lookup times are very

fast in primary storage (see 2.5.3 for details).

Both elements and attributes have a name property. As name strings have variable sizes

as well, all names are indexed, and a fixed-size numeric reference is used as database

entry. As the number of distinct names is much smaller than the actual number of

16

2.4. Pre/Dist/Size Mapping

elements and attributes, a small address space suffices to store the name reference. Each

element and attribute node has a unique namespace, the URI of which is also stored in

an index. As documents and collections have a limited number of namespaces, all index

references can be usually mapped to a small address space3.

Namespaces, which are specified by element start tags, also result in a tree. Likewise,

common namespace structures are comparatively small. As they are frequently accessed

by XPath and XQuery requests, they are kept in main memory as a conventional tree

structure. For each element node, an additional ns flag is added to the storage to indicate

if an element introduces new namespaces.

node kind dist size asize id text name uri ns

document c + c + +
element + + – + – – –
attribute – c c + + – –
text + c c + +
proc.-instr. + c c + +
comment + c c + +

Table 2.2: Summary of normalized node properties.
+/–: large/small address space, c: constant value

A normalized distribution of all node properties is shown in Table 2.2, along with a

first and approximate estimation of the required address space. Compared to Table 2.1,

the number of unused cells has been reduced, and all variable-sized entries have been

externalized and replaced by numeric references. Cells with constant values need not be

stored in the table, but are indicated as well.

2.4.1.2 XML Instances

To refine the optimal address range for all node properties, it is mandatory to take a look

at real-world XML documents. In our context, the following document characteristics are

relevant:

• the number of XML nodes (#nodes) is needed to determine the address space for

the pre, dist, and size property.

• the number of attributes (#atr) reflects the maximum number of attribute nodes

3No official rules have been specified on how XML documents should be built or designed. Outliers,
however, are generally regarded as malformed or – as Michael Kay puts it – “pathological” [Kay08]

17

2.4. Pre/Dist/Size Mapping

of a single element node. It defines the address space for the asize property, and

the dist property for attributes.

• the number of distinct element names (#eln) and attribute names (#atn), includ-

ing namespace prefixes, serves as upper limit for the numeric name reference.

• the number of distinct namespace URIs (#uri) defines an upper limit for the nu-

meric uri reference.

• the total length of text nodes (ltxt) and attribute values (latr) indicates the ad-

dress range for the text property. For simplification, processing instructions and

comments have been conflated with text nodes.

In Section 4.3, a great variety of XML instances is analyzed in detail. Table 2.3 summa-

rizes the statistical results for the instances that yield maximum values for the focused

node properties. Note that the table is meant to sound out the limits of the discussed

encoding. In practice, most instances handled by our database system are much smaller:

INSTANCES file size #nodes #atr #eln #atn #uri ltxt latr
RUWIKIHIST 421 GiB 324,848,508 3 21 6 2 411 GiB 186 MiB
IPROCLASS 36 GiB 1,631,218,984 3 245 4 2 14 GiB 102 MiB
INEX2009 31 GiB 1,336,110,639 15 28,034 451 1 9.3 GiB 6.0 GiB
INTERPRO 14 GiB 860,304.235 5 7 15 0 19 B 6.2 GiB
EURLEX 4.7 GiB 167,328,039 23 186 46 1 2.6 GiB 236 MiB
WIKICORPUS 4.4 GiB 157,948,561 12 1,257 2,687 1 1.5 GiB 449 MiB
DDI 76 MiB 2,070,157 7 104 16 21 6 MiB 1 MiB

Table 2.3: Value ranges for XML documents and collections.
See Table 4.5 for a complete survey

As demonstrated by the RUWIKIHIST and IPROCLASS databases, a larger file size does

not necessarily result in a larger number of database nodes: the large size of individual

text nodes in the Wikipedia corpus leads to a relatively small node structure. Other do-

cument characteristics, such as long element and attribute names and structuring white-

spaces, may as well contribute to larger file sizes without affecting the node number. The

file size/nodes ratio of all tested 59 databases amounts to the average of 90 Bytes/node

and a standard deviation of 229. This ratio can be used as a guideline to estimate how

many nodes a database will have for an average XML document: the average maximum

input document size amounts to 181 GiB.

Next, most documents have a small number of attributes per element (#atr). In our test

results, the EURLEX document – a heterogeneous dataset that has been assembled from

many different sources – has a maximum of 23 attributes. As a result, a small address

18

2.4. Pre/Dist/Size Mapping

space suffices for the asize property, and for the dist property of attribute nodes. The

number of element and attribute names (#eln and #atn) is small for single documents,

but may increase if multiple documents are stored in a single database. This can be

observed for the INEX2009 collection, embracing around 2,7 million documents. Name-

space URIs have similar characteristics: their distinct number, however, is smaller. Most

documents do not specify more than two namespaces, or none at all. In our test doc-

uments, the maximum number of namespaces was encountered in the DDI document

collection. Other examples for XML datasets with up to 20 namespaces are OpenDocu-

ment [Wei09] and Open Office XML [ECM06] documents.

2.4.2 Table Mapping

In Section 2.3, a distinction was made between set-based and sequential processing. From

now on, we will focus on a sequential and native storage variant with the following key

properties:

1. The structure of XML documents is mapped to a flat table representation.

2. An XML node is represented as a fixed-size tuple (record).

3. The tuple order reflects the original node order.

4. The offset (row number) serves as pre value.

After an analysis of the concrete bit ranges that have to be supplied, a node will be rep-

resented in a fixed number of bits, which can later be directly mapped to main memory

and disk. Some optimizations will be detailed that further reduce the size of the eventual

data structure and speed up querying.

2.4.2.1 Attribute Inlining

By definition, XML attributes have elements as parent nodes. Yet, attributes are not

treated as ordinary child nodes, as they are owned by an element and have no fixed

order. Next, the attribute names of a single element must not contain duplicates. As a

consequence, attributes are stored in a different way than child nodes by many imple-

mentations, such as e.g. Natix [FHK+02] or MONETDB/XQUERY [BMR05]. An alterna-

tive approach, which has been pursued in this work, consists in treating attributes the

same way as child nodes and inline them in the main table. A big advantage of inlining

is that no additional data structure needs to be organized in order to store, query and

update attributes. An additional benefit is that queries on attributes will be executed

19

2.4. Pre/Dist/Size Mapping

faster, as the memory and disk access patterns are simplified, leading to less random re-

quests. A drawback may be that the size property cannot be utilized anymore to request

the number of XPath descendants of a node, as it now comprises all attributes in the

subtree. Instead, the asize property returns the exact number of attributes per node.

2.4.2.2 Bit Ranges

Some maximum ranges are now defined to map documents to memory areas. In Ta-

ble 2.4, the value ranges from Table 2.3 are broken down to bit ranges. The #nodes col-

umn indicates that the pre, dist, size and id values of the IPROCLASS and the INEX2009

database take up to 31 bits, thus occupying the full range of a signed 32 bit integer. This

means that integer pointers can be used to reference table entries. Depending on the

programming language, the address range could be doubled by using unsigned integers.

Next, by switching to 64 bit, the address range could be extended to a maximum of 16

exabytes. In the context of this work, we decided not to further extend the address range

as, on the one hand, array handling is still optimized for 32 bit in some programming

environments4 and, on the other hand, most real-life database instances did not come

close to our limits.

INSTANCES file size #nodes #atr #eln #atn #uri ltxt latr
RUWIKIHIST 421 GiB 29 2 5 3 1 39 28
IPROCLASS 36 GiB 31 2 8 2 1 34 27
INEX2009 31 GiB 31 4 15 9 1 34 33
INTERPRO 14 GiB 30 3 3 4 0 5 33
EURLEX 4.7 GiB 28 5 8 6 1 32 28
WIKICORPUS 4.4 GiB 28 4 11 12 1 31 29
DDI 76 MiB 21 3 7 4 5 23 21

Table 2.4: Bits needed to allocate value ranges

The maximum length for texts and attribute values, as shown in the #ltxt and #latr

column, defines the limit for the text property, and takes 39 bits. Element and at-

tributes names are referenced by the name property and are limited to 15 and 12 bits,

as indicated by #eln and #atn, respectively. The asize and the uri properties occupy a

maximum of 5 bits (see #atr and #uri).

4See e.g. http://bugs.sun.com/view bug.do?bug id=4963452 for details on current limitations of
pointer handling in Java. In short, array pointers are limited to 31 bit (signed integers) in Java. This
limit would enforce additional pointer indirections if all table data is kept in main memory, and slow
down processing. It does not lead to restrictions, however, if the table is stored on disk.

20

2.4. Pre/Dist/Size Mapping

2.4.2.3 Compactification

Table 2.5 is an updated version of Table 2.2. It contains concrete bit range limits for all

node properties. Two columns have been added: the kind property adds 3 additional

bits, which are needed to reference the six different node kinds. The #bits column adds

up the bit ranges. It summarizes how many bits are needed to map all properties of

a specific node kind to memory. The ns property, which is only defined for elements,

indicates if namespaces are defined for the respective element. As such, it needs a single

bit.

node kind kind dist size asize id text name uri ns #bits
document 3 0 31 0 31 40 105
element 3 31 31 5 31 16 8 1 126
attribute 3 5 0 0 31 40 16 95
text 3 31 0 0 31 40 105
proc.-instr. 3 31 0 0 31 40 105
comment 3 31 0 0 31 40 105

Table 2.5: Concrete bit ranges for all node kinds

As can be derived from the resulting compilation, the element node demands most

memory. While the optional asize property could be discarded, all other properties

are mandatory for processing. In spite of their name/value combination, attribute nodes

take up the least number of bits, as they have no children and a small distance to their

parent node. All other node kinds occupy the same bit range in our representation, as

their textual properties have been merged in the text property.

The #bits column suggests that a single element node can be represented within 16

bytes. As 16 is a power of 2, it represents a convenient size for storing entries in fixed-

size memory, such as blocks on disk. To map other node kinds to the same bit range, an

individual bit distribution was defined for each node kind. The three kind bits serve as

indicator where the value of a specific property is placed. An exemplary bit distribution,

which has been applied in Version 6 of our database system, is shown in Figure 2.3.

2.4.2.4 Integer Inlining

Values of text and attribute nodes may belong to specific data types that can be specified

by a schema language, such as DTD or XML Schema. Whereas some database systems

opt to store texts dependent on their type (such as PTDOM [WK06]), most systems

choose a schema-oblivious approach, as the complexity of schema languages and the

21

2.4. Pre/Dist/Size Mapping

element
document

proc.-instr.
text

comment

attribute

0 1286432 96

id

id

id
id

id
id

size

size

textk

k

k
k

k
k

a

d

name

name

uri dist

text

dist

text

text

text

dist

dist

Figure 2.3: Bitwise distribution of node properties in BASEX 6.0.
Note: the ns bit is located to the right of the uri property

flexible structure of documents complicate a type-aware implementation. It is one key

feature of XML that no schema needs to be defined at all – and, at the same time, a

drawback, as relational database systems can benefit from the fact that data types are

known in advance. In our architecture, by default, texts are stored as UTF8 strings,

suffixed by a 0 byte and linked by a reference from the main table, which means that,

for instance, a single integer value may take up to 16 instead of 4 bytes in the storage5.

A different storage strategy can be applied for data types that can be dynamically recog-

nized by analyzing the incoming data. Integer values are the easiest ones to detect: if a

string comprises up to 10 digits, it can be inlined, i.e., treated as a number and stored

in the main table instead of the textual reference. In our representation, up to 11 bytes

can be saved for each integer. The uppermost bit of the reference can be used as a flag

to state if the text value is to be treated as pointer or actual value. This way, no extra

lookup is necessary to determine the type. If all contents of a document are numeric,

no additional text structures will be created at all. A positive side effect of inlining is

that even strings that were not supposed to be handled as integers can be stored more

economically.

The inlining technique could be extended to various other data types. In the scope of this

work, it was limited to integers in order to minimize the parsing effort while building

databases and requesting textual data. Next, to comply with the first encoding require-

ment that has been specified in 2.3, we need to guarantee that the original document

is exactly reconstructed. This means that no normalization steps may be performed on

the input data, such as stripping whitespaces, or removing upper and lower case. As a

consequence, strings such as "true", " true ", and "TRUE" cannot be simplified and

55 bytes are needed for the reference, up to 10 bytes for the string representation of an integer (232 =
4294967296), and an additional byte for the null byte suffix.

22

2.4. Pre/Dist/Size Mapping

treated as the same boolean value.

2.4.2.5 Updates

A wide range of numbering schemes have been discussed to support updates in XML

documents [CKM02, SCCS09]. ORDPATH [OOP+04] is the most popular prefix labeling
scheme that has been derived from the Dewey Order [TVB+02]. The document order

and hierarchy is preserved by the labeling scheme, and new nodes can be added and

deleted without relabeling the existing nodes. As hierarchic labels have variable length

and can get very memory consuming for deeply nested nodes, ORDPATH labels are ad-

ditionally compressed and represented as bit strings. Although the proposed scheme has

experienced numerous tweaks and variations to save space [AS08, AS09] and to cover

navigational and locking issues [HHMW07], it can still be considered as rather bulky:

all labels have to be organized by at least one additional index structure.

As the basic pre/size/dist encoding has primarily been designed with the objective of

minimizing the storage overhead and the number of data structures, it needs to be ex-

tended as well to support efficient updates. A näıve attempt to delete a node from the

main table demonstrates that the current architecture is insufficient. Let n be the pre

value of the node to be deleted and size(db) the total number of database nodes6:

1. all tuples in the range [n + size(n), size(db)] need to be moved by −size(n)

2. size(n) needs to be subtracted from the size value of all ancestors of n

While the second operation is cheap, as only a number of height(n − 1) tuples have to

be touched, the first operation yields high physical costs, and a worst case O(size(db)) if

updates occur at the beginning of the document.

A classical solution to circumvent the problem is the introduction of logical pages. Sev-

eral tuples are mapped to blocks with fixed size, and a flat directory is added that con-

tains the first pre values (fpre) and references to all pages (page). This way, tuple shifts

can be limited to the affected blocks. All tuples are contiguously stored from the begin-

ning of the page to avoid additional lookup operations for free and used page entries.

The number of tuples of a page p is calculated by subtracting the current from the sub-

sequent fpre value: fpre(p + 1)−fpre(p).

6Note that insert operations lead to similar costs.

23

2.4. Pre/Dist/Size Mapping

0

…

2

1

0

…

512

256

pagefpre

0

…

2

1

0

…

412

156

pagefpre

0

…

1

5

0

…

356

256

pagefpre

Figure 2.4: Directory of logical pages: a) initial state for a page size of 4096 bytes,
b) deletion of 100 nodes, and c) insertion of 100 nodes

Figure 2.4 illustrates an exemplary directory, for which the size of a logical page was set

to 4096 bytes, in compliance with the size of a typical disk page. As one tuple occupies

16 bytes, a maximum of 256 tuples is stored per page. In 2.4 b), a node n has been

deleted; its 99 descendants (size(n) = 100) have all been located in the first page p.

After the deletion and the update of all size values of the ancestors of node n, size(n) is

subtracted from all subsequent entries p + 1 in the directory. Example 2.4 c) shows the

mapping after an insert operation: 100 nodes are inserted at pre = 256, resulting in the

creation of a new page (here: 5) at the end of the existing pages and the insertion of a

new entry in the directory.

Even for large databases, the directory will stay comparatively small, so that it can be

usually kept in main memory. Let P be the number of tuples per page, which is the page

size divided by the tuple size, and max(db) the maximum database size. If n values need

to be stored per dictionary entry, a total of n·max(db)
P values needs to be handled, yielding

2 · 231/(4096/16) = 16777216 integers and a memory consumption of 64 MiB in our rep-

resentation. Although the deletion and insertion of dictionary entries requires copying

large main memory areas, the operation is cheap, compared to update operations on

disk. If even larger pre ranges are to be supported, or if update performance proves to

be too inefficient for large database instances, the dictionary structure can be extended

to a conventional B-Tree and stored on disk [BM72].

MONETDB/XQUERY, which is based on the pre/size/level encoding, offers a similar

solution by adding a new pos/size/level table to the storage, which is divided into logical

pages [BMR05]. The original table serves as a view on the new table with all pages in

order. A new node property resembles the id property in our representation and serves

as unique node identifier. As attributes are stored in extra tables, an additional table

maps node to pos values. Pages may contain gaps to improve page locking behavior for

the update of ancestor nodes. – A different solution has been chosen in our context, as

the presented directory is very light-weight and does not require extra tables. Next, the

24

2.5. Database Architecture

dist property, which is absent in MONETDB/XQUERY, allows constant access to parent

nodes, which makes updates on ancestors a very cheap operation. An id/pre mapping

(the equivalent to node/pos) can be omitted as well, as attributes are inlined in the main

table. Last but not least, the directory can initially be omitted, and created on-the-fly

as soon as the first update operation is performed. Consequently, there is no need to

explicitly differentiate between read-only and updatable databases.

2.5 Database Architecture

DirectoryMeta Data

…

doc

pre kind dist size asize id text name uri ns

elem

attr

text

proc

com

Main Table

Texts

…

offset value

...

fpre page

...

Attribute Values

…

offset value

Tags

…

key value

Attribute Names

URIs

…

key value
…

key value

Namespaces

...

key value

name
size

dirty
height
time

Figure 2.5: Main structure of a database instance

Figure 2.5 summarizes the last paragraphs and shows the overall structure of a single

database instance. Virtual columns, which are not explicitly stored, are indicated only

by their header. The main table contains numeric keys to the tags, namespace URIs,

and attribute name indexes. Texts (incl. processing instructions, comments, and URIs

of document nodes) and attribute values are stored in extra files or arrays, the offsets

of which are referenced from the main table. The directory contains pointers to the first

pre value of each table page. Various information is supplied as meta data, such as the

name of the database, its size, modified time, tree height, or dirtiness after updates. A

main memory tree, which is backed by additional prefix/URI indexes, provides access to

namespaces.

2.5.1 Database Construction

The tabular representation of XML can be constructed in linear time. An event-driven

SAX parser [MB04] is applied to build a database instance. While pre and post (and most

25

2.5. Database Architecture

other) values can be sequentially stored in the table in a single run7, the size value has

to be subsequently updated as soon as the number of descendants of the correspondent

node is known.

Table

TAGS: Names
TEXTS: Contents
ATTRIBUTE_NAMES: Names
ATTRIBUTE_VALUES: Contents

AddDocument(pre: int, uri: String)
AddElement(pre: int, dist: int, asize: int, name: String)
AddAttribute(pre: int, dist: int, name: String, value: String)
AddText(pre: int, text: String)
SetSize(pre: int, size: int)

Builder

TABLE: Table
STACK: Stack
PRE: int

StartDocument(uri: String)
EndDocument()
StartElement(name: String,
 attr: Attribute[])
EndElement()
Text(text: String)

Contents

Add(text: String): long

Names

Index(name: String): int

Parser

BUILDER: Builder

parse()

Figure 2.6: Class diagram for building a database with a SAX parser

Figure 2.6 depicts the most relevant classes for building a database via SAX. A new

PARSER instance is created by the central BUILDER instance, which in turn notifies the

builder of XML events to be processed. A global PRE value serves as counter for new

nodes to be stored in the table, and a STACK is used to cache the pre values of current

ancestor nodes. Processed node values are passed on to the TABLE instance, which passes

on textual values to the CONTENTS and NAMES objects. We will now have a closer look

on the most important SAX events; for the sake of simplicity, advanced issues such as

namespaces and common implementation details for SAX parsers will be omitted, and

database creation will be restricted to a single document.

Algorithm 2 Builder.StartDocument(uri: String)

1 initialize TABLE and STACK

2 PRE := 0
3 TABLE.AddDocument(PRE, uri)
4 STACK.Push(PRE)
5 PRE := PRE + 1

Algorithm 2 is called by the parser when the document is opened: The global TABLE

and STACK instances are initialized, the PRE counter is set to 0, and the document tuple

{pre/text} is added to the table. Next, PRE is pushed to the stack and incremented by

one.

In Algorithm 3, the distance to the parent node (dist) is calculated by subtracting the pre

value of the last parent node, located on top of the stack, from the current PRE counter.

7SAX algorithms for the pre/post encoding are found in [Gru02]

26

2.5. Database Architecture

Algorithm 3 Builder.StartElement(name: String, attr: Attribute[])

1 dist := PRE − STACK.peek()
2 asize := #attr + 1
3 TABLE.AddElement(PRE, dist, asize, name)
4 STACK.Push(PRE)
5 PRE := PRE + 1
6 for a := 0 to #attr − 1 do
7 dist := a + 1
8 TABLE.AddAttribute(PRE, dist, attr[a].name, attr[a].value)
9 PRE := PRE + 1
10 end for

asize is set to the number of attributes, and 1 is added so that pre + asize will point

to the first node behind the attribute list. The resulting {pre/dist/asize/name} tuple is

added to the table and, once again, PRE is pushed to the stack and incremented. Next,

all attribute tuples {pre/dist/name/text} are added. The dist value equals the current

offset counter added by 1.

Algorithm 4 Builder.EndElement()

1 size := PRE − STACK.pop()
2 TABLE.SetSize(PRE, size)

If an element is closed, as shown in Algorithm 4, the most recent stack value (which is

the pre value of the corresponding opening element) is popped. The difference between

the PRE counter and the stack value is the size value, and is stored in the table.

Algorithm 5 for storing text nodes is even simpler: a tuple pre/text is added to the

table, and the PRE counter is incremented. The events for processing instructions and

comments are nearly identical.

Algorithm 5 Builder.Text(text: String)

1 TABLE.AddText(PRE, text)
2 PRE := PRE + 1

Finally, in Algorithm 6, the document node is closed, and the size value of the root node

is updated. – Note that subsequent tables updates might slow down a sequential disk

storage. As a straightforward optimization, the size values can be cached and written to

the database in a second run.

Before a tuple can be stored, strings need to be dissolved into references and stored in

27

2.5. Database Architecture

Algorithm 6 Builder.EndDocument()

1 size := PRE − STACK.pop()
2 TABLE.SetSize(PRE, size)

extra data structures. Algorithm 7 demonstrates this process for attributes: the name of

the attribute is indexed, and its key is stored in the main table.

Algorithm 7 Table.AddAttribute(pre: int, dist: int, name: String, value: String)

1 attn := ATTRIBUTE NAMES.Index(name)
2 attv := ATTRIBUTE VALUES.Add(value)
3 add attribute tuple {pre, dist, attn, attv} to storage

As detailed in Section 2.4.2.4 and shown in Algorithm 8, the file or array offset is used

as reference for text values. If the value is numeric, it is converted to its numeric repre-

sentation and flagged with a number bit (here: NUMBERMASK), which is the highest bit

of the selected bit range.

Algorithm 8 Contents.Add(text: String): long

1 v := convert text to integer
2 if v is valid then
3 v := v | NUMBERMASK

4 else
5 add text to storage
6 v := offset to stored text
7 end if
8 return v

2.5.2 Generic Parsing

The presented database construction process is limited to single XML documents. In

order to process multiple files and directories, the Builder and Table algorithms can be

extended to add the dist values of document nodes to the storage, and to perform the

initialization of the global variables before the first call of Algorithm 2.

To go further, we can observe that XML is just one possible textual representation of tree

hierarchies: a multitude of other representations have been proposed, such as JSON

[Cro06] or OGDL [Vee09]. Even more, arbitrary tree structures can be converted to

XML. The presented SAX interface allows all kinds of sources to be used as input for

the database builder. While, by default, one or more XML documents are sent to and

28

2.5. Database Architecture

processed in the existing architecture, the existing parser can be defined as abstract

and extended by a range of specific implementations. Some examples for parsers (or

importers), which have been realized in our project, are listed in the following:

• Most filesystems exhibit a hierarchic structure, which can be mapped to XML in

a straightforward manner. A filesystem parser recursively traverses all directories

and triggers events to add directory and file elements to the database. The idea

has been pursued in the DeepFS project [HGS09].

• MAB2 is a flat, textual exchange format for German library meta data [Bib99],

which can be converted to XML. The resulting tree structure facilitates an easier

access to hierarchic relations for multi-part volumes and series. An importer for

MAB2 data has been added for the MEDIOVIS project [GGJ+05].

• HTML is a markup language that has been inspired by SGML. As the majority of

real-life HTML documents are malformed, they usually cannot be read by XML

parsers. Instead, converters like TagSoup [Cow08] can be applied on the input as

a pre-processing step to create a well-formed XML document, which can then be

processed by the actual XML parser.

• the CSV format can be used to store tables as plain text. One line of text contains

a single record, and all fields are separated by commas. An importer for CSV

files consists of a few lines of code, as tables can be easily represented as a tree

structure.

2.5.3 Main Memory vs Persistent Storage

External storage is known to be slower than main memory by some orders of magnitude.

In practice, the distinction is often not perceived by end users anymore, as much of

the data, which has been read at least once, is automatically remembered in disk and

main memory caches, the size of which has steadily increased over the last years. The

difference shrinks even more with the popularization of solid state disks, which have

much better random access times. At the same time, the available main memory in

today’s personal computers has reached a size which is, for many use cases, large enough

to hold complete database instances.

An obvious advantage of mapping databases to main memory is that the execution time

for queries can be further minimized. While the buffer management of the operating sys-

tem generically speeds up access to frequently requested data, a main memory database

29

2.5. Database Architecture

system offers even better performance as the access patterns are known in advance. If

XML documents are to be processed on-the-fly, they need not be stored on disk at all.

However, the time needed for mapping existing databases to main memory may invali-

date the performance lead for single queries. Next, main memory allows no persistent

storage; updated data gets lost if it is not eventually backed up on disk.

The proposed database structure was designed to be both mappable to primary and

secondary storage. While completely identical storage patterns could have been chosen,

the existing database builder was split up in order to exploit beneficial properties of the

respective target:

• in the disk-based variant, all tuples are distributed into blocks. To improve plat-

form independence, storage and partitioning of the resulting blocks is completely

left to the disk manager. Additionally, all texts and attribute values are sequentially

written to disk, and their offsets are referenced from the main table.

• in main memory, tuples are organized in flat byte arrays, which are continuously

resized to accommodate new tuples. Texts and attribute values are indexed, and

the resulting keys are referenced in the main table. To guarantee that the value

indexes contain all contents of a database, numeric texts will not be inlined in the

table, but instead be indexed as well (see also 2.4.1.1).

As a consequence, all database operations, including those which perform updates and

access index structures, can be performed on both the main memory and the external

storage variant. Figure 2.7 shows the extended architecture for constructing databases,

including the generic parser interface; performance results on the two representations

are given in Section 4.2.2.2.

XML

DeepFS

HTML MAB2

CSV

Parser

BUILDER: Builder
Names

Table

TAGS: Names
ATTRIBUTE_NAMES: Names

DiskTable

TEXTS: Contents
ATTRIBUTE_VALUES: Contents

MemTable

TEXTS: ContentIndex
ATTRIBUTE_VALUES: ContentIndex

Contents

ContentIndex

Builder

TABLE: Table
STACK: Stack
PRE: int

DiskBuilder

MemBuilder

Figure 2.7: Class diagram: extended architecture for database construction

30

2.6. Index Structures

2.6 Index Structures

In short, databases indexes exist to speed up query evaluation. In relational databases,

usual index structures are value indexes, and column-based, i.e., applied on one or more

attributes, of a table. In XML, due to the complexity of tree structures, a wide range of

index structures exists, for which different classifications can be found in the literature

[MWA+98, CMV05]. In the scope of this work, we will focus on the following three

index types:

1. Name indexes organize frequently occurring strings, such as tag or attribute names,

in small main memory structures.

2. Path, or structural indexes facilitate the access to all unique document paths of

a document. Path indexes have initially been proposed for object-oriented and

nested relational databases [BK89].

3. Value or content indexes are comparable to index structures of relational databases.

Texts and attribute values of documents are indexed for faster access. Full-text

indexes are a specialized type of value indexes.

2.6.1 Names

Repeating tag and attribute names are the main reason why XML has become notorious

for its verbosity. In XML databases, the most straightforward approach to reduce space

is to introduce a name index, which replaces variable-size names by numeric ids (see

[JAKC+02] or [Mei02] for examples). This can be done by storing all names in a main

memory based associative array, such as a hash or binary search tree. In the scope of

this work, separate indexes are created for elements and attributes. As shown in Section

2.4.2.2, 16 bits, or short values, suffice to reference single names in a document.

Name indexes could be enhanced with the pre/id values of all corresponding elements

or attributes. This approach would allow a direct lookup of all descendant nodes that

use a specific tag or attribute name, as e.g. needed for the simple XPath query //name.

Due to the substantial space overhead of such an index and additional maintenance

operations necessary for each update, we discarded the storage of pre values in an early

stage. Instead, statistical meta information on nodes were added to the name indexes,

which can later be utilized by the query compiler to choose between different execution

plans:

31

2.6. Index Structures

• A counter property states how often a name occurs in the database.

• A leaf flag indicates if an element is a leaf node, i.e., if it has no more elements as

descendants.

• A length property stores the maximum length of the associated child text or at-

tribute value.

• A kind property reflects if the associated values are numbers, string categories, or

strings.

• min and max values contain the lower and upper limits of numeric values.

Algorithm 9 Name.UpdateStatistics(String value)

Require:
MAXCATS := number of maximum allowed categories
initialize CATEGORIES, KIND := INTEGER, MIN :=∞, MAX := −∞ before first call

1 if KIND 6= STRING and #CATEGORIES < MAXCATS then
2 add value to CATEGORIES

3 end if
4 if KIND = INTEGER then
5 v := convert value to integer
6 if v is valid then
7 if MIN > v then MIN := v end if
8 if MAX < v then MAX := v end if
9 else
10 KIND := CATEGORY

11 end if
12 end if
13 if KIND = CATEGORY then
14 if #CATEGORIES = MAXCATS then
15 KIND := STRING

16 end if
17 end if

All information can be iteratively collected while a database is created. Algorithm 9

demonstrates how string categories and the min, max, and kind values are generated for

a single element or attribute. The function is initialized with the strictest precondition,

which assumes that all values are integers in the empty range (∞,−∞). As soon as the

first value arrives, it will be added to CATEGORIES, an array that stores a limited number

of distinct strings. Next, as the current kind is INTEGER, the value is converted to an

integer. If the conversion is successful, min and max will be set to this new value. If

more integers are found in subsequent calls, min and max will be updated each time.

32

2.6. Index Structures

If an incoming string is no integer, CATEGORY will be set as new kind. If more distinct

strings have been collected than are allowed by the MAXCATS constant, the kind is set to

the most general STRING kind. In the last case, no more checks will be performed on the

remaining strings.

If updates are performed, the statistics lose their accuracy, but continue to serve as

guideline for the query compiler. As an example, kind =INTEGER, min = 1, and max = 2

for the c attribute in the following document:

<A><B c="1"/><B c="2"/><B c="2"/>

The query compiler can speed up query evaluation by replacing a subquery @c<1 with the

static boolean value false, as the comparison will never be true for the given document.

If the node <B c="1"/> is deleted in a next step, the new actual minimum for attribute c

will be 2. The index statistics will not be updated, however, as the complete database –

or at least all nodes that use the name in question – would have to be scanned in order

to calculate the new lower limit. Instead, the given subquery will be rewritten the same

way as before, while the subquery @c<2 will be evaluated in full, and still yield correct

results, as no attribute will be found that fulfills the test. If new nodes are inserted, or

if existing nodes are modified in the database, the same methods as for creating a new

database can be used to update the existing meta information.

More details on exploiting the index information during query compilation can be found

in 3.3.1.5.

2.6.2 Path Summary

While the name index collects atomic information on tag and attribute names of the

same name – no matter where they occur in a document – a path summary organizes

all distinct element and attribute paths that occur in a document or database. Path

summaries are also called path indexes or structural summaries [RM01, CMS02]. They

are all derived from the DataGuide [GW97], a data structure that has first been applied

in the LORE system [MAG+97], which has been introduced in 2.2.

If schema information is predefined by a DTD or XML Schema, it can be used to build

a path summary for a given document. A predefined (static) schema can reduce the

implementation effort:

• The actual input does not need to be parsed to build the summary.

33

2.6. Index Structures

• If update queries will only be processed if their results comply with the given

schema, the path summary needs not be updated at all.

Dynamic schemas, however, which are built from the actual input, have some advantages

as well:

• Many static, real-life schemas are bulky and contain paths that are not actually

used by a document. As a consequence, dynamic schemas will be more accurate

for a specific document/database.

• As a document needs to be parsed anyway if a new database is created, the path

summary can be built in the same run and enriched with additional, input specific

meta information.

<A>
 <B a="0"/>
 <C/>
 <C/><C/>
 <C>text</C>

A

B BB

C C

C C

#@a

A

B

@a
1

#

C

C
2 1

3 2

1

Figure 2.8: XML document, tree representation, path summary incl. cardinalities

Figure 2.8 depicts a path summary for a simple XML document. As a summary is usually

very small, compared to the original document, it is represented as a main memory tree

structure. Similar to the name index, nodes of a path summary could be enriched with

references to the XML nodes that match the location paths. Again, this approach was

discarded in our architecture to minimize the overhead for storing and updating the

database. To further reduce memory consumption, the path nodes reference the keys of

the existing tag and attribute name index.

The path summary is useful in numerous applications. In the visual frontend of our

database, which will not be further detailed in this work, path completions can be sug-

gested while XQuery expressions are typed in by the user. Next, the summary is queried

by the Scatterplot, Table and Explorer view to verify how many nodes exist in the tree

hierarchy, or if certain nodes have descendants. Section 3.3.1.5 will demonstrate how

the summary is used by the query compiler.

34

2.6. Index Structures

2.6.3 Values

In the relational world, classical index structures are value (or content) indexes, which

facilitate content-based queries in sub-linear time. Most value indexes rely on standard

tree or hash structures with key and value pairs. As the use and construction of these

indexes are well-known concepts, we will focus on features that are specific to XML and

the discussed storage. Values in this context are strings from texts or attribute values.

Different variants of value indexes can be found in existing XML databases [GGHS09b]:

• Keys can be indexed on document level, an approach which is usually taken by

relational engines. Queries on many small documents may be accelerated by this

approach, whereas there is no benefit for single and large documents.

• Certain location paths can be pre-selected for being indexed. While this approach

seems promising at first glance, and might reduce the size of the index structures,

it often fails when queries are nested or getting more complex. Moreover, indexes

must be manually added, and database users need explicit knowledge on the avail-

able index structures.

• Implementation-specific XQuery functions can be added to directly access the index

structures. Again, knowledge on database internals is required, and a compiler

will not be able to benefit from the indexes, as the user alone chooses whether the

index is to be used.

To support a wider range of optimizations, we decided to index all text nodes by default,

regardless of their position in the document structure. In Section 3.3.2, the query opti-

mizer is presented. It will rewrite and invert location paths and predicates whenever an

index access is possible and (potentially) cheaper than a conventional query execution.

Due to our tabular encoding, sorted lists of pre values – which are identical to id values

as long as no updates are performed – will be used as pointers to the main table. As the

index structure, which will be discussed in the following, has been optimized for per-

formance and low memory consumption, update operations are not supported. Instead,

the following optimizations will be applied to reduce the index size to a minimum:

1. pre values will be compressed before they are stored in the index.

2. Instead of the absolute values, distances between pre values will be stored.

3. As common user queries contain short keywords – compared to the maximum

length of text nodes in a document – the index size can be reduced by ignoring all

strings that exceed a specified maximum length.

35

2.6. Index Structures

4. The variable-length keys need not be stored in the index at all; instead, they can

be looked up in the main table by following the first referenced pre value.

2.6.3.1 Compression

A fast and simple compression mechanism, inspired by the UTF-8 encoding, is applied

to all pre values in the index structure. As summarized in Table 2.6, the first two bits of

a byte are used to define the range of the next integer to be parsed. Depending on the

bit code, a single integer will occupy 1-5 bytes in its compressed representation: small

integers will take less space, whereas large integers will occupy one additional byte.

Encoding (binary) Range (hex) Description
00bbbbbb 00 - 3F 1 byte maps 26 values
01bbbbbb B 40 - 3FFF 2 bytes map 214 values
10bbbbbb B B B 4000 - 3FFFFFFF 4 bytes map 230 values
11000000 B B B B 40000000 - FFFFFFFF 5 bytes map 232 values

Table 2.6: Compression of numeric values. b represents a bit, B represents a byte

If the second optimization of 2.6.3 is applied, which suggests to replace absolute values

by distances, the total index size will further shrink, as distances are much smaller than

absolute values and thus can be better compressed.

2.6.3.2 Construction

A quick insight is given on how the value index is constructed for either texts or attribute

values: The main table is sequentially scanned. If a node with the addressed kind is

encountered, and if the length of the string to be indexed does not exceed the maximum,

predefined length, the string and current pre value are passed on to the index builder.

The values are added to a main memory, balanced binary tree. After all nodes were

scanned, the binary tree is traversed in preorder, and the index data is stored to disk in

two files, or entities:

• a values file contains all variable-size lists with compressed pre distances.

• a keys file contains a simple array with offsets to the pre lists.

As the binary tree has been processed in preorder, all stored offsets will be sorted by

the lexicographical order of their keys. This means that binary search can be applied by

index requests to find the pre values for a given string in logarithmic time. As the actual

36

2.6. Index Structures

strings (keys) are not stored in the index themselves, they are looked up by following

the offset to the current pre list and accessing the main table via the first pre value.

2.6.3.3 Main Memory Awareness

Although the presented index builder was designed to be conservative in terms of mem-

ory consumption, it will eventually hit main memory limits if the processed documents

get too large. In general, 20-30% of the size of the documents needs to be provided as

main memory to guarantee a successful index construction. Depending on the charac-

teristics of the input, either keys or values may be responsible for memory overflows.

If many identical strings are found (i.e., if few categories exist, as introduced in Section

2.6.1), most space will be consumed for the pre value lists. If the document contents are

rather heterogeneous, the keys are likely to dominate memory consumption.

To support for even larger inputs, the existing index builder can be rewritten to take the

available amount of main memory into consideration. The resulting approach is loosely

inspired by classical algorithms, such as External Sort [Knu73] or Sort-Based Inversion

[WMB99]. It supports all kinds of document types and, yet, is fast and straightforward:

As soon as the available main memory is exhausted, the current tree structure is written

to disk, and a new, empty tree is created, which stores new keys and values. After all

nodes have been processed, the temporarily written index structures are merged into

one single tree. The merge can be performed in a single run as, thanks to the sequential

construction process, all pre values in the intermediate index files are sorted. This way,

the index size will only be limited by the free disk space, no matter how much main

memory is left. If enough memory is available, there will be no need to write temporary

index instances to disk at all.

2.6.4 Full-Texts

While value indexes have been a classical feature of relational databases, full-text in-

dexes have originally been developed for Information Retrieval applications. Today, all

major relational database systems include implementation specific extensions to query

textual corpora. In XML, however, the XQuery Full Text (XQFT) language extension was

developed to offer a standardized and unified way for accessing and retrieving full-texts

[AYBB+09] (see 3.1.3 for more).

Full-text indexes are applied to speed up queries on single words of documents. Before

texts can be indexed, they need to be tokenized, i.e., split into atomic units (tokens),

37

2.6. Index Structures

which serve as keys for future index requests. The tokenization process might include

various language dependent normalization steps, all of which are also defined in XQFT:

• Case sensitivity (lower and upper case) is removed.

• Diacritics (umlauts, accents, etc.) are removed.

• Tokens are stemmed via algorithms or dictionaries.

• A thesaurus may be applied on the tokens.

• Eventually, tokens are skipped that are defined in an optional stop word list.

The resulting dictionary, which contains all tokens of a document, will usually have

much less keys than values, as the number of distinct words is limited for most text

corpora8. Values will occupy much more space, as single words are contained in several

text nodes, and even contained several times in single nodes. The token positions within

a text node will be denoted by the pos property: they are stored as well to efficiently

support advanced XQFT features such as phrase, distance or window queries.

Full-text queries can be performed on arbitrary inputs, such as attribute values or dy-

namically generated strings. In this section, we will focus on the index construction of

text nodes, as this is the most frequent use case in practice (note that the XQFT imple-

mentation, which is detailed in Section 3.1.3, supports queries on arbitrary inputs). The

following document is derived from Gath’s master thesis [Gat09]. It will serve as input

for the upcoming index structures:

<PAGE>

<TITLE>Fuzzy String Searching!</TITLE>

<TEXT>Fuzzy string search is the name that is used for a category of techniques

for string searching/finding strings that approximately match some given pattern

string (approximate or inexact matching).</TEXT>

</PAGE>

After removing case and some stop words, the tokenization process yields the following

terms (token positions pos are shown in superscript):

<PAGE>

<TITLE>fuzzy0 string1 searching2</TITLE>

<TEXT>fuzzy0 string1 search2 name5 used8 category11 techniques13

string15 searching16 finding17 strings18 approximately20 match21 pattern24

8Exceptions are input that are not based on natural language, such as genome sequences. Texts corpora of
this kind are dependent on specialized tokenizers, as linguistic normalization steps will lead to useless
tokens and dictionaries.

38

2.6. Index Structures

string25 approximate26 inexact27 matching28</TEXT>

</PAGE>

In the following, two full-text index structures will be outlined, which have been devel-

oped in the scope of this work: while the first one is centered on specialized approximate

matches, and the second one supports wildcard queries, both versions yield very fast re-

sults for exact queries. Again, the presented index structures are read-only, as the clear

focus was set on performance, memory consumption, and full scalability.

2.6.4.1 Fuzzy Index

id key (i) values (pre/pos)
0 name 5/5
1 used 5/6

2 fuzzy 3/0, 5/0
3 match 5/21

4 search 5/2
5 string 3/1, 5/1, 5/15, 5/25

6 finding 5/16
7 inexact 5/27
8 pattern 5/24
9 strings 5/18

10 category 5/11
11 matching 5/28

12 searching 3/2, 5/16

13 techniques 5/13

14 approximate 5/26

15 approximately 5/20

length |i| id

4 0
5 2
6 4
7 6
8 10
9 12
10 13
11 14
13 15

Table 2.7: Fuzzy Index instance, sorted by token length and lexicographical order

The main memory predecessor of the fuzzy index was a structure named FUZZEARCH. It

was developed in the course of the MEDIOVIS project [GGJ+05] to query approximate

user search terms in a library catalog in sub-linear time. In this index structure, all index

terms w ∈W are sorted first by their token length |w| and second by their lexicographic

order. A second table references the first id for each token length. For exact searches

on term t, it suffices to perform a binary search on all index terms that have the same

length as the input term (i.e., |t| = |w|). For approximate searches, an optimized variant

[Ukk85] of the Damerau-Levenshtein edit distance [Dam64, Lev66] is applied on the

index terms as follows: let k > 0 be the maximum number of errors allowed. All index

terms with length from this range [|t| − k; |t|+ k] may be possible hits, which means that

terms with |w| < |t| − k or |w| > |t| + k need not be considered as potential results. In

39

2.6. Index Structures

usual scenarios, a small value is chosen for k (e.g., b|t| ÷ 4c) to ignore terms that differ

too much from the original string.

Table 2.7 shows the index for the given XML sample. If the search term t="fuzz" is

specified in a query, and if one error is allowed (|t| = 4, b|t| ÷ 4c = 1), it is sufficient

to calculate the edit distance for all terms w with |w| ∈ [3; 5], which are all terms with

id ∈ {0, ..., 5}. The index term "fuzzy" will be accepted as a hit, and two pre/pos

combinations {3/0, 5/0} will be returned as results.

2.6.4.2 Trie Index

The Patricia trie [Mor68], a compressed tree structure derived from the classical trie

[Fre60], is a well-established data structure for building string dictionaries. Tries have

linear costs, regarding the length of the search term. In addition to the fuzzy index, they

also support queries with wildcards. As a drawback, however, the flexible structure of

tries leads to a noticeable memory overhead.

id key substring children (id/first character) values (pre/pos)
0 1:a, 3:c, 4:f, 7:i, 8:m, 10:n, 11:p, 12:s, 17:t, 18:u
1 approximate 2:l 5/26
2 ly 5/20
3 category 5/11
4 f 5:i,6:u
5 inding 5/16
6 uzzy 3/0, 5/0
7 inexact 5/27
8 match 9:i 5/21
9 ing 5/28
10 name 5/5
11 pattern 5/24
12 s 13:e,15:t
13 earch 14 5/2
14 ing 3/2, 5/16
15 tring 16:t 3/1, 5/1, 5/15, 5/25
16 s 5/18
17 techniques 5/13
18 used 5/6

Table 2.8: Trie Index instance, tabular representation

In the presented index structure, memory consumption is reduced by compressing pre

and pos values, as was done for the value index (see 2.6.3.1). Next, as motivated e.g.

in [AMS92], the trie structure is flattened and stored in arrays. Similar to the storage of

XML documents, trie nodes are mapped to a flat table, thus reducing pointer handling to

40

2.6. Index Structures

a minimum. A table entry contains the respective key substring, links to all child nodes

and the first letters of their substrings, and pre/pos value combinations. By caching the

first letters, the next child node can be found without traversing all other child entries.

approximate

ly

category f

inding uzzy

inexact match

ing

name pattern s

earch

ing

tring

s

techniques used

Figure 2.9: Trie representation of the XML sample document

Figure 2.9 depicts the trie mapping for the XML sample, which is represented in tabular

form in Table 2.8. To find all results for the wildcard pattern "search.*", the table

entries 0, 12, 13, and 14 need to be touched. The last two entries match the search

pattern and thus yield the pre/pos combinations {3/2, 5/2, 5/16}.

41

3 Querying

3.1 XML Languages

Every storage architecture, no matter how lightweight or powerful, requires an interface

for accessing its data. By introducing SEQUEL (a “structured English query language”

[CB74]) for relational data, Chamberlin and Boyce acknowledged early that a unified

query language may help both users to communicate with database systems1. With

the advent of tree data, new languages were proposed to do justice to the upcoming

challenges. Resulting from a number of attempts, which were based on SQL and OQL,

XML-QL was the first language that focused on XML [DFF+98]. Element patterns could

be defined to match data in documents. The following sample query prints all authors

from books published by BooxX, which are found in a library.xml document:

WHERE <book>

<publisher>BooxX</publisher>

<author>$a</author>

</book>

IN "library.xml"

CONSTRUCT $a

Next, XQL was proposed [RLS98]. As summarized in Table 3.1, one or more XML doc-

uments are now defined as input, and the document’s tree structure is the data model

which is mapped by a query. To represent hierarchical relationships, the child (/) and

descendant (//) operators were added to the language. A filter operator [...] could

be appended to further refine the result. By specifying numbers in the filter, results were

filtered by their context position.

1The notion of what “users” actually are is a popular subject for discussion, and it has changed over the
years. Today, much more people have profound computer knowledge than forty years ago. At the
same time, user interfaces have advanced a lot, which means that most end-users will hardly come into
contact with low-level interfaces anymore. As for SQL, it has become the most popular language for
developers and programmers to interact with relational databases.

43

3.1. XML Languages

SQL XQL

The database is a set of tables. The database is a set of one or more XML documents.
Queries are done in SQL, a query language that
uses the structure of tables as a basic model.

Queries are done in XQL, a query language that uses
the structure of XML documents as a basic model.

The FROM clause determines the tables which
are examined by the query.

A query is given a list of input nodes from one or
more documents.

The result of a query is a table containing a set
of rows; this table may serve as the basis for
further queries.

The result of a query is a list of XML document
nodes, which may serve as the basis for further
queries.

Table 3.1: Comparison between SQL and XQL (taken from [RLS98])

The following subsections are supposed to give a brief overview on the languages XPath

and XQuery, that resulted from XML-QL and XQL, and their Full Text and Update ex-

tensions. XSLT will not be part of this survey. Its expressiveness is similar to XQuery

[Kay04], and it has been shown that XSLT expressions can be compiled into XQuery

[FRSV05]. It is primarily used for transforming smaller XML fragments into other for-

mats, and not for querying large XML instances, which is the focus of this chapter.

3.1.1 XPath

Due to its status as W3C Recommendation [CD99], and due to its simplicity, XPath 1.0

has become the de facto standard for traversing XML documents. It serves as a subset for

other languages, namely XQuery and XSLT. The most important XPath expression in our

context is the location path, which is composed by one or more location steps separated

by slashes. A single step consists of three components:

• the axis specifies the tree relationship between the incoming and resulting nodes,

• the node test defines the node type or name of a resulting node, and

• optional predicates further refine the result set.

A location step consumes an incoming node set (which might initially be a single docu-

ment node) and generates a new node set by traversing the specified axis and filtering

the resulting nodes by the node test and predicates. Thirteen axes are defined in XPath:

• Forward axes contain nodes that occur after the initial node in document order:

child, attribute, descendant, descendant-or-self, following, and following-sibling be-

long to this category.

• Reverse axes yield nodes before the initial node: these are parent, ancestor, ancestor-
or-self, preceding, and preceding-sibling.

44

3.1. XML Languages

• The self axis returns the original node, and the namespace axis (obsolete since

XPath 2.0) returns namespaces.

Axis and node tests are separated by two colons. A node test filters nodes by their type:

• node() accepts all nodes,

• text(), comment(), processing-instruction() accepts the respective type,

• a QName (which consists of an optional namespace prefix and a local name) filters

attributes and elements by their name, and

• an asterisk (*) serves as wildcard for all attribute and element names.

Predicates are arbitrary expressions enclosed by brackets [...]. If the boolean result

of an expression yields true, a node is accepted. If the result is numeric, a predicate

is called positional: a node will be accepted if the current context position equals this

number. For instance, if the predicate evaluates to the integer 3, all nodes except for the

third will be discarded.

An abbreviated syntax improves the legibility of XPath expressions. The most prominent

abbreviations are the following:

• attribute:: can be represented by the at sign @.

• child:: can be omitted as child is the default axis.

• a period . is equivalent to self::node().

• two periods .. are equivalent to parent::node().

• /descendant-or-self::node()/ can be written as two slashes //.

Contrary to XQL, the two slashes frequently lead to misunderstandings, as they are often

mixed up with the descendant axis: as //node() contains an additional abbreviated

child step, it can be rewritten to /descendant::node(). In contrast, the location path

//self:node() is the same as /descendant-or-self::node() (see also 3.3.1.5).

XPath offers additional expressions, such as boolean connectives, comparison operators,

calculation expressions, or simple functions. A location path can be introduced by an ar-

bitrary expression, e.g., by a function for opening a document. In XPath 2.0, expressions

can occur anywhere inside a path.

The XML-QL example from the beginning of this chapter can be written in XPath as

compact and simple as follows:

doc("library.xml")//book[publisher = "BooxX"]/author

45

3.1. XML Languages

3.1.2 XQuery

XQuery is a direct successor of the Quilt query language [CRF00]. It was not until 2007

that Version 1.0 was finalized as W3C Recommendation [BCF+07]. Due to its versatility,

XQuery is increasingly called “Information Processing Language” [ABF+09]. It offers

many more features than a pure query language, and it poses more challenges to a

query optimizer, as will be discussed later:

• With XQuery, new contents and XML fragments can be generated. In contrast,

XPath or SQL is typically used to extract contents from existing resources.

• An arbitrary number of documents and collections can be accessed by a single

query. Names of documents to be queried can be generated at runtime.

• Similar to object-oriented languages, functions and modules can be defined in

XQuery to make complex queries more readable and reusable.

• As the input data to be processed might not be known in advance, XQuery 3.0

introduces nondeterministic functions, which do not always return the same result.

The following definitions will be used throughout this chapter: A single XQuery has a

root expression, which may have an arbitrary number of sub-expressions. Each expres-

sion evaluates to a value. All values are flat sequences, i.e., ordered collections of zero

or more items. An item has a fixed data type, which is either an atomic value (string,

integer, etc.) or a node (element, attribute, text, etc.).

Apart from some exceptions, XQuery is regarded as a functional language. As such,

functions do not have side-effects, and variables are immutable once they are assigned.

The iterative FLWOR expression can be used to bind intermediate values to variables,

and to formulate nested, join-like queries. As higher-order functions are an important

feature of functional languages, XQuery 3.0 will also allow functions to be passed on as

arguments.

Again, the XML-QL example is rewritten to XQuery, using a FLWOR iterator. As XPath is

a subset of the language, the XPath expression shown before is valid XQuery as well:

for $book in doc("library.xml")//book

where $book/publisher = "BooxX"

return $book/author

In contrast to SQL, XQuery has no explicit database logic: two functions doc($string)

and collection($string) are provided to address resources. As the specified string

46

3.1. XML Languages

argument may point to any resource, such as a remote file, or a local file or directory,

it depends on the implementation if resources will always be looked up in a database

or dynamically retrieved from the specified URI. In the scope of this work, we pursue a

hybrid approach: a database is opened if a database instance exists for the given URI.

Otherwise, a temporary database instance is created for the original file. This way, both

databases and XML documents can be accessed by a single query.

More details are found in the official language specification [BCF+07]. In the next

sections, this document will serve as standard reference for XQuery.

3.1.3 XQuery Full Text

In the introduction of this thesis, it has been indicated that many XML documents are

document-centric [BBB00], i.e., contain large semi-structured texts. As such, full-text

capability is needed to perform content-based queries. While, at the time of writing,

many implementations offer their own retrieval extensions, the official W3C XQuery

Full Text 1.0 Recommendation (XQFT, to be finalized in 2010 or 2011) will serve as a

new standard for bringing the XML and Information Retrieval world closer together.

XQuery contains some basic functions to find substrings. The evaluation of a full-text

expression is a much more elaborated process: The incoming query and input strings

are tokenized, i.e., split into atomic units (tokens), and then compared one by one. As

detailed in 2.6.4, the tokenization process can include several operations, which are

dependent on the natural language of the input, such as the removal of case sensitivity or

diacritics, or stemming. Differences between a simple substring search and tokenization

are supposed to be illustrated by two examples:

• XQuery: contains("ab", "a") → true

XQFT: "ab" contains text "a" → false

• XQuery: contains("Träume", "traum") → false

XQFT: "Träume" contains text "traum"

using stemming using language "de" → true

The contains text keyword pair introduces a full-text selection in XQFT. The left and

the right side of the expression can contain arbitrary sub-expressions. For the Mondial

document2, this query will yield true:

2Source: http://www.cs.washington.edu/research/xmldatasets/www/repository.html

47

3.1. XML Languages

"This text contains country names, such as Japan and Korea."

contains text { doc("mondial-3.0.xml")//country/name }

Along with the boolean query result, an implementation-defined score value is calcu-

lated, which allows an ordering of the results by relevance. The order clause of a FLWOR

iterator can be used to sort score values. In the following query, all country names will

be sorted according to a score value that is calculated by the full-text expression:

let $doc := doc("mondial-3.0.xml")

for $p score $s in $doc//country[religions contains text "Catholic"]

order by $s descending

return <hit score="{ $s }">{ $p/name/text() }</hit>

XQFT boasts numerous optional operators, filters and options to allow users to specify a

full-text search as concisely as possible:

• Logical connectives ftor, ftand, ftnot, and not in (mild not) can be used to

combine several tokens.

• Using the weight keyword, individual weights can be attached to single tokens.

• The way how containment is checked can be specified by any, all, or phrase. As

an example, all words demands that all words of a token sequence are found in

the input.

• The occurs keyword indicates cardinality selections, which determine how often

a token needs to occur in the input.

• Match options, introduced by the using keyword, influence how the tokenizer

works. Possible options are stemming, case sensitive, wildcards, and others.

• An additional language match option can be used to perform tokenization for the

specified language.

• Positional filters specify the distance between single tokens. Tokens can be con-

strained to appear ordered, in a specified window, within a given distance, or in

a certain scope (sentence or paragraph).

Our BASEX query processor was the first – and, at the time of writing, is still one of the

few – to fully support the XQuery Full Text Recommendation [AYBB+09]3. All optional

3An XPath/XQuery Test Suite is offered by the W3C to test the conformance of an imple-
mentation. All implementations, for which test results have been submitted, are listed at
this link: http://dev.w3.org/2007/xpath-full-text-10-test-suite/PublicPagesStagingArea/

ReportedResults/XQFTTSReportSimple.html

48

3.1. XML Languages

features have been implemented as well, except for the ignore option. Among developers,

the upcoming XQFT Recommendation is being met with mixed reactions. While some

appreciate its complexity, others criticize precisely this property. As the specification

opens the way to arbitrarily combine and nest all available options, the resulting queries

may get difficult or even impossible to optimize, particularly if the expressions are meant

to be processed by an optional full-text index. Some XML databases, such as EXIST

or SEDNA, circumvent this dilemma by offering simple XQuery full-text functions. In

this work, we decided to choose the rocky path by supporting the full range of XQFT

features, and optimizing all kinds of queries to access available index structures as often

as possible.

General insight on query rewriting for index access is given in 3.3.2, and performance

results are presented in 4.2.3. For detailed information on the intricacies of XQFT, the

reader is referred to Gath’s master thesis [Gat09].

3.1.4 XQuery Update

While full-text functionality may be regarded as an optional feature – at least for users

coming from the relational corner – update capability is a core requirement of each

database language. The first intent to standardize updates in XML was XUpdate [LM03],

in which updating expressions were represented in XML itself. With the following snip-

pet, a phone element is inserted after the name element of an address:

<xupdate:modifications version="1.0"

xmlns:xupdate="http://www.xmldb.org/xupdate">

<xupdate:insert-after select="//address[@id = 1]/name" >

<xupdate:element name="phone">+1-22-334455</xupdate:element>

</xupdate:insert-before>

</xupdate:modifications>

The rather verbose syntax was adopted by early XML database systems and is now grad-

ually replaced by the upcoming W3C XQuery Update Facility (XQUF), which allows for

a more concise syntax and is more complete. The above query can be represented in a

single-line expression:

insert node <phone>+1-22-334455</phone> after //address[@id = 1]/name

With XQUF, nodes can be deleted and inserted, existing nodes can be updated without

their node identity being changed, and existing nodes can be copied to intermediate

instances, and modified. A query is defined as one snapshot: all update expressions

49

3.2. Query Processing

that occur in a query are not immediately processed, but instead collected in a pending
update list, which is executed only at the end of the query execution. While this solution

seems unfamiliar at first glance, it helps to simplify error handling and to minimize side

effects, which are caused by the heterogeneity of XML documents.

Another advantage is that pre values, which may occur as intermediate references to

other database nodes, need not be changed during query execution. As has been shown

in 2.4.2.5, deletions and insertions only affect database nodes n with n ≥ pre. As a

consequence, before updates are carried out, all operations are sorted by the pre value

of the target nodes. All updates are then applied in a backward manner: the operation

with the largest pre value is executed first, followed by the remaining operations with

decreasing pre values. This way, all used pre values will remain valid until the end of

query execution.

Implementation details and performance results on XQUF are beyond the scope of this

work and can be looked up in Kircher’s bachelor thesis [Kir10].

3.2 Query Processing

A raw XPath or XQuery is represented as a simple string, and classical compiler tech-

niques are needed to convert the input into executable code. As literature on compila-

tion construction offers a broad terminology for classifying the necessary transformation

steps, we will base our wording on the XQuery Recommendation, which divides query

processing into the two phases: Static Analysis and Dynamic Evaluation [BCF+07]. As

an extension, the first phase was split up into two transformation steps, namely analysis
and compilation. The second phase is represented by the evaluation and serialization
step.

3.2.1 Analysis

Before a query can be executed, the input is interpreted and transformed into an exe-

cutable data structure. The process of splitting the incoming byte stream into atomic

tokens is called lexical analysis. In the subsequent syntax analysis step, an expression tree
is built from the tokens, using a formal grammar. The grammar of XQuery and other

XML Recommendations is based on the EBNF notation [Wir77] and can be parsed by an

50

3.2. Query Processing

LL(1) parser4 in a rather straightforward manner.

The division into lexical and syntax analysis can help to keep the resulting code more

readable. The complexity of XQuery, however, requires a lexical scanner to have knowl-

edge on its current lexical state, as e.g. detailed in a W3C working draft on parsing XPath

and XQuery [Boa05]. The following list demonstrates that a simple token "for" can

have different semantics, as it might occur in a:

• FLWOR expression: for $i in 1 to 10 return $i

• text node: <xml>marked for delivery</xml>

• comment: (: needed for result output :)

• node constructor: element for { "text" }

• variable: declare variable $for := 1;

• location path: /xml/for/sub

• string: "for all of us"

To avoid the distinction between too many different lexical states, which all lead to

different scanning branches, it is common to merge the two steps and scan and convert

the input by a single parser. While existing analyzers and parser generators, such as

FLEX, BISON, or JAVACC, could have been used to convert the XQuery grammar to an

executable parser, we decided to write our own parser to get better performance – an

approach that has also been taken by other query processors, such as SAXON or QIZX.

The parser performs the following steps:

• The static context is initialized. It contains global information on the query, such

as default namespaces, variables, functions, or statically known documents.

• The input is analyzed and converted to expressions, all of which form the expres-
sion tree (synonymous: query plan).

• Parse errors are raised if the input does not comply with the LL1 grammar and

extra-grammatical constraints.

• As a function may call another function that has not yet been declared in a query,

all function calls need to be verified after the whole query has been parsed.

Figure 3.1 depicts some of the expressions that are created by the parsing step, or will

be computed by the evaluation step. All expressions are derived from the abstract Ex-
pression class. A Value is either an Item or Sequence. Items of type Node may either

4LL(1) means: Left to right, Leftmost derivation, one look-ahead

51

3.2. Query Processing

Value SequenceItem

Compute
Set Function

Boolean Position Number ...

Expression

...Union Intersect Except Filter Path Step FLWOR

String IntegerDateDiskNode MemNode ... ItemSequence NodeSequence RangeSequence

Node

Figure 3.1: Class diagram with expression types

refer to a database node or a main-memory fragment, created by a node constructor.

Sequences are further subdivided into ItemSequence, NodeSequence, and RangeSequence
types, which offer optimizations for items of a specific type. All other expressions, such

as Set and its subtypes, Filter, etc. are derived from the Compute expression.

3.2.2 Compilation

Formal Semantics were defined for XQuery 1.0 [DFF+07] as an intent to standardize

the normalization of queries, including the atomization of effective boolean values, or

static typing. Due to the complexity of the language and its subtleties, this effort was

discontinued with Version 3.0. All implementations may choose their own compilation

steps as long as the query results conform to the specification.

Compilation includes all steps that simplify and optimize the expression tree (details will

be discussed in 3.3):

• Static operations will be pre-evaluated.

• Expressions will be rewritten if their arguments always yield true or false.

• FLWOR expressions and location paths will be simplified.

• Predicates will be rewritten to access available index structures.

• Unknown tags or attributes will be removed.

• Static type checks will be performed before the query is evaluated.

3.2.3 Evaluation

In the evaluation step, the resulting item sequence of an expression is computed. For

simple and static queries, all necessary computation steps might have been performed

in the optimization step, and the root expression to be evaluated might already contain

52

3.3. Optimizations

the final result. For more complex expressions and queries that rely on dynamic input,

such as XML documents or fragments, most of the total time for processing will be taken

by the evaluation step.

3.2.4 Serialization

After the expression has been computed, the serializer transforms the result into a read-

able, textual format. The process of serializing the query result has been formalized as

well in another W3C Recommendation [BKT+07], which defines a set of parameters to

control the textual representation. However, the serialization interface is not mandatory

for a XQuery implementation: In many scenarios, it is recommendable to pass on and

process a result in its object representation.

In a processing pipeline, iterative query evaluation will speed up evaluation in many

cases, as large intermediate results can be avoided. If an XQuery expression is pro-

cessed in an iterative manner, query results will be discarded as soon as they have been

processed. Accordingly, if the results are passed on to a serializer, the evaluation and

serialization step will be closely intertwined, as each resulting item will be directly se-

rialized and discarded after serialization. Details on the iterative processing model are

found in 3.4.1.

3.3 Optimizations

In spite of the complexity of the language, more than fifty XQuery processors are avail-

able by now5. While a high conformance with the specification is an important indicator

for the quality of an implementation6, the speed of an implementation might be even

more relevant for users, particularly if large XML documents are to be processed.

Query optimization is an established area of research in the database community (see

[Ioa96] for an overview), and it seems obvious that many existing techniques can be

adapted and applied to XML as well. This has already been proven by a number of

other implementations: Once more, LORE was the first XML system to integrate both

5An list of all implementations is found on the W3C XQuery homepage: http://www.w3.org/XML/Query
6The XQuery Test Suite with around 15,000 queries is used to test the conformance of an implementation:
http://dev.w3.org/2006/xquery-test-suite/PublicPagesStagingArea/XQTSReportSimple.html.
As of August 2010, only SAXON reaches 100% of the test suite, followed by BASEX with 9 failed tests.

53

3.3. Optimizations

logical and physical query optimization [MW99]. Query rewritings for the BIZQUERY

system were presented in [GK02] and served as input for SEDNA. Other optimizations

were discussed for the BEA [FHK+04] and SAXON [Kay08] XQuery processors. The

wide variety of optimization proposals illustrates that many optimizations depend on

concrete implementation issues. As an example, reverse axis steps are expensive in

a streaming environment, but need constant time if a reference to the parent node is

available. Another example is the construction of fragments, which is regarded to be an

expensive operation for many implementations, but is relatively cheap if main memory

representations are built.

In this section, we present the most important optimizations that have been integrated

in our query processor. As XQuery is not just a query language, many optimization con-

cepts have rather been inspired by classical compiler construction than database theory.

Even more, the classical division into logical and physical query optimization has been

completely dropped: query rewriting and database- and cost-related optimizations have

been merged into one step to benefit from database specific meta data (such as statis-

tics or the availability of indexes) at an early stage. Subsequently, optimizations will be

discussed that are performed just-in-time during evaluation. A summary on the most

important XQuery expressions along with their optimizations is found in the last section

of this chapter.

Before going into detail, we would like to emphasize that user feedback from the Open

Source community around BASEX has played an essential role in making the system

efficient and flexible enough for a wide variety of use cases and workloads. Whereas

some optimization approaches have been theoretically appealing while developing the

compiler, they have turned out to be rather irrelevant in practice.

3.3.1 Static Optimizations

3.3.1.1 Constant Folding/Propagation

Many sub-expressions in a query are values, or have values as arguments. As such, they

will always evaluate to the same result and can be pre-evaluated once at compile time.

To unfold the full potential, this process, which is known as constant folding, needs to be

recursively evaluated on all expressions of the query tree. A complete recursive traversal

of the expression tree is required for many other compilation steps; otherwise, opti-

mizations will only be locally performed, or aborted for the arguments of an expression

54

3.3. Optimizations

that does not support a particular optimization. Algorithm 10 is called by the compiler.

It is very simple and demonstrates how constant folding works: First, the method is

recursively called for all arguments, and the resulting expression is assigned as new ar-

gument. Next, all arguments are checked for their type. If all arguments are values, the

expression is pre-evaluated, and the resulting value is returned. Otherwise, the existing

expression is returned.

Algorithm 10 Expression.Fold() : Expression

1 for a in ARGUMENTS do
2 a = a.Fold()
3 end for
4 if all ARGUMENTS are values then
5 return Evaluate()
6 else
7 return this
8 end if

Calculation

operator: +

xs:integer

value: 1

Calculation

operator: *

xs:integer

value: 2

xs:integer

value: 3

On the right, the query plan for the query 1+2*3 is shown. First,

2*3 will be pre-evaluated. The resulting value 6 will be added

with 1, yielding 7. As a result, the final value was computed

before the actual evaluation is started.

If constant folding is applied to functions as well, such as the

doc() and collection() function in XQuery, static document

references will be resolved and computed at compile time. This

way, meta information and statistics on touched databases will be available to subse-

quent optimization steps.

Constant propagation is a technique related to folding: whenever a variable turns out to

have a constant value, it can be statically bound to all its references in the query. Recog-

nition of static variables is a straightforward operation in most functional languages, as

all global variables are immutable and thus constant.

Some XQuery expressions, such as value comparisons, return an empty sequence if one

of the arguments yields an empty sequence, and implementations are free to choose

if the remaining arguments are ignored or evaluated. Algorithm 10 can be easily ex-

tended for all expressions of this kind to return an empty sequence whenever one of the

arguments is empty.

55

3.3. Optimizations

3.3.1.2 Variable/Function Inlining

Variable expressions can also be bound to their references if they have not yet been

evaluated to values. In XQuery, variables and functions without arguments are mostly

similar, except that variables cannot be recursively called. Consequently, functions with-

out function calls and arguments can be treated equally to variables. If variable and

functions calls are replaced by their declarations (i.e., inlined), the resulting code may

be subject to further local optimizations. For example, a conditional expression may be

pre-evaluated to eliminate a sub-expression that will never be called. One more singular-

ity of XQuery needs to be observed, though: node constructors generate XML fragments

with unique ids. If a variable declaration contains a node constructor, the resulting nodes

will have different node ids if they are evaluated several times:

declare variable $n := <xml/>; $n is $n→ true

<xml/> is <xml/>→ false

To guarantee that queries such as the first one return true, global variables will always

be pre-evaluated before they are inlined.

In FLWOR expressions, variables will be dynamically assigned during runtime. While

the resulting items of LET will be bound to the associated variable as sequence once,

FOR iterates over the sequence, binding the items one by one. Hence, LET variables

are immutable within their scope and can be treated similar to global variables – as

long as they are independent, which means that they must not depend on other dynamic

variables in the same scope. If variable references are replaced by their expressions,

other variables can get independent, which are substituted next. If static typing indicates

that a FOR variable will return a single item (see 3.3.1.4), it can be treated the same as

LET.

FLWOR

Let

var: $a

Let

var: $b
Return

xs:integer

value: 5

Calculation

operator: *

VarRef

name: $a

VarRef

name: $a

VarRef

name: $b

The query plan shown below depicts the following query:

let $a := 5 let $b := $a * $a return $b

Five steps are performed to simplify the query:

• The integer value 5 is statically bound to $a.

• All subsequent variable references for $a are substi-

tuted by its value.

• Calculation 5 * 5 is pre-evaluated.

• The result 25 is statically bound to the (now) inde-

pendent variable $b.

56

3.3. Optimizations

• The $b reference is substituted by its value.

• FLWOR is substituted by its return value 25.

Function inlining is a complex issue on its own, especially when it comes to recursive

functions. For the time being, all functions can be inlined in our implementation that

have values as arguments and hence can be pre-evaluated. For further studies on recur-

sive inlining, helpful information is found in [PMC02] and [GL04].

3.3.1.3 Dead Code Elimination

After the expression tree has been simplified and rewritten, there may remain sub-

expressions that will have no effect on the query results, or are not accessed at all.

Eliminating sub-trees will reduce the tree size and – even more important – reduce eval-

uation time by avoiding the execution of irrelevant operations.

As shown in the previous paragraphs, inlining will make variable declarations within

FLWOR expressions obsolete, and the subsequent removal of all declarations in questions

will speed up execution, as the repeated process of binding values to variables can be

skipped. If no declarations are left, the complete FLWOR expression is replaced by the

RETURN expression. If WHERE has been specified, the return value is wrapped by an IF

expression.

In conditional expressions, such as if/then/else, branches can be discarded if they are

known to be never accessed. If the main condition yields true, the else branch can be

eliminated, and vice versa. If both branches yield the same result – which can happen

after numerous simplifications of the original code – the condition itself need not be

executed.

Figure 3.2 shows a query plan for another expression that can be completely evaluated

at compile time. It includes a function declaration, global and local variables, and an IF

expression:

declare function local:a() { 10 + 30 };

declare variable $b := 20 - local:a() div 10;

let $c := $b * 5

let $d := if($c > 60) then $c - 60 else $c

return $d * (20 div local:a())

The single optimization steps, which are dumped by the compiler, are as follows:

57

3.3. Optimizations

QueryPlan

Functions Variables FLWOR

Declaration

name: local:a(...)

Calculation

operator: +

xs:integer

value: 10

xs:integer

value: 30

Var

name: $b

Calculation

operator: -

xs:integer

value: 20

Calculation

operator: div

FuncCall

name: local:a(...)

xs:integer

value: 10

Let

var: $c

Let

var: $d
Return

Calculation

operator: *

VarRef

name: $b

xs:integer

value: 5

If

Comparison

operator: >
Then Else

VarRef

name: $c

xs:integer

value: 60

Calculation

operator: -

VarRef

name: $c

xs:integer

value: 60

VarRef

name: $c

Calculation

operator: *

VarRef

name: $d

Calculation

operator: div

xs:integer

value: 20

FuncCall

name: local:a(...)

Figure 3.2: Query with a function declaration, variables,
arithmetic expressions, and a conditional branch

1. pre-evaluating 10 + 30
2. inlining function local:a(. . .)
3. pre-evaluating 40 div 10
4. pre-evaluating 20 – 4
5. pre-evaluating 16 ∗ 5
6. binding static variable $c

7. pre-evaluating 80 > 60
8. pre-evaluating 80 – 60
9. pre-evaluating

if(true()) then 80 – 60 else $c
10. binding static variable $d
11. inlining function local:a(. . .)

12. pre-evaluating 20 div 40
13. pre-evaluating 20 ∗ 0.5
14. removing variable $c
15. removing variable $d
16. simplifying flwor
17. result: xs:integer(10)

A second conditional expression in XQuery is typeswitch, which evaluates the type of

its input and selects one of several expressions as result. To pre-evaluate this expression,

the types of the returned values must be known at compile time – which can be realized

via static typing.

3.3.1.4 Static Typing

XQuery is a strongly typed language, embracing a total 23 of primitive types (strings,

booleans, integers, etc.; see Figure 3.3). Along with the type, a value is further specified

by its sequence type, which also includes the cardinality (number of returned items). Val-

ues can also be untyped: if no XML schema is given for a specific document, all incoming

strings will be of type xs:untypedAtomic. If an untyped value is to be processed by an

expression, it will be dynamically cast to the required type. As an example, arithmetic

operators convert untyped values to xs:double (whereas typed values will be processed

without additional cast), and a dynamic error is raised if the cast fails.

58

3.3. Optimizations

Figure 3.3: Type hierarchy of the XML
Data Model [FMM+07]

To reduce the number of checks for runtime er-

rors, static typing can be used to validate be-

forehand if an operation will always be suc-

cessful, and to reduce the number of run-

time checks. If both types of the arithmetic

operators are numeric, they can always be

added, subtracted, etc., whereas values of type

xs:string and xs:integer will always result

in a type error. Next, as this operator returns

an empty sequence if one of the operands is

empty, the expression can be pre-evaluated

and substituted by an empty sequence if at

least one operand has a cardinality of zero.

If values contain more than one item, the com-

mon super type is stored as a sequence type.

As a result, the exact types of single items

needs to be interpreted at runtime. In the fil-

ter expression (1,"a")[.], the sequence is of

type item()+. The first sequence item will cause a numeric predicate test, followed by

a boolean test for the string. In contrast, if all sequence items are known to be numeric,

the expression can be optimized in advance to skip the runtime test and always perform

a positional test.

The existence of static types is beneficial in a number of other cases: path expressions

that are composed of certain types will never yield results and need not be evaluated

at all. As an example, the query //@*/node() will always return an empty sequence,

as attributes cannot have child nodes. Next, the root node of a path expression must

always yield nodes to be correctly evaluated.

3.3.1.5 Location Path Rewritings

As supplement to static typing, and surrogate for schema information, the path summary

facilitates the validation of location paths (see 2.6.2 for a reminder). If the root of a

path expression points to an existing database, or if the root context can be evaluated at

compile time, as shown in 3.3.2.1, the path summary of the referenced document can

be used to match the document paths against the query. If a query path is not found in

59

3.3. Optimizations

the summary, it can be eliminated and replaced by an empty result. If the path is too

complex to be compared, or contains references to the dynamic query context, the name

indexes (presented in 2.6.1) are accessed to check if single tag and attribute names occur

in the database.

Moreover, the summary can be applied to speed up a path expression. In most imple-

mentations, the descendant step is expensive, as all descendants of the root node need to

be touched, either recursively or in a linear run. If the expression is replaced by multiple

child steps, the number of touched nodes is reduced to the distinct node paths. Four

different cases may occur if a path expression //ELEM is to be optimized:

1. If the summary contains one single node with the element name ELEM, the path to

this node is transformed into a location path with multiple child steps.

2. If several nodes exist with ELEM as element name, and if all nodes are located on

the same level (i.e., if all node paths have the same length), the paths are used

as input for a single location path. The paths are analyzed level by level: if the

element names of all paths on a level are equal, a child step with this element name

is generated. Otherwise, a wildcard * is used as node test to match all elements.

3. If occurrences of ELEM are found on different levels, all distinct paths will be re-

turned and combined with a union expression.

4. If the element name ELEM is unknown, an empty sequence is returned.

Figure 3.4 includes an XML document, its tree representation and path summary. For

each of the four cases, an example query is given. The fifth query was added to indicate

that the example can be iteratively applied to several descendant steps.

<A>

<C>

<D><C></D>

<D><D></D>

A

B D D

C C D

A

B D

C C D

path optimized
1 //B /A/B

2 //C /A/*/C

3 //D /A/D | /A/D/D

4 //E ()

5 //A//C /A/*/C

Figure 3.4: XML document, tree representation, summary, and path expressions

Path rewriting can also be applied if a location path is further refined by predicates. For

example, the following two expressions are equivalent for the given document:

//A[1]//C[text() or comment()] ≡ /A[1]/*/C[text() or comment()]

60

3.3. Optimizations

In the introduction to XPath (Section 3.1.1), the two slashes (//) were introduced as an

abbreviation for the construct /descendant-or-self::node()/. This construct is very

expensive, as all nodes of a document are selected and, in most cases, reduced to a much

smaller number of results in the subsequent location step. A simple, but very efficient

optimization is to rewrite a descendant-or-self and child step to a single descendant step.

The following queries are equivalent, but the second version is much cheaper, as the

intermediate materialization of all nodes is avoided:

//x = /descendant-or-self::node()/child::x ≡ /descendant::x

An expression with predicates can be rewritten as well, as long as they are not positional.

Positions always refer to the last location step:

//x[1] 6≡ /descendant::x[1]

The original query will select each first child element of all addressed nodes, whereas

the second expression will only return the first descendant element of the document. If

the location path is enclosed by parentheses, the query can safely be rewritten:

(//x)[1] ≡ (/descendant::x)[1]

Another optimization worth mentioning can be applied to the descendant-or-self and

attribute steps. As only element nodes can have attributes, the node() test of the first

step is rewritten to an element test (*):

//@x ≡ /descendant-or-self::*/attribute::x

3.3.1.6 FLWOR expressions

In XQuery, numerous other equivalences exist, a fact which makes the language very

flexible. For instance, many queries can be written as either pure XPath, using location

paths, or XQuery, using the iterative FLWOR expression. The latter is more verbose, but

some consider it to be more easily readable, particularly if queries get more complex:

for $item in doc(’xmark’)/descendant::item

where $item/payment = ’Creditcard’

return $item

The following XPath expression will yield the same result:

doc(’xmark’)/descendant::item[payment = ’Creditcard’]

Some FLWOR queries exist that cannot be expressed in XPath. As an example, no XPath

equivalent exists for the ORDER clause, which sorts iterated values. Next, XQuery is

needed to post-process items one by one, as shown in this example:

61

3.3. Optimizations

for $n in 1 to 10 return $n * 2

To avoid that query optimizations have to be implemented twice, both variants are first

normalized to one common representation. The existing XPath representation appears

to be most appropriate in our scope, as the predicate tests are already part of the ex-

pressions that might be suitable for index rewritings. Accordingly, FLWOR queries are

normalized by rewriting the optional WHERE clause to one or more predicates and at-

taching them to the expressions defined by the variable declarations. Before the clause

can be rewritten, two preconditions must be met:

1. All FOR clauses must not specify a positional or a full-text scoring variable.

2. A recursive algorithm checks if all occurrences of the variables, which are intro-

duced by FOR, can be removed from the WHERE expression and substituted with

a context item expression (.). The substitution is prohibitive whenever the new

context item reference conflicts with an update of the context item at runtime,

which is e.g. the case if the checked variable is enclosed in a deeper predicate,

or specified in the middle of a path expression. The occurrence test can be safely

skipped for sub-expressions if the variable is shadowed by another variable with

the same name.

If the checks are successful, WHERE is rewritten as shown in Algorithm 11:

• Line 1: The WHERE expression is stored in tests. If it is a logical AND expression,

it is replaced by its arguments, as single predicates can be optimized more easily

in subsequent steps7.

• Line 2: An array targets is created, which, for all tests, contains pointers to the

variable bindings (i.e., the expression of the FOR or LET clause). By default, all

pointers are set to 0 and thus reference the first (outermost) binding.

• Line 3-13: The most suitable FOR binding is now chosen for all tests, and will be

stored in best: A second loop starts from the innermost binding. If the binding is a

FOR clause, it is selected as new best candidate. If the current test uses the variable

in question at least once, the binding referenced as best is chosen as target for

attaching the test, and the check of the remaining, outer bindings is skipped. If no

best target candidate has been selected yet, which happens, e.g., if the innermost

7A single predicate, in which multiple tests are combined with an AND expression, can as well be repre-
sented via multiple predicates, provided that no positional predicates are used.

62

3.3. Optimizations

Algorithm 11 FLWOR.CompileWhere()

1 tests := expressions specified in WHERE clause
2 targets := integer array, initialized with 0
3 for t := 0 to #tests – 1 do
4 best := null

5 for b := #BINDINGS – 1 to 0 do
6 best := b if BINDINGS[b] is a For clause
7 if tests[t] uses BINDINGS[b].VAR then
8 return if best = null

9 targets[t] := best
10 break
11 end if
12 end for
13 end for
14 for t := 0 to #tests – 1 do
15 bind := BINDINGS[targets[t]]
16 expr := tests[t] with all bind.VAR references replaced by a context item
17 wrap expr with fn:boolean() function if type is numeric
18 add expr as predicate to bind.EXPR

19 end for
20 eliminate WHERE clause

variable is declared by a LET clause, the optimization is canceled. If none of the

variables is used by the test, it will be evaluated by the outermost binding.

• Line 14-17: In a second loop over all tests, the target binding for the current test

is stored in bind. All references of the target variable in the test are recursively

substituted by a context item. If static typing indicates that the expression expr

will yield a numeric result, it is wrapped with a fn:boolean() function to prevent

that the evaluated value will be mistaken as a positional test.

• Line 18: If the existing expression bind.EXPR is a path expression, expr will be

attached as a predicate to the last axis step. If the expression is a filter expression,

expr will be added as a predicate to this expression. Otherwise, the expression will

be converted to a filter expression with expr attached as single predicate.

• Line 20: Finally, WHERE is removed from the FLWOR expression.

As indicated before, the substitution process will never attach predicates to inner LET

clauses. The following query demonstrates the need to differ between FOR and LET:

Original: for $a in 1 let $b := 2 where $b = 3 return $a

Modified: for $a in 1 let $b := 2[. = 3] return $a

63

3.3. Optimizations

The first query returns an empty sequence, as the comparison in the WHERE clause will

never be true. The second query, in which the WHERE expression has been attached

to the LET clause, returns 1, as LET will always cause one iteration, no matter if zero

or more items are bound to b. If a WHERE expression is attached to an outermost LET

clause, however, the query remains correct as the attached predicate will be independent

from all inner bindings.

After the WHERE clause has been replaced, the inlining of variables, as described in

3.3.1.2, might lead to a complete elimination of the FLWOR expression: The query

presented in the beginning of this section will be automatically rewritten to its XPath

equivalent; see Figure 3.5 for the original and the optimized query plans.

Original: FLWOR

For

var: $item
Where Return

Path

Function

name: doc(string)

Step

axis: descendant

test: item

xs:string

value: xmark

Comparison

operator: =

Path
xs:string

value: Creditcard

VarRef

name: $item

Step

axis: child

test: payment

VarRef

name: $item

Compiled: Path

document-node()

name: xmark

Step

axis: descendant

test: item

Comparison

operator: =

Path
xs:string

value: Creditcard

Step

axis: child

test: payment

Figure 3.5: FLWOR expression: original and optimized query

3.3.2 Index Optimizations

Many location paths contain predicates with comparison operators to match XML ele-

ments or attributes with specific contents. The expression //country[@name="Japan"]

is an example for a query with a comparison operator, which returns all country ele-

ments of a document with a name attribute and a value Japan. As indicated in Section

2.6.3, value indexes can be used to speed up queries of this kind, if meta data and

the statistics of a database indicate that an index access is possible and expected to be

cheaper than scan-based query evaluation.

64

3.3. Optimizations

Strictly speaking, in the context of this work, the index-supported rewriting of expres-

sions is a static query optimization. An extra subsection has been added, though, to do

justice to its complexity. The challenges are threefold:

1. A path expression needs to be uniquely correlated with a database, or documents

in a database, at compile time.

2. Predicates of all steps of a path expression need to be analyzed if they are candi-

dates for index access.

3. The path expression needs to be rewritten, such that the index access will be per-

formed first, followed by the evaluation of the inverted location path.

With regard to relational databases, Step 2 bears some resemblance with the rewriting of

selections, whereas Step 1 and 3 would be void operations, as relational data is limited

to flat tables, with indexes being uniquely coupled with columns of these tables. Next,

XQuery is more versatile than SQL – which is both an advantage and a drawback. As

an example, the following query cannot be rewritten to access the index of a single

database, as it defines various documents and paths as input:

for $in in (doc(’input’)/path/to/relevant/nodes,

doc(’http://remote.input’)//section,

<xml>dynamically created input</xml>)

where $in/text() = ’one’

return <hit>{ $in }</hit>

3.3.2.1 Database Context

Algorithm 12 shows a (simplified) solution for Challenge 1. It returns the initial context

value for an expression, which might in turn contain the reference to the database that

will be accessed at runtime:

The query context, containing both static and dynamic information on the query, is passed

on as an argument. It includes a reference to the current context value8. The algorithm

will return a value that depends on the kind of the first step of the path expression:

8The XQuery Specification [BCF+07] defines a context item, which is the currently processed item during
query evaluation. In the scope of this work, the concept was generalized, and the item was replaced by
a context value, which may contain several items such as, e.g., a sequence of document nodes. Note that
this modification has no effects on the conformance with the other language features.

65

3.3. Optimizations

Algorithm 12 Path.GetContext(context: QueryContext) : Value

Require: STEPS = array with all path steps
1 first:=STEPS[0]
2 if first is a Root then
3 return first .evaluate(context.VALUE)
4 else if first is a Value then
5 return first as Value
6 else if first is an AxisStep then
7 return context.VALUE

8 end if
9 return null

• Line 2-3: if the step is a root expression, the document node of the current context

value is evaluated and returned.

Example: /node consists of a root expression and a child step.

• Line 4-5: if the first step is a value, it will be returned as a result. This value might

be a document node resulting from a pre-evaluated doc() function.

Example: doc(’input’)/node consists of a document function and a child step.

• Line 6-7: if the first step is an ordinary axis step, the current context value is

returned, as it will be used for evaluating this step.

Example: node consists of a single child step.

• Line 9: null is returned, if none of the cases applies.

The context value will be temporarily set to this new value, and will be reset to its

original value after the remaining optimization steps have been performed. If all items

of the value are nodes that refer to the same database, this database reference will serve

as input for the subsequent steps; if not, the process is canceled.

3.3.2.2 Predicate Analysis

Expressions that are suitable for index rewritings may occur in all predicates of all steps

of a path. Numerous kinds of expressions are of interest, such as:

• Equality expressions: /library/medium[type = (’Journal’, ’Paper’)]

• Range expressions: //year[text() > 2000]/../title

• Full-text requests: //medium/title[text() contains text "L’Étranger"]

• Logical expressions (AND, OR): //medium[(type = ’DVD’ or type = ’Video’)

and title contains text ’chien andalou’]

66

3.3. Optimizations

If all predicates have been parsed, multiple rewriting candidates might be found. While

it is possible to convert all of those predicates to access indexes, various real-life work-

loads have shown that, on average, much better results can be expected if only one

predicate is rewritten9. This is what happens in Algorithm 13: All steps and predicates

of a path expression are parsed. An index context c is created, containing meta informa-

tion for rewriting a predicate for index access. If a predicate can be rewritten, c is chosen

as a new return candidate if no other candidate has been found yet or if it is cheaper

than the previous candidate. Finally, the context variable is returned, which contains

the optimal index candidate, or a null reference.

Algorithm 13 Path.IndexContext(data: Data) : IndexContext

Require: STEPS = array with all path steps
1 context := null

2 for step in STEPS do
3 continue if step is no AxisStep
4 for pred in step.PREDICATES do
5 c := new IndexContext(data, pred, step)
6 continue if not pred.IndexAccessible(c)
7 if context = null or c.costs < context.costs then
8 context := c
9 return context if context.costs = 0
10 end if
11 end for
12 end for
13 return context

In the scope of our work, costs are defined as positive integer values, representing the

exact or estimated number of returned index results. If costs are zero (costs = 0), the

index will return no results at all, and the whole path expression can be replaced with

an empty sequence at compile time. If the estimated costs exceed a certain maximum

value, such as the number of text nodes in the database, index access can be skipped in

favor of a standard query execution.

By default, the IndexAccessible(c) method returns false. It is overwritten by all ex-

pressions that enable the query to be rewritten. Due to the complexity of XQuery, many

additional checks have to be performed to decide if index access is possible, and what

costs it will cause. For equality tests, which are defined by the general comparison ex-

9Note that a single predicate may still result in several index calls, e.g., if several equality comparisons are
specified within a logical expression.

67

3.3. Optimizations

pression, the following preconditions must be given (examples for invalid expressions

have been added):

1. The operator tests for equality(=). Invalid: [text() != ’A’]

2. One of the operands is a path with axis steps only, concluded with a text() or

attribute step. Invalid: [replace(@id, ’A’, ’’) = ’123’] or [step = ’A’]

3. Depending on the kind test of the last step, the database has an up-to-date index
structure for texts or attribute values.

4. The second operand contains no reference to the current context item or position.

Invalid: [text() = .]

5. All resulting items of the second operand are strings, or untyped atomics (including

nodes) that can be cast to strings. Invalid: [text() = (’A’, 123)]

If all tests are successful, and if the strings to be matched are atomic values, the index

can be accessed in advance to evaluate the exact number of results, which will be set as

costs for the index operation. If multiple strings are specified, the number of results will

be summarized. Otherwise, if the search strings are unknown at compile time (e.g. if the

search expression is a variable), a constant percentage of the number of database nodes

will be set to indicate that an index access is assumed to be cheaper than sequential

database scanning. – More details on individual expressions, which can be rewritten for

index access, are included in the summary in Section 3.5.

3.3.2.3 Path Inversion

In the scope of this work, a bottom-up approach is pursued, in which the index is ac-

cessed first, followed by the evaluation of all other predicate tests and axis steps. All

location steps in the selected predicate and the main path have to be inverted to ensure

that the expression yields the correct results. This inversion is possible for many paths, as

numerous symmetries exist between location paths. For example, the following location

paths are equivalent [OMFB02]:

1. descendant-or-self::m[child::n] ≡ descendant::n/parent::m

2. p[self::n]/parent::m ≡ p/self::n/parent::m

3. self::m[child::n] ≡ child::n/parent::m

As the three cited equivalences imply, it is not sufficient to just replace all steps with

their inverse counterparts. Instead, some steps will be enclosed by a new predicate, and

others will be moved out of an existing predicate. Some queries with a descendant step

and a predicate, which can be rewritten for index access, are the following:

68

3.3. Optimizations

4. /descendant::m[child::text() = e] ≡ TI(e)/parent::m

5. /descendant::m[descendant::text() = e] ≡ TI(e)/ancestor::m

6. /descendant::m[child::n/child::text() = e] ≡ TI(e)/parent::n/parent::m

7. /descendant::m[descendant::n/child::text() = e] ≡ TI(e)/parent::n/ancestor::m

8. /descendant::m[child::n/descendant::text() = e] ≡ TI(e)/ancestor::n/parent::m

Note that all expressions start from the root node. TI(e) is a shortcut for a index function

that returns all text nodes from the index, matching the string value of e. The expression

is rewritten from right to left: the axis of each step is inverted and combined with the

node test of its left-hand step. The first step is ignored, as all descendant nodes have a

root node. The rewritings have similar characteristics for attribute tests:

9. /descendant::m[attribute::* = e] ≡ AI(e)/parent::m

10. /descendant::m[attribute::n = e] ≡ AI(e, n)/parent::m

AI(e) represents an index function for attribute values. While Query 9 selects all at-

tributes to be included in the equality test, an additional argument is added in the index

function in Query 10 to filter the results to the specified attribute. The following query

contains a full-text expression:

11. /descendant::m[child::text() contains text e] ≡ FI(e)/parent::m

FI(e) is a placeholder for the index-based evaluation of all kinds of full-text queries.

As indicated in 3.1.3, XQuery Full Text offers much more features than simple term

lookups. As most of the full-text index operations comply with the general rewritings10,

the following equivalence rules will be restricted to text nodes. In the following queries,

additional steps are attached to the main path:

12. /descendant::m/child::n[child::text() = e] ≡ TI(e)/parent::n[parent::m]

13. /descendant::m/child::n/child::o[child::text() = e] ≡
TI(e)/parent::o[parent::n/parent::m]

The added steps trigger the creation of a new predicate: Let s be the step that defines

the predicate relevant for index access. All steps before s are inverted in the same way

as already shown, and the resulting path is enclosed in a new predicate. An additional

root test has to be attached to the predicate if the path starts with a child step:

14. /child::m[child::text() = e] ≡ TI(e)/parent::m[parent::document-node()]

10The only exception to this rule is the handling of negated queries, such as e.g. //*[text() contains

text ftnot ’A’], in which a hybrid approach is taken to both benefit from the index and sequen-
tial processing. More specifics on evaluating full-text predicates, and its implications for index-based
processing, are found in [Gat09] and [GGHS09a].

69

3.3. Optimizations

15. /child::m/child::n[child::text() = e] ≡
TI(e)/parent::n[parent::m/parent::document-node()]

16. /child::m/descendant::n[child::text() = e] ≡
TI(e)/parent::n[ancestor::m/parent::document-node()]

The final document-node() test filters all nodes that do not start from the root node.

The following example demonstrates the difference between descendant and child steps:

Document: <a>XX

Query: /descendant::*[child::text() = ’X’]

Compiled: TI(’X’)/parent::*

Result: <a>XX, X

Query: /child::*[child::text() = ’X’]

Compiled: TI(’X’)/parent::*[parent::document-node()]

Result: <a>XX

TI(’X’) returns two text nodes as result, and the subsequent location step yields the

parent elements. While the [ancestor::document-node()] predicate can be omitted

for the first query, as all elements have a document node as ancestor, the document test

is mandatory for the second query to filter out the second result node.

17. /child::m[child::text() = e][p] ≡ TI(e)/parent::m[parent::document-node()][p]

18. /child::m[child::text() = e]/s ≡ TI(e)/parent::m[parent::document-node()]/s

19. /descendant::m[child::text() = e][p]/s ≡ TI(e)/parent::m[p]/s

20. /descendant::n[p]/child::m[child::text() = e]/s ≡
TI(e)/parent::m[parent::n[p]]/s

The last four queries show that remaining predicates and steps need no special treat-

ment. They are simply added to the newly created expression. The same accounts for

predicates of inverted steps, which are adopted without changes.

Concluding this section, we observed that the index rewritings have turned out to be the

most important optimizations to make the system capable of answering queries on very

large documents in interactive time. The speedup of equi-joins is particularly helpful if

the equality operands are not fully known and evaluated at runtime, which is e.g. the

case if the string to be matched is wrapped into a variable. Section 3.6 will present some

examples of queries that benefit from index rewritings.

3.3.3 Runtime Optimizations

All static optimizations, which have been presented throughout this section, have con-

stant or logarithmic costs and will be cheaper than the query evaluation step, at least in

70

3.3. Optimizations

most cases. Next to that, they will only be performed once at compile time. As not all

properties of the touched data will be known before the query is evaluated – or cannot

be used for optimizations – some decisions have to be taken at runtime, or just-in-time.

As an example, a sequence might include items of different types, and an expression will

need to choose between different evaluation plans at runtime. Next, the contents of a

document may be used as input for another doc() function, as the following example

demonstrates:

for $db in doc(’list.xml’)//database/@name return doc($db)

Dynamic query processing is a well-known topic in the database world; see [GW89] for

an important contribution on dynamic evaluation plans. A major challenge is to quickly

decide which evaluation alternative will possibly yield the fastest results: otherwise, the

costs for finding the cheapest step might outweigh the costs for evaluating the original,

unoptimized query expression.

In the scope of this work, two practical runtime optimizations have been picked out to

demonstrate that simple runtime tests, backed by appropriate extensions of the evalu-

ation framework, can have a strong impact on the execution time. Some benchmark

results are listed in 4.2.1.

3.3.3.1 Direct Sequence Access

XQuery allows users to write code that looks similar to procedural code:

declare variable $data := doc(’input.xml’)//data

for $i in 1 to count($data)

return $data[$i]

The query example generates a sequence of data elements, and the subsequent FLWOR

expressions returns all items of the sequence11. While the bracket notation looks like

a classical array offset, it is in fact a predicate containing a positional test – which is a

special case in XQuery, as a predicate may contain arbitrary expressions. Hence, if the

query is evaluated in a straightforward manner, and if data has n elements, the predicate

will be matched against all items of the sequence n times, resulting in Θ(n2) (both best

and worst case).

11Obviously, the variable reference $data would yield the same result as the FLWOR expression.

71

3.3. Optimizations

As a positional predicate will never yield more than one result, a first optimization con-

sists in adding a skip mechanism to the predicate test, which will be triggered at runtime

after the first positional test has been successful. This will reduce costs to an average

of O(n
2

2). In practice, however, this optimization yields much better costs as results are

often limited to the first m elements of a sequence, in which case the costs are further

lowered to O(m
2

2).

If all items of a sequence are available at runtime, the data structure storing the sequence

can be extended by methods to directly access items by their offset. While this concept

does not harmonize with iterative, pipelined query evaluation (see 3.4.1), it perfectly

goes hand in hand with pre-evaluated sequences, such as found in global variables, or

in parts of the query which are repeatedly evaluated and thus cached, and the resulting

costs will be O(n).

To decide if positional access is possible in a filter expression, such as the one shown in

the example and described in the Summary (3.5), the predicate is evaluated at runtime.

If it yields a single positive integer – which might as well be true for a double number

without fractional digits, a case which cannot be covered with static typing – and if the

value of the main expression has already been evaluated and is fully available for posi-

tional access, i.e., if the sequence contains a method for direct access, the relevant item

is requested and returned as single result. If no direct access is available, a new iterator

is created, which will be aborted as soon as the first result has been returned. If the

predicate is not numeric, or if the predicate expression depends on the current context,

or if more than one predicate has been defined for the filter expression, the standard

evaluation path is taken, which supports both positional and boolean predicates.

3.3.3.2 General Comparisons

General comparisons are one of the most frequently used expressions in XQuery; ac-

cordingly, small optimizations can lead to significant performance boosts. In the spec-

ification, they are defined as “existentially quantified comparisons”, which atomize the

items of both its operands and return true if one single comparison is successful. As a

result, comparisons with empty sequences, such as () = () or () != (), return false

whereas (1,2) > (2,1) returns true. As a general comparison with m ∗ n items will

have a worst case of O(m ∗ n), one of the item sequences needs to be iterated several

times, and better performance can be expected if the intermediate results are cached.

Caching may be suboptimal, however, if only single items are to be compared (which

72

3.4. Evaluation

are the types of comparisons that occur most often in practice). Depending on the cardi-

nality of the operands, the best evaluation variant can be chosen step by step at runtime

(note that details on iterative processing can be found in the upcoming Section 3.4.1):

1. If static typing indicates that both operands will yield 0 or 1 results, the expression

can be optimized at compile time: the atomic values from both operands can be

directly compared without further cardinality checks.

2. Otherwise, an iterator iter1 is requested for the first operand. If iter1 indicates

that 0 results are expected, false is returned.

3. If iter1 indicates 1 result, and if static typing indicates that the second operand

will return 0 or 1 results, the first item of iter1 will be compared with the atomic

value of the second operand. Otherwise, the second iterator iter2 is requested,

and false is returned if the iterator will return 0 results.

4. If both iterators indicate 1 result, the firsts items that are returned by the iterators

are compared.

5. If the number of results for iter1 is unknown, and if iter2 will return 1 result, all

items from iter1 are compared with the first item from iter2.

6. If none of the cases applies, all results from iter1 are compared with the first item

from iter2 and cached for repeated access. If no comparison was successful, the

cached items are compared with all other items from iter2.

While each of the listed conditions, except for the first, adds some computation overhead

at runtime, it does not outbalance the time needed for caching or reiterating all items of

an iterator.

3.4 Evaluation

After all normalizations and optimizations have been performed, the resulting expres-

sion tree contains all information needed to evaluate the query. In the evaluation step,

all data will be handled that cannot be statically processed. As was shown in the pre-

vious section on query optimization, this step can be reduced to simply returning the

result of a compiled query – which is often the case if the query is supposed to return

statistical information on a database, using the fn:count() function, or if a query does

not use database references at all.

73

3.4. Evaluation

Note that classical teaching on compiler construction allows for an additional code gen-

eration step, which transforms an expression tree into executable code. This step is

mandatory if the compiled code is materialized and executed later. In the context of

XQuery, it has been applied to Qexo [Bot04], BEA/XQRL [FHK+03] and the Pathfinder

[GMR+07]. Next, the commercial version of SAXON includes an option to generate Java

byte code, which promises an average speedup of 25% [Kay08]. In the scope of this

work, code generation is skipped. Instead, the generated expression tree is always eval-

uated directly after it has been compiled and optimized.

3.4.1 Iterative Processing

Iterative query processing is a well-known evaluation strategy in query languages [FG89,

Gra93]. In the literature on XQuery, no clear distinction is made between iterative,

streaming, and pipelined processing. In this work, the term iterative has been selected as

favorite term, as it constitutes a link to original database publications, which share many

commonalities with today’s algorithms. Ideally, iterative processing results in constant

CPU and I/O costs, as no intermediate results are generated that end up in much smaller

final results. As an example, the query (1 to 100*1000*1000)[1] consists of a filter

expression with one predicate. It returns the first of 100 million items. If the query is

executed in a trivial way, the range expression will generate a sequence of 100 million

integers. In the second step, all integers will be filtered by the predicate, and only the

first one will be accepted as result. While the presented query may seem hypothetical,

it is supposed to demonstrate that queries on large documents can cause out-of-memory

errors, even if the final results are very small. Lazy evaluation is a related concept,

which is made possible by iterative evaluation [Joh84]: computation of values can be

delayed, or completely avoided, if they will not contribute to the final result. In the upper

example, only the first item needs to be generated and tested, as the remaining values

can be skipped (see also Section 3.3.3.1 on optimizations for speeding up positional

predicates).

In its core, an iterator can be reduced to a single Next() method, which returns the

next item of a computed expression, or a null reference if the iterator is exhausted

and no more items are available. The iterator method can either be directly added

to each expression or wrapped into an iterator object. In the iterator model of the

presented query architecture, the latter variant was chosen: Each expression is extended

by an Iterator() method, which creates and returns a new iterator instance with a Next()
method. While the instantiation of new iterator objects consumes additional CPU time

74

3.4. Evaluation

and memory resources, it enables the use of singleton expressions and values, which are

used in different contexts throughout the expression tree. As an example, the compiled

version of the arithmetic expression 1 + 1 can be easily optimized to reference the same

integer object in memory. If the iterator was part of the expression, the first call to Next()
call would return the integer in question, and another call for the second operand would

return null. The adaptive approach presented in 3.4.1.2 will show how the costs for

creating new objects can be amortized in practice.

The iterator interface is extended by additional, optional methods:

• Size() returns the number of iterated items, or -1 if the size is unknown.

• Get(int) retrieves the specified item if the number of items is known, or null if no

positional access is possible.

• Reset() resets the iterator to the first item and returns true, or false if reset is not

supported.

• Reverse() reverses the order of the iterated items and returns true, or false if

reversion is not supported.

• Finish() returns a sequence with all (remaining) iterated items.

While a default iterator is restricted to return only the next item of an expression, some

iterators can pass on existing information on the expected output. For instance, the

range expression returns a sequence of consecutive integers. As the minimum and maxi-

mum values are known when the iterator is created, the implementation of Size(), Get(),

and Reset() is trivial. Size() will e.g. be called by the XQuery fn:count() function, the

evaluation of which is shown in Algorithm 14: If the iterator, which is returned by the

function’s argument, is a value different to -1, it represents the final results. Otherwise,

all items need to be iterated and counted. This way, expressions such as count(1 to

100) can be evaluated in constant time.

Size() and Get(int) are called by a number of other expressions:

• If the iterator size is known, and if a positional predicate is specified in the pred-

icate of a path or filter expression, the requested item can be directly accessed

and returned. If the fn:last() function is used, the last returned item can be

accessed by calling iter.Get(iter.Size()−1). As a consequence, the query (1 to

100)[last()] can be evaluated without actually touching the iterator items.

• The fn:subsequence($e,$s,$l) function takes expression $e and returns a new

subsequence of length $l, starting at position $s. Again, the relevant items are

75

3.4. Evaluation

Algorithm 14 Count.Item() : Item

Require: EXPR := argument of the count function
1 iter := EXPR.Iterator()
2 c := iter.Size()
3 if c = −1 then
4 repeat
5 c := c + 1
6 until iter.Next() = null

7 end if
8 return new Integer(c)

directly accessed with Get(int). Next(), Size() and Get() are also implemented in

the iterator, which is returned by the fn:subsequence() function. As a result,

nested expressions such as fn:count(fn:subsequence(1 to 100, 10, 20)) can

as well be evaluated in constant time.

• The fn:reverse($e) function reverses the order of all items from expression $e.

If all items can be accessed with Get(int), there is no need to cache the incoming

sequence.

Reset() is needed to iterate through the same sequence several times. This method is

e.g. called by the general comparison, which compares two sequences item by item

(see 3.3.3.2). If the available iterator cannot be reset, the items are first cached in

a general-purpose iterator (see 3.4.1.1), which supports all mandatory and optional

iterator methods.

The Reverse() method is called by the fn:reverse($e) function. If the items of a se-

quence can be reversed, no additional operation is necessary, as the same iterator can be

returned. The range expression can be easily reversed by swapping the minimum and

maximum value. As a result, the query reverse(1 to 100) causes no extra costs.

3.4.1.1 Caching

The caching of items cannot always be avoided. It is needed for blocking operators,

which repeatedly access the same items returned by an iterator. Examples are the OR-

DER or GROUP clause in the FLWOR expression, the general comparison, some filter

expression with multiple predicates, or variables, which are referenced multiple times in

a query.

76

3.4. Evaluation

While most expressions contain their own iterator implementations, some iterators have

been added that cache the iterated items and support all sequence operations. The

ItemIterator is a general-purpose implementation of the iterator interface. An Add(item)
method allows to cache single items. Add(iterator) consumes and caches all items of the

specified iterator. If the specified iterator is already an ItemIterator instance, its cached

items will be directly adopted. The cached items can be converted to a result sequence

without being copied.

Algorithm 15 NodeIterator.Add(Node n)

Require:
NODES := array with cached nodes
ORDERED indicates if cached nodes are ordered and duplicate-free (normalized)
RANDOM indicates if incoming nodes may invalidate order

1 iter := EXPR.Iterator()
2 c := iter.Size()
3 if RANDOM and ORDERED and #NODES > 0 then
4 diff := n.ID − NODES[#NODES - 1].ID
5 if diff = 0 then
6 return
7 else if diff < 0 then
8 ORDERED = false
9 end if
10 end if
11 add n to NODES

According to the specification, the resulting nodes of location steps and combining node

operators (union, intersect, except) have to fulfill two properties: they must be in docu-

ment order and free of duplicates [BCF+07]. These requirements may cause additional

costs and should thus be skipped if nodes are known to be sorted and duplicate-free (for

the sake of simplicity, we will call a set of nodes ordered if both properties are true).

If this guarantee can be given at compile time, the nodes will not be cached at all; in-

stead, expressions will be iteratively evaluated (see 3.4.1.3 for details). Otherwise, the

NodeIterator is applied, which ensures that all returned nodes will be ordered. If a new

instance of this iterator is created, an ORDERED flag is set to true, indicating that, by

default, all cached nodes are ordered. A RANDOM flag is set by the calling expression to

indicate that the incoming nodes might destroy document order. If a new node is added

via Add(Node) (see Algorithm 15), and if both the ORDERED and RANDOM flag is true, the

77

3.4. Evaluation

id value of the node is compared with the id of its predecessor12. If the ids are equal,

the new node can be ignored, as it has already been cached. Otherwise, if the new id is

smaller, the ORDERED flag is invalidated, and the cached nodes will be sorted and freed

from duplicates as soon as the first node is requested via the iterator methods. If the

nodes will not be accessed, sorting and duplicate removal can be completely avoided.

3.4.1.2 Adaptive Approach

For non-blocking operators, it appears reasonable at first glance to apply iterative query

processing whenever possible. There are some cases, however, in which the iterative

concept turns out to be suboptimal. First of all, care must be taken with expressions that

perform disk-based operations: if a single iterator call can trigger a selective disk-access,

and if it is followed by a second selective access somewhere else on disk, this can lead to

pseudo-random access patterns, which are much slower than sequential calls. The index

equivalents of the following queries demonstrate the difference:

1. //text()[. = ("a", "z")] ≡ TextIndex("a") | TextIndex("z")

2. //*[text() = "a"] ≡ TextIndex("a")/parent::*

The first query performs two index operations, the results of which are joined by a

union expression, and the second expression accesses an index and passes on the results

to a parent step. Preliminary performance tests on these queries were indicating that

the iterative retrieval of single index results (which essentially are pre values, possibly

followed by pos values for full-text requests) performed much worse than a conventional

retrieval, in which the cached pre values are wrapped by an iterator.

Next, many expressions, such as arithmetic operators or value comparisons, expect sin-

gle items as input. If the resulting item of an operand is first wrapped into an iterator,

which is later requested by a single item call, the iterator concept represents an obvious

overhead needed to fulfill the demands of the overall architecture.

An adaptive approach has been chosen in our architecture to overcome the potential

bottlenecks: The abstract Expression class, which is the super class of all expressions,

is extended by an additional Item() method, which returns the evaluated value as a

single item, or a null reference for an empty sequence. If the expression evaluates to

12For fragments, ids are generated at runtime; for disk-based nodes, the database reference and the pre
value is used to compute equality.

78

3.4. Evaluation

more than one item, a type error is raised. This method is called by all expressions

that accept at most one item as result, and it is implemented by all expressions that

are guaranteed to return at most one result. As a complement, the Iterator() method

is only implemented if more than one item may be returned, and it is only called by

expressions that expect sequences as result. At least one of the two methods needs to be

implemented by each expression.

There will be many cases in which an expression requests a single item, but the called

expression offers only an iterator implementation, or, the other way round, in which

expressions request a sequence whereas the operand is only prepared to return single

items. To guarantee that all expressions will be correctly served, the Expression class

offers standard implementations for both methods, which come into play if they are not

overwritten by the implementing expression:

Algorithm 16 Expression.Iterator() : Iterator

1 item := Item()
2 if item is null then
3 return empty iterator
4 else
5 return item.Iterator()
6 end if

In Algorithm 16, the Item() method of the expression is called and an iterator is wrapped

around the evaluated item. If the expression is a null reference, an empty iterator is

returned.

Algorithm 17 Expression.Item() : Item

1 iter := Iterator()
2 item := iter.Next()
3 if item is null then
4 return null

5 else if iter.Next() is null then
6 return item
7 else
8 raise type error (XPTY0004)
9 end if

Algorithm 17 calls the Iterator() method of the expression and requests the first item.

null is returned if the iterator is exhausted after the first call. If the iterator returns no

second item, the first item is returned as result. Otherwise, a type error is raised, which

indicates that at most one item is allowed at this stage.

79

3.4. Evaluation

Algorithm 18 Expression.Ebv() : boolean

1 if expression returns zero items then
2 return false

3 else if expression returns one item then
4 return Item().Boolean()
5 else
6 iter := Iterator()
7 item := iter.Next()
8 if item is null then
9 return false

10 else if item is no node and iter.Next() is not null then
11 raise type error (FORG0006)
12 else
13 return item.Boolean()
14 end if
15 end if

Two supplementary methods have been added to speed up the non-iterative evaluation.

Algorithm 18 computes the effective boolean value of an expression: If static typing indi-

cates that zero items will be returned, evaluation is skipped and false is returned. If one

item can be expected, the boolean value of the result of Item() is computed. Otherwise,

if the exact number of results is unknown or more than one, Iterator() is called, and the

first item is requested. false is returned if this item is a null reference. In accordance

with the specification, an error is raised if the first item is no node, and if the iterator

returns additional items. Otherwise, the boolean value of the first item is returned.

Algorithm 19 Expression.Value() : Value

1 if expression returns zero items then
2 return empty sequence
3 else if expression returns one item then
4 return Item()
5 else
6 return Iterator().Finish()
7 end if

Algorithm 19 is called whenever the complete value of an expression is needed. This is

e.g. the case for global variables, which are only evaluated once. Again, the iterator will

only be called if the expression might return more than one item.

80

3.4. Evaluation

3.4.1.3 Expressions

As XQuery embraces more than 50 expressions and operators, and more than 100 func-

tions, a complete listing of all iterative implementations and optimizations would be

soporific. Instead, we picked out distinctive expressions to demonstrate the general

benefits of iterative processing. In 3.4.2, additional details are given on the iterative

traversal of location paths.

Algorithm 20 Intersect.Iterator.Next() : Node

Require: ITERATORS := array with iterators on all operands
1 nodes := array with cached nodes
2 for i := 0 to #ITERATORS−1 do
3 nodes[i] := ITERATORS[i].Next()
4 return null if nodes[i] is null
5 end for
6 i := 1
7 while i < #nodes do
8 diff := nodes[0].ID – nodes[i].ID
9 if diff < 0 then
10 nodes[0] :=ITERATORS[0].Next()
11 return null if nodes[0] is null
12 i := 1
13 else if diff > 0 then
14 nodes[i] :=ITERATORS[i].Next()
15 return null if nodes[i] is null
16 else
17 i := i + 1
18 end if
19 end while
20 return nodes[0]

The classical database operators, which can be processed in a streamlined fashion if

the incoming items are ordered (see 3.4.1.1), are Union, Intersect and Except. The

Intersect expression is described in more detail: Algorithm 20 depicts the Next() function

of the returned iterator. First, all nodes are cached, which are returned by calls to the

Next() method of the iterators of the operands. As soon as one operand returns a null

reference in this and all subsequent steps, evaluation is stopped, as intersect will return

no more results. In the following while loop, the node identity (ID) of all cached nodes

is compared one by one. If a node has a smaller ID than the others, its successor is

requested. If all nodes have the same ID, one node is returned, and the others are

81

3.4. Evaluation

discarded.

Algorithm 21 Filter.Iterator.Next() : Item

Require:
PREDS := filter predicates
CONTEXT := query context
ITERATOR := iterator, generated on the input sequence
POS := 0 (current context position)

1 cache context value and position
2 loop
3 POS := POS + 1
4 item := ITERATOR.Next()
5 break if item = null

6 CONTEXT.VALUE := item
7 CONTEXT.POS := POS

8 for pred in PREDS do
9 break if the truth value of pred is false
10 end for
11 break if all predicates tests were successful
12 end loop
13 restore context value and position
14 return item

The filter expression was chosen as second example; its iterative variant is presented

in Algorithm 21. A filter is introduced by a primary expression and followed by one

or more predicates. If more than one position test is specified in the predicate list,

the context position may be different for each predicate. As an example, the query (1

to 3)[2][1] will yield 2, as the context position in the second predicate refers to the

results of the first predicate. This is why the depicted iterator only yields valid results

if the positional test is defined as first predicate, or if no position predicate is specified

at all. If the Next() method is called, the current context value and position are cached.

In the infinite loop, the next item from the primary iterator is set as new context item,

along with the updated context position. All predicates are then applied on the current

context. If a predicate test fails, the remaining tests are skipped. If all tests have been

successful, however, the loop is interrupted, the old context is restored and the result is

returned. The same happens if the iterator does not return any more results.

XQuery functions may benefit from iterative processing as well. The following func-

tions – and many others – consume and return sequences:

• index-of($seq, $item) returns the positions of a specific item in a sequence.

82

3.4. Evaluation

• insert-before($seq, $pos, $ins) inserts a new sequence in a sequence.

• remove($seq, $pos) removes an item at a specific position.

• reverse($seq) reverses the order of the items in a sequence.

• subsequence($seq, $start, $len) returns a sub-sequence.

• distinct-values($seq) returns all distinct values of a sequence.

Algorithm 22 IndexOf.Iterator.Next() : Item

Require:
ITERATOR := iterator on the input sequence ($seq)
ITEM := item to be found ($item)
POS := 0 (current iterator position)

1 loop
2 POS := POS + 1
3 item := ITERATOR.Next()
4 if item = null then
5 return null

6 else if ITEM equals item then
7 return new Integer(POS)
8 end if
9 end loop

In Algorithm 22, the Next() method of the iterator of the index-of($seq, $item) func-

tion is shown. Before the method is called, the iterator of the input sequence is assigned

to ITERATOR, and the item to be found is assigned to ITEM. If Next() is called, a new item

is requested from the sequence iterator. The infinite loop is only stopped if this item is

null, or if it matches the item to be found. In the latter case, the sequence position

is returned as integer. – If this method was implemented in a conventional manner, all

items of the input sequence would have to be cached first, and the resulting sequence

would consume additional memory.

3.4.2 Location Paths

This section discusses the evaluation of location paths, which are a core feature of the

XPath language and the most important expression for performing queries on XML in-

stances (see also Section 3.1.1). In XQuery, location paths are a special type of path

expressions, containing only axis steps. Our algorithms for evaluating location steps on

the presented table storage have initially been inspired by the Staircase Join [GvKT03],

a join operator that speeds up the execution of location paths in relational databases.

83

3.4. Evaluation

A
A

B

B
A

X

post

1

2

3

4

5

6

pre
1 2 3 4 5 6

A
A

B

B
A

X

post

1

2

3

4

5

6

pre
1 2 3 4 5 6

A
A

B

B
A

X

post

1

2

3

4

5

6

pre
1 2 3 4 5 6

A
A

B

B
A

X

post

1

2

3

4

5

6

pre
1 2 3 4 5 6

Figure 3.6: pre/post planes; descendant step for the three A elements:
a) conventional, b) with Pruning, c) with Partitioning, d) with Skipping

3.4.2.1 Staircase Join

The Staircase Join comprises three “tree aware” optimization strategies, namely Pruning,

Partitioning, and Skipping, which complement each other and which speed up the eval-

uation of XPath axes for a given context node sequence. Figure 3.6 shows four pre/post

planes (see 2.3.2 for a reminder). The gray rectangles depict the regions that have to

be scanned from left to right to evaluate a descendant step, starting from the three A

elements with pre values 2, 3, and 6. In the first plane, some areas are scanned multiple

times, resulting in quadratic costs and duplicate results. In the second region, pruning
is applied: the axis evaluation is only performed for the first and third node: as the

second node is a descendant of the first node (which can be derived from its pre and

post values), it is ignored, as all its descendants will already be traversed by the first

node. In the partitioned plane, the scanned areas are made disjunct, i.e., scanning is

canceled whenever the pre value of the currently scanned node equals the pre value of

the next context node. In the rightmost skipping plane, scanning is stopped as soon as

the post values indicate that all descendants of the context node have been visited. For

more details on the Staircase Join algorithms, the reader is referred to Grust’s original

publications [Gru02, GvKT03, GT04].

The Staircase Join techniques can also be adapted to other encodings: Algorithm 23

demonstrates the traversal of the descendant axis, based on the pre/dist/size encod-

ing. Skipping is not necessary at all, as the size property of a node directly reflects the

number of descendants (see 2.3.4). Next, nodes can be pruned on-the-fly: n1 and n2

designate a successive pair of context nodes. The main loop reflects the partitioning
step. The inner loop visits all descendant nodes of n1 and adds them to the result array.

If pre equals the pre value of the next context node n2, n2 is discarded and overwritten

by its successor. If all descendants of n1 have been traversed, the loop is continued with

n2 until all context nodes have been processed.

84

3.4. Evaluation

Algorithm 23 Axis.Descendant(nodes : NodeSequence) : NodeSequence

1 result := new NodeIterator()
2 n1 := nodes.Next()
3 while n1 is not null do
4 n2 := nodes.Next()
5 for pre := n1.pre to n1.pre + n1.size− 1 do
6 add new Node(pre) to result
7 if n2.pre = pre then
8 n2 := nodes.Next()
9 end if
10 end for
11 n1 := n2

12 end while
13 return result

Algorithm 24 Axis.Child(nodes : NodeSequence) : NodeSequence

1 result := new NodeIterator()
2 for n in nodes do
3 for pre := n.pre + n.asize to n.pre + n.size step Size(pre) do
4 add new Node(pre) to result
5 end for
6 end for
7 return result.Sort()

The traversal of the parent and ancestor axes is very simple, as the dist property offers a

direct reference to the relevant nodes. The evaluation of the child axis never generates

duplicates, as each node has a unique parent. Therefore, pruned child nodes would yield

wrong results, as all nodes of the input context need to be considered for traversal. In

Algorithm 24, the children of all input nodes are evaluated. The pre counter in the inner

loop is initialized with the sum of the pre value of the context node and its asize value,

which represents the number of attributes. By incrementing pre by the size value of the

currently visited node, using Size(pre), all descendants of the child nodes are skipped,

and only the relevant nodes are touched. The document order of the nodes might get

lost in the resulting sequence, however, as the following query shows:

<X><X>a</X>b</X>/descendant::X/child::text()

The first location step generates two context nodes X, which both have a single text node

as child. As the text child of the first X element is placed after the text of the subordinate

X element, the resulting text nodes (b, a) need to be sorted before they are returned.

To avoid sorting, a stack can be added to the algorithm, which caches all nodes that

85

3.4. Evaluation

are ancestors of the currently traversed parent node (see [Rod03] for the corresponding

algorithm on the pre/post encoding).

In practice, we observed that the Staircase Join optimizations (and particularly the prun-
ing step) are relevant in only a few cases, as most queries will not generate any dupli-

cates, or will return small result sets instead, which can be sorted and freed from du-

plicates without considerable overhead. Next, many location paths can be optimized in

advance to avoid the generation of duplicate nodes at runtime. The most common ex-

ample represent queries with two location steps descendant::node()/child::*, which

would clearly benefit from pruning, but can also be rewritten to a single location step

descendant::* (details on rewriting location paths have been discussed in 3.4). As

pruning cannot be applied to location steps with position predicates [GVK04], and as

XQuery allows arbitrarily complex expressions as predicates, the presented algorithms

have eventually been replaced with simplified, iterative versions of the algorithms, which

process context nodes one by one. If the incoming nodes are known to be sorted, and

if the axis steps preserve orderedness and generate no duplicates, the complete location

path can be evaluated in an iterative manner (details on the detection of duplicates and

orderedness in location path can be looked up in [HMV05]). Otherwise, the steps are

evaluated one after another, and the results are added to a NodeIterator instance, which

only sorts the nodes if necessary (see Section 3.4.1.1).

3.4.2.2 Path Traversal

EvalPath IterPath

LocationPath

ROOT: Expression
STEPS: AxisStep[]

Iterator() :
 Iterator

IterStepEvalStep

Kind

ATTRIBUTE
COMMENT
DOCUMENT-NODE
ELEMENT
PROCESSING-INSTR.
TEXT

AnyKindTest

KindTest

KIND: Kind

AxisStep

TEST: NodeTest
AXIS: Axis
PREDS: Expression[]

Iterator() : Iterator

Axis

ANCESTOR
ANCESTOR-OR-SELF
ATTRIBUTE
CHILD
DESCENDANT
...

Iterator(Node) :
 Iterator

NameTest

NAME: QName

NodeTest

Matches(Node)

Node

Ancestor() : Iterator
AncestorOrSelf() : Iterator
...

MemNode

DiskNode

DATA: Data
PRE: int

Figure 3.7: Class diagram: location path expressions

Figure 3.7 depicts the most important expressions of location paths. In this work, a

LocationPath is specified as an expression with an optional root Expression and several

AxisSteps, and an AxisStep consists of an Axis, a NodeTest and zero or more Expressions as

predicates. Both the conventional and iterative versions of the LocationPath and AxisStep

86

3.4. Evaluation

Algorithm 25 DiskNode iterators

Require: DATA := database reference, PRE := pre value, P := PRE (pre cursor)

Child.Next() : Node
Require: P := P + DATA.ASize(P)
1 if P = PRE + DATA.Size(PRE)
2 return null

3 end if
4 node := new DiskNode(DATA, P)
5 P := P + DATA.Size(P)
6 return node

Parent.Next() : Node
1 if P != PRE

2 return null

3 end if
4 P := P − DATA.Dist(P)
5 return new DiskNode(DATA, P)

Descendant.Next() : Node
1 P := P + DATA.ASize(P)
2 if P = PRE + DATA.Size(PRE)
3 return null

4 end if
5 return new DiskNode(DATA, P)

AncestorOrSelf.Next() : Node
1 if P = −1
2 return null

3 end if
4 node := new DiskNode(DATA, P)
5 P := P − DATA.Dist(P)
6 return node

Following.Next() : Node
Require: P := P + DATA.Size(P)
1 if P = DATA.META.SIZE

2 return null

3 end if
4 node := new DiskNode(DATA, P)
5 P := P + DATA.ASize(P)
6 return node

Attribute.Next() : Node
1 P := P + 1
2 if P = PRE + DATA.ASize(PRE)
3 return null

4 end if
5 return new DiskNode(DATA, P)

Self.Next() : Node
Require: EVAL := false

1 if EVAL

2 return null

3 end if
4 EVAL := true

5 return new DiskNode(DATA, P)

DescendantOrSelf.Next() : Node
1 if P = PRE + DATA.Size(PRE)
2 return null

3 end if
4 node := new DiskNode(DATA, P)
5 P := P + DATA.ASize(P)
6 return node

Ancestor.Next() : Node
1 P := P − DATA.Dist(P)
2 if P = −1
3 return null

4 end if
5 return new DiskNode(DATA, P)

FollowingSibling.Next() : Node
Require: P := P + DATA.Size(P)

PAR := PRE – DATA.Dist(PRE)
1 if P = PAR + DATA.Size(PAR)
2 return null

3 end if
4 node := new DiskNode(DATA, P)
5 P := P + DATA.Size(P)
6 return node

87

3.4. Evaluation

expressions (prefixed with Eval and Iter) have an Iterator() method, which returns the

evaluated next node, or null if all no more results are found. The Iterator() method

of the Axis enumeration returns an iterator for the specified Node. NodeTest.Matches()
returns true if the specified node complies with the test. A test may accept all nodes

(AnyKindTest), nodes of a specific Kind (KindTest), or elements and attributes with a

certain name (NameTest)13. If the test is successful, the predicates are evaluated.

We will now have a closer look on the individual expressions, starting bottom-up with

the axis implementations. Both database (DiskNode) and constructed (MemNode) nodes

offer particular implementations for all XPath axes: while the memory-based iterators

are similar to conventional tree traversals, the database variants have been derived from

the Staircase Join algorithms and, hence, are more interesting in this context.

Algorithm 25 lists the Next() methods of the iterators of 10 of the 12 XPath axes, which

all can be implemented without considerable effort. As indicated in the last section, all

nodes are traversed one by one. A simple integer (P) references the current pre value.

null is returned if an axis will return no more nodes. Otherwise, P is updated, and

a new Node instance is created and returned. For some axes, which do not return a

self reference, the pre cursor needs to be initialized differently. As an example, in the

prolog of the Following.Next() method, the descendants of the initial node are skipped;

after that, the cursor is incremented by the node’s attribute size (asize). All algorithms

are optimal in the sense that only the relevant nodes are touched (in contrast, e.g., the

pre/post/level encoding requires a traversal of all descendants to find child nodes).

The two missing axes are preceding and preceding-sibling. As the nodes of the axes are

to be returned in reverse document order (as is the case with the ancestor axes), and

as no direct reference to left siblings is available in our encoding, a NodeIterator is used

to cache the results in ascending order, and then return them in backward direction.

Even so, only the nodes will be touched that contribute to the final result. To avoid

caching, the database table can as well be traversed backwards, and all touched nodes

can be matched against the axis. A reverse traversal is much slower, however, as many

irrelevant nodes are touched (including attributes, which will never be addressed by the

preceding axes). Next, usual prefetching strategies on hard disk are optimized for reading

forward. As preceding and following axes are rarely used in practice, implementation

details are skipped, and the reader is referred to the source code of BASEX [Grü10].

13The XQuery specification specifies more advanced tests for element, attribute and document nodes, which
have been excluded from this overview.

88

3.4. Evaluation

On the next, higher level, the IterStep expression loops through all nodes that are re-

turned by the axis iterator. Its Next() method has many similarities with the Filter vari-

ant, which has been presented in 3.4.1.3. Algorithm 26 will only yield valid results

if at most one positional test is specified, which must additionally be placed as first

predicate. Note that this limitation is not intrinsic to iterative processing; instead, it

was introduced to simplify the presented pseudo-code. If a separate context position is

managed and cached for each predicate, the algorithm will be able to process arbitrary

positional predicates.

Algorithm 26 IterStep.Iterator.Next() : Node

Require:
AXIS := XPath axis
TEST := node test
PREDS := filter predicates
CONTEXT := query context
ITERATOR := node iterator, generated from the AXIS and input node
POS := 0 (current context position)

1 loop
2 POS := POS + 1
3 node := ITERATOR.Next()
4 if node = null then
5 return null

6 else if TEST.Matches(node) then
7 CONTEXT.VALUE := node
8 CONTEXT.POS := POS

9 for pred in PREDS do
10 break if the truth value of pred is false
11 end for
12 return node if all predicates tests were successful
13 end if
14 end loop

In contrast to the filter expression, the step iterator additionally performs the node test

before the predicates are considered. Next, the context item and position is not reset, as

this will be done once for all steps by the path expression.

Finally, Algorithm 27 shows the Next() method of the IterPath, which creates and triggers

the axis step iterators and returns the results of the last step. The ITERATORS variable

contains references to the step iterators, the first of which is initialized before the first

call (the optional root expression is excluded from this algorithm; it is treated the same

way as the axis steps). The original context value and position are cached before and

89

3.4. Evaluation

Algorithm 27 IterPath.Iterator.Next() : Node

Require:
ITERATORS := iterator array
CONTEXT := query context
ITERATORS[0] = STEPS[0].Iterator()
P := 0 (index on current iterator)

1 cache context value and position
2 loop
3 node := ITERATORS[P].Next()
4 if node = null then
5 P := P − 1
6 break if P < 0
7 else if p < #ITERATORS – 1 then
8 P := P + 1
9 CONTEXT.VALUE := node
10 ITERATORS[P] = STEPS[P].Iterator()
11 else
12 break
13 end if
14 end loop
15 restore context value and position
16 return node

restored after the evaluation. In the main loop, the next item is requested from the

current iterator, which is referenced by P. If the iterator is exhausted, the next higher

iterator is addressed by decrementing P. If the leftmost iterator (i.e., the first location

step) returns null, the loop is canceled, as the location path will return no more results.

Otherwise, if the current iterator is not the rightmost, P is incremented, the evaluated

node is set as context node and the iterator of the next location step is initialized. If P

points to the last location step, the evaluated node is returned as result.

3.4.2.3 Optimizations

The proposed framework offers room for numerous tweaks and improvements, both

conceptual and technical, which will further speed up the evaluation of location paths.

Some of the most important optimizations are sketched in the following. First of all, the

IterStep algorithm is clearly suboptimal, regarding the evaluation of positional predicates:

• All nodes are iterated, even if a position test is specified that filters the result-

ing nodes to a small subset. In the example query descendant::node()[1], the

90

3.4. Evaluation

iterator could be canceled after the first hit.

• Predicates using the last() function (which returns the last item of a sequence)

are not supported, as the number of results is not known in advance. As the

last() function will reduce the processed nodes to a single item, the conventional

evaluation, which caches all nodes, is highly undesirable.

Algorithm 28 IterStep.Iterator.Next() : Node

Require: see Algorithm 26, plus:
POSITION := position expression (optional)
RETURNLAST := flag for returning the last node (optional)
SKIP := false

1 return null if SKIP

2 last := null

3 loop
4 POS := POS + 1
5 node := ITERATOR.Next()
6 if node = null then
7 SKIP := RETURNLAST

8 return last
9 else if TEST.Matches(node) then
10 CONTEXT.VALUE := node
11 CONTEXT.POS := POS

12 for pred in PREDS do
13 break if the truth value of pred is false
14 end for
15 if all predicates tests were successful then
16 SKIP := POSITION.Skip(CONTEXT)
17 return node
18 end if
19 if RETURNLAST then
20 last := node
21 end if
22 end if
23 end loop

Algorithm 28 includes optimizations for the two requirements: RETURNLAST will be true

if the step contains a single last() predicate, and POSITION will be assigned if the

first predicate is an implementation-defined POSITION expression (see Section 3.5 for its

definition). The SKIP flag indicates that the iterator will return no more results. It is

set to true if the iterator is exhausted and the RETURNLAST flag is true, or if the Skip()
method of the position expression returns true for the given context, indicating that

91

3.5. Summary

the context position has surpassed the given range. The last variable caches the last

node that has been accepted by the node test. Note that both optimizations can also be

applied to the filter iterator (Algorithm 21).

Another improvement can be applied to the evaluation of location paths: The iterative

evaluation of path expressions is limited to descendant paths that follow certain patterns

[HMV05]: parent steps may yield duplicate nodes, even if they are evaluated on ordered

and duplicate-free node sets, as nodes can have the same parents. Still, the proposed

IterPath method can be easily extended to also evaluate parent steps: Before a node is

returned, it is cached by the iterator. If a cached node already exists, its node identity

is compared with the new node. If both nodes have the same identity, the new node is

ignored. This optimization is particularly helpful if a query is rewritten for index access,

in which case child steps are inverted to parent steps.

Another simple yet effective optimization concerns the instantiation of new objects,

which is an expensive operation in most programming languages. The proposed axis

iterators continuously create new DiskNode objects, most of which will not contribute to

the final result. This can be avoided by creating a single, initial node instance, which is

updated with the current iterator values. If this node is accepted by a step expression, a

copy of it is returned as result.

3.5 Summary

This section summarizes the optimizations and rewritings that have been applied to the

most important XQuery expressions; we hope that they might serve as inspiration for

other implementors of XQuery, and similar languages. The expression syntax is inspired

by the W3C Recommendations, in which further details on the expressions can be looked

up [BCF+07, MMW07]). To save space, the following abbreviations are used for the

summary of each expression:

S contains the semantics of an expression.

P describes operations in the parsing step that differ from the proposals in the speci-

fication (of course, all expression will continue to comply with the specification).

C contains query compilation steps. If an expression is “returned”, it will replace the

original expression in the query plan.

I includes information how an expression is rewritten for index access, and how

costs will be estimated.

92

3.5. Summary

E refers to evaluation/runtime optimizations.

X adds examples to illustrate how some of the compilation steps work. Numbers

have been added to the compilation steps and examples to show their relationship.

The following keywords are used as placeholders for returned expressions in the compi-

lation step:

• EMPTY designates the empty item sequence ().

• TRUE and FALSE are equivalents for the boolean items true and false.

Some optimizations are skipped in this context, as they have already been described in

the previous sections. For example, details on constant folding would be mostly redun-

dant, as this optimization can be applied to nearly all operators. Next, some expressions

will be introduced that have no equivalent in the specifications, as they result from com-

piling other expressions. Consequently, their proposed syntax and semantics is specific

to our implementation.

ARITHMETIC: o1 {+|-|*|div|idiv|mod} o2 → item()?

S The arithmetic operator is applied to the atomized operands. Besides numbers,

also dates and durations can be computed and returned, according to the Operator

Mapping of the specification.

C1 EMPTY is returned if one operand will never yield results.

E Evaluation of the second operand is skipped if the first yields an empty sequence.

X1 1 + (10 to 1) → ()

CONDITIONAL: if(c) then e1 else e2 → item()*

S If the effective boolean value of condition c yields true, e1 is evaluated. Otherwise,

e2 is evaluated.

C1 If the condition is a value, the correct branch is selected and returned.

C2 If both branches are identical, the condition is ignored and the identical result is

returned. This optimization assumes that the condition causes no side-effects.

C3 If the first branch is true and the second is false, the expression is replaced by a

function fn:boolean(c).

C4 If the first branch is false and the second is true, the expression is replaced by a

function fn:not(c).

C5 If the condition is enclosed by fn:not(c), the function is removed and the branches

are swapped.

X1 if(1) then local:run() else error() → local:run()

93

3.5. Summary

X2 if(local:process()) then ’ok’ else ’ok’ → ’ok’

X3 if(tp:desc()) then true() else false() → boolean(tp:desc())

X5 if(not(tp:desc())) then 0 else 1 → if(tp:desc()) then 1 else 0

EXCEPT: o1 except o2 → node()*

S All nodes of the first evaluated operand are returned that are not contained in the

second.

P Consecutive except operators are parsed into one expression.

C EMPTY is returned if the first operand yields an empty sequence. Other operands

yielding empty sequences are removed. If one operand is left that yields sorted

and duplicate-free nodes, this operand is returned.

FILTER: e[p1]...[pn]→ item()*

S The resulting items of an expression are filtered by one or more predicates.

C1 If the expression will never return results, EMPTY is returned.

C2 All predicate values yielding true are removed. If no predicates remain, the orig-

inal expression is returned. EMPTY is returned if one of the predicates yields

false.

C3 Numeric predicates are rewritten to POSITION expressions.

X1 (//*[text() = ’not found in the index’])[1] → ()

X2 <xml/>[true()][’ok’] → <xml/>

FLWOR: (for...|let...)+ (where w)? (order by o)? return r → item()*

S Values are iteratively mapped to variables, filtered, ordered, and returned.

C1 The WHERE clause is rewritten to one or more predicates, which are attached to

an innermost FOR clause; see 3.3.1.6 for details.

C2 LET clauses and FOR clauses with one result are statically bound to their refer-

ences.

C3 If WHERE will always yield true, it is removed. EMPTY is returned if it always

yields false.

C4 If one FOR clause will never yield results, EMPTY is returned.

C5 Declarations of statically bound variables are eliminated. If no variable declara-

tion is left, the return expression is returned. If a WHERE clause is specified, a

CONDITIONAL expression is returned.

C6 Expressions with one FOR/LET clause, no WHERE/ORDER clause and a single

variable reference in the RETURN clause are simplified.

X1 for $n in //Medium where $n/Type = ’DVD’ return $n/Title

94

3.5. Summary

→ for $n in //Medium[Type = ’DVD’] return $n/Title

X3 for $n in 1 to 10 where 3 < 2 return $n → ()

X4 for $n in () let $l := (1,2,3) return ($n, $l) → ()

X5 let $l := 1 where <x/> return $n → if(<x/>) then $1 else ()

X6 for $i in //item return $i → //item

FUNCTION CALL: $n(a1, ..., an)→ item()*

S The function named n is evaluated with the specified arguments a1, ..., an.

C1 If all function arguments are values, and if the function result is a value, this value

is returned.

C2 Functions that are never referenced at compile time, or have been inlined, will be

eliminated.

X1 declare function math:pi() { 3.14159265 }; math:pi() → 3.14159265

GENERAL COMPARISON: o1 {=|!=|<|<=|>=|>} o2 → xs:boolean

S All items of the evaluated operands are compared to each other, according to the

Operator Mapping of the specification. TRUE is returned if one of the comparisons

yields true.

C1 FALSE is returned if one operand will never yield results.

C2 Identical to the VALUE COMPARISON, just as C3, C4, and C5.

C5 Additionally, a POSITION expression is returned for a fn:position() function

and a range expression.

C6 If possible, a RANGE COMPARISON expression is returned for numeric compar-

isons. This expression can be combined with other range tests more easily, or

rewritten for range index access.

C7 A boolean flag SINGLE is set to indicate if all operands will yield single items.

I1 If possible, the operator is rewritten for index access; see 3.3.2.2 for details.

I2 If several expressions are specified as search terms, a UNION expression with mul-

tiple index operators will be returned. Index requests with zero results are ignored.

E If the SINGLE flag was set to true, all operands will be directly evaluated to single

items. Otherwise, TRUE is returned as soon as a comparison is positive (see 3.3.3

for more details on evaluating general comparisons).

X5 address[position() = 1 to 5] → address[1...5]

X6 salary[text() > 1000] → salary[1000 < text() < ∞]

INTERSECT: o1 intersect o2 → node()*

S All nodes are returned that occur in all of the evaluated operands.

95

3.5. Summary

P Consecutive intersect operators are parsed into one expression.

C EMPTY is returned if one of the operands will never yields results.

LOGICAL AND: o1 and o2 → xs:boolean

S The operands are evaluated to their effective boolean values. true is returned if all

booleans are true. Otherwise, the result is false.

P Consecutive and operators (o1 and . . . and on) are parsed into one expression.

This flattens the operator tree and allows for an easier optimization.

C1 All values yielding true are removed. If no operands remain, TRUE is returned. If

one operand remains, it is returned as new expression. If this operand yields no

boolean value, it is wrapped in a fn:boolean() function. FALSE is returned if at

least one of the values yields false.

C2 Multiple POSITION expressions are merged. If the merged position range will

never yield true, FALSE is returned.

C3 Multiple RANGE COMPARISON expressions are merged. If the merged expression

will result in an impossible range, FALSE is returned.

I1 If all operands can benefit from an index, an INTERSECT expression will be re-

turned, containing all operands rewritten for index access.

I2 Costs for index access are summarized. All index operations will be sorted by their

costs in an ascending order to evaluate the cheapest index operation first. If one

index operation will yield zero hits, EMPTY is returned.

E FALSE is returned as soon as one operand yields false.

X1 1 and ’two’ and xs:boolean(true()) → true

X2 node[position() >= 1 and position() <= 10] → node[1...10]

X3 //person[@income >= 1000 and @income < 5000] →
//person[1000 <= @income < 5000]

LOGICAL OR: o1 or o2 → xs:boolean

S The operands are evaluated to their effective boolean values. false is returned if

all booleans are false. Otherwise, true is returned.

P Same as LOGICAL AND: consecutive or operators are parsed into one expression.

C1 In analogy to AND: All values yielding false are removed. If no operands remain,

FALSE is returned. If one operand remains, it is returned as new expression. If this

operand yields no boolean value, it is wrapped in a fn:boolean() function. TRUE

is returned if at least one of the values yields true.

C2 Multiple GENERAL COMPARISON expressions are merged if their left operand is

identical. Expressions of this kind can better be rewritten for index access.

96

3.5. Summary

I1 If all operands can benefit from an index, an UNION expression will be returned,

containing all operands rewritten for index access.

I2 Costs for index access are summarized. If a single index operation will yield zero

hits, it is ignored. If no index operation will yield any hits, EMPTY is returned.

E true is returned as soon as one operand yields true.

X2 //node[text() = ’A’ or text() = ’B’] → //node[text() = (’A’, ’B’)]

NODE COMPARISON: o1 {<<|is|>>} o2 → xs:boolean?

S The operands are evaluated to nodes and compared in terms of their node identity.

C EMPTY is returned if one operand will never yield results.

E Evaluation of the second operand is skipped if the first yields an empty sequence.

X //text() is //text()/text() → ()

POSITION: min ... max→ xs:boolean

S This implementation specific expression is a normalized representation of posi-

tional predicates, containing a minimum and maximum integer value. true is

returned if the current context position lies within the given range. An additional

Skip() method checks if the context position surpasses the range.

RANGE: o1 to o2 → xs:integer*

S A sequence of consecutive integers is created, ranging from o1 to o2. Range ex-

pressions will never be pre-evaluated if the result would include more than one

integer; instead, light-weight iterators are created at runtime.

C1 If either operand will never yield values, or if the first operand yields an integer

larger than the second, EMPTY is returned.

C2 If both operands yield the same integers, that integer is returned.

X1 10 to 1 → ()

X2 1 to 1 → 1

RANGE COMPARISON: min {<|<=} o {<|<=} max: xs:boolean

S Some comparisons are rewritten into this implementation specific expression, which

contains an operand to be evaluated and a minimum and maximum double value.

true is returned if expression e lies within the given range.

I1 The operator is rewritten for index access, similar to step I1 of the GENERAL

COMPARISON.

I2 In accordance with the database statistics, if possible, the minimum and maximum

values are reduced for the tested text or attribute name.

97

3.5. Summary

I3 20% of the number of database nodes is set as costs to indicate that sequential

access might be faster if several index operations are to be performed.

TYPESWITCH: typeswitch (c) ({case t|default} return e)+→ item()*

S Depending on the type of expression c, one of the specified branches is evaluated

and returned. The syntax shown above is simplified.

C1 If the type of the condition is known due to static typing, the correct branch is

selected and returned.

C2 If all conditions specify the same result, the condition is ignored and the result is

returned. This optimization assumes that the condition causes no side-effects.

X1 typeswitch(xs:int(’1’)) case xs:int return 2 default return 3 → 2

X2 typeswitch(’a’) case xs:string return () default return () → ()

UNION: o1 union o2 → node()*

S All nodes are returned that occur in either of the evaluated operands.

P Consecutive union operators are parsed into one expression.

C All operands yielding empty sequences are removed. If no operand is left, EMPTY

is returned. If one operand is left that yields sorted and duplicate-free nodes, it is

returned as new expression.

VALUE COMPARISON: o1 (eq|ne|lt|le|ge|gt) o2 → xs:boolean?

S The operands are evaluated to items and compared to each other, according to the

Operator Mapping of the specification.

C1 EMPTY is returned if one operand will never yield results.

C2 If values and non-values are specified as operands, the expression is normalized:

the value is specified as second operand, and the operator is inversed.

C3 text() steps are added to location paths if database meta data indicates that the

result will be identical. Atomization will be cheaper, and expressions can be better

rewritten for index access (see Section 3.3.2).

C4 if possible, fn:count() functions are rewritten to fn:empty() or fn:exist(). The

latter functions may be cheaper, as only the first resulting item need to be touched.

C5 if possible, fn:position() functions are rewritten to an implementation specific

POSITION expression.

E Evaluation of the second operand is skipped if the first yields an empty sequence.

X2 node[123 lt text()] → node[text() gt 123]

X3 city[name eq ’Roma’] → city[name/text() eq ’Roma’]

X4 count(//item) gt 0 and count(//person) eq 0

98

3.5. Summary

→ exists(//item) and empty(//person)

X5 address[position() le 10] → address[1...10]

VARIABLE REFERENCE: $v → item()*

S The expression, which is bound to v, is evaluated and returned.

C1 If variables are global, specify a fragment, or contain a function call, they will be

pre-evaluated by the compiler if they are referenced for the first time.

C2 Variables that are never referenced at compile time will be eliminated.

X2 declare variable $x := doc(’input.xml’); <xml/> → <xml/>

99

3.6. Examples

3.6 Examples

3.6.1 Index Access

This section contains supplementary example queries along with the expression trees,

both in their original and compiled form. As will be seen, most optimizes plans are more

compact than the original ones.

Query:

doc(’xmark’)/descendant::item[@id = ’item0’]

Original: Path

Function

name: doc(string)

Step

axis: descendant

test: item

xs:string

value: xmark

Comparison

operator: =

Path
xs:string

value: item0

Step

axis: attribute

test: id

Compiled: Path

IndexAccess

data: xmark

type: ATTRIBUTE

Step

axis: self

test: *:id

Step

axis: parent

test: *:item

xs:string

value: item0

Query:

doc(’xmark’)//item[payment = ’Creditcard’]/..

Original: Path

Function

name: doc(string)

Step

axis: descendant-or-self

test: node()

Step

axis: child

test: item

Step

axis: parent

test: node()

xs:string

value: xmark

Comparison

operator: =

Path
xs:string

value: Creditcard

Step

axis: child

test: payment

Compiled: Path

IndexAccess

data: xmark

type: TEXT

Step

axis: parent

test: *:payment

Step

axis: parent

test: *:item

Step

axis: parent

test: node()

xs:string

value: Creditcard

Figure 3.8: Query 1 & 2: Path expressions with equality comparison

Figure 3.8 contains two queries that are rewritten for index access. In the first query,

the doc() is pre-evaluated to get access to the database meta information. Next, the

comparison operator is rewritten for index access, the predicate is rewritten to an in-

verted path. Two additional, intermediate optimizations are performed in the second

query, which cannot be seen in the final plan: The descendant-or-self and child steps are

100

3.6. Examples

merged to a single descendant step. Next, based on the information given in the database

statistics, the Comparison operator attaches a text() to the payment step to indicate the

index rewriter that this step has only leaf nodes.

Query:

(for $i in doc(’xmark’)//item

where $i/payment = ’Creditcard’

return $i)/..

Compilation:

1. rewriting where clause to predicate

2. pre-evaluating doc("xmark")

3. adding text() step

4. merging descendant-or-self step(s)

5. applying text index

6. simplifying flwor

7. merging axis paths

Path

FLWOR

Step

axis: parent

test: node()

For

var: $i
Where Return

Path

Function

name: doc(string)

Step

axis: descendant-or-self

test: node()

Step

axis: child

test: item

xs:string

value: xmark

Comparison

operator: =

Path
xs:string

value: Creditcard

VarRef

name: $i

Step

axis: child

test: payment

VarRef

name: $i

Figure 3.9: Query 3: FLWOR expression with equality comparison

Another query is shown in Figure 3.9, which yields the same optimized plan as Query

2. The query is written as a FLWOR expression; as such, the compiler first attaches the

WHERE clause as predicate to the location step of the FOR clause. After all other opti-

mizations have been performed, the FLWOR expression is eliminated, and the resulting

index path is merged with the suffixed parent step.

3.6.2 XMark

The following plans depict some of the XMark Benchmark queries [SWK+02] (see Sec-

tion 4.2.2.3 for a list of all queries). In Figure 3.10, XMark Query 1 is depicted, which

bears some similarities with the previous expressions. The outer FLWOR expression,

which only contains a LET clause defining the input document, is eliminated, and the

location path of the inner FOR clause is rewritten to an index access. Note that the

index access smoothly integrates in the remaining FLWOR expression: each index result

is iteratively bound to the variable of the FOR clause.

101

3.6. Examples

Original: FLWOR

Let

 $auction
Return

Function

 doc(string)

xs:string

 xmark

FLWOR

For

 $b
Return

Path

VarRef

 $auction

Step

 child

 site

Step

 child

 people

Step

 child

 person

Comparison

 =

Path
xs:string

 person0

Step

 attribute

 id

Path

VarRef

 $b

Step

 child

 name

Step

 child

 text()

Query:

let $auction := doc("xmark") return

for $b in $auction/site/people/person[@id = "person0"]

return $b/name/text()

Compilation:

1. pre-evaluating doc("xmark")

2. binding static variable $auction

3. applying attribute index

4. removing variable $auction, simplifying flwor

Compiled: FLWOR

For

 $b
Return

Path

IndexAccess

 xmark

 ATTV

Step

 self

 *:id

Step

 parent

 *:person

xs:string

 person0
Path

Step

 parent

 *:people

Step

 parent

 *:site

Step

 parent

 doc()

Path

VarRef

 $b

Step

 child

 name

Step

 child

 text()

Figure 3.10: XMark Query 1: Original and optimized query plan

Figure 3.11 is presented in XMark Query 7, which is similar to the query shown in

3.3.1.3, as it can be completely pre-evaluated at compile time. The three fn:count()

functions yield the number of nodes of a sub-tree of the document. The most important

compilation steps are as follows:

Many of the optimizations in this query are due to the path summary: after the docu-

ment reference has been pre-evaluated (1) and the $auction variable has been statically

bound to its references (2), the expression of the FOR clause is bound to the variable

$p (3): the path summary indicates that the document only contains one site ele-

ment, which means that variable $p will only return one single value and, hence, can

be statically bound. Next, the descendant-or-self and child steps are rewritten to a simple

descendant step (4), and the path summary is once more accessed to compute the num-

ber of elements for the resulting path /child::site/descendant::description (5).

The same steps are performed for the remaining paths, and the number of final results

is calculated by pre-evaluating the calculation operators.

102

3.6. Examples

Compilation:

1. pre-evaluating doc("xmark")

2. binding static variable $auction

3. binding static variable $p

4. merging descendant-or-self step

5. pre-evaluating count(...)

6. merging descendant-or-self step

7. pre-evaluating count(...)

8. pre-evaluating 45 + 22

9. merging descendant-or-self step

10. pre-evaluating count(...)

11. pre-evaluating 67 + 25

12. removing variable $p

13. simplifying flwor

14. removing variable $auction

15. simplifying flwor

FLWOR

Let

 $auction
Return

Function

 doc(string)

xs:string

 xmark

FLWOR

For

 $p
Return

Path

VarRef

 $auction

Step

 child

 site

Calculation

 +

Calculation

 +

Function

 count(item)

Function

 count(item)

Function

 count(item)

Path

VarRef

 $p

Step

 descendant-or-self

 node()

Step

 child

 description

Path

VarRef

 $p

Step

 descendant-or-self

 node()

Step

 child

 annotation

Path

VarRef

 $p

Step

 descendant-or-self

 node()

Step

 child

 emailaddress

Query:

let $auction := doc(’xmark’) return

for $p in $auction/site return

count($p//description) +

count($p//annotation) +

count($p//emailaddress)

Figure 3.11: XMark Query 7: Original query plan

XMark queries 8-12 contain nested loops and yield quadratic costs if they are evaluated

without optimizations. XMark Query 9 is presented in more detail: it includes six FLWOR

expressions, only three of which remain after the query has been compiled: First of all,

the input document is pre-evaluated and statically bound to all its references. Next, the

expressions of the LET variables $ca and $ei are bound. After the first WHERE clause

has been converted to a predicate, and the arguments of the comparison operator have

been swapped, the first path can be rewritten for index access. Similar optimizations

are applied to the second WHERE clause and equality comparison, resulting in a simpli-

fication of the embracing FLWOR expression. Finally, after the removal of the obsolete

variable declarations, two other FLWOR expressions are eliminated. As a result, the

costs for the query are decreased from O(n2) to O(n ∗ log n), provided that the applied

indexes yield results in logarithmic time.

An additional XMark Query 21 has been added to this section, which is not part of the

benchmark, but which demonstrates the flexibility of the rewriting mechanism for the

WHERE clause: The query depicted in Figure 3.13 comprises one FLWOR expression

103

3.6. Examples

Compilation:

1. pre-evaluating doc("xmark")

2. binding static variable $auction

3. binding static variable $ca

4. binding static variable $ei

5. rewriting where clause

6. swapped: buyer/@person = $p/@id

7. applying attribute index

8. rewriting where clause

9. swapped: @id = $t/itemref/@item

10. applying attribute index

11. simplifying flwor

12. removing variable $ei

13. removing variable $ca

14. simplifying flwor

15. removing variable $auction

16. simplifying flwor

Query:

let $auction := doc("xmark") return

let $ca := $auction/site/closed_auctions/

closed_auction return

let $ei :=

$auction/site/regions/europe/item

for $p in $auction/site/people/person

let $a :=

for $t in $ca

where $p/@id = $t/buyer/@person

return

let $n := for $t2 in $ei

where $t/itemref/@item = $t2/@id

return $t2

return <item>{$n/name/text()}</item>

return <person name="{$p/name/text()}">{ $a }</person>

FLWOR

Let

 $auction
Return

Function

 doc(string)

xs:string

 xmark

FLWOR

Let

 $ca
Return

Path

VarRef

 $auction

Step

 child

 site

Step

 child

 closed_auctions

Step

 child

 closed_auction

FLWOR

Let

 $ei

For

 $p

Let

 $a
Return

Path

VarRef

 $auction

Step

 child

 site

Step

 child

 regions

Step

 child

 europe

Step

 child

 item

Path

VarRef

 $auction

Step

 child

 site

Step

 child

 people

Step

 child

 person

FLWOR

For

 $t
Where Return

VarRef

 $ca

Comparison

 =

Path Path

VarRef

 $p

Step

 attribute

 id

VarRef

 $t

Step

 child

 buyer

Step

 attribute

 person

FLWOR

Let

 $n
Return

FLWOR

For

 $t2
Where Return

VarRef

 $ei

Comparison

 =

Path Path

VarRef

 $t

Step

 child

 itemref

Step

 attribute

 item

VarRef

 $t2

Step

 attribute

 id

VarRef

 $t2

CElem

xs:QName

 item
Path

VarRef

 $n

Step

 child

 name

Step

 child

 text()

CElem

xs:QName

 person
CAttr

VarRef

 $a

xs:QName

 name
Path

VarRef

 $p

Step

 child

 name

Step

 child

 text()

FLWOR

For

 $p

Let

 $a
Return

Path

document-node()

 xmark

Step

 child

 *:site

Step

 child

 *:people

Step

 child

 *:person

FLWOR

For

 $t
Return

Path

IndexAccess

 xmark

 ATTV

Step

 self

 *:person

Step

 parent

 *:buyer

Step

 parent

 *:closed_auction

Path

VarRef

 $p

Step

 attribute

 id

Path

Step

 parent

 *:closed_auctions

Step

 parent

 *:site

Step

 parent

 doc()

FLWOR

Let

 $n
Return

Path

IndexAccess

 xmark

 ATTV

Step

 self

 *:id

Step

 parent

 *:item

Path

VarRef

 $t

Step

 child

 itemref

Step

 attribute

 item

Path

Step

 parent

 *:europe

Step

 parent

 *:regions

Step

 parent

 *:site

Step

 parent

 doc()

CElem

xs:QName

 item
Path

VarRef

 $n

Step

 child

 name

Step

 child

 text()

CElem

xs:QName

 person
CAttr

VarRef

 $a

xs:QName

 name
Path

VarRef

 $p

Step

 child

 name

Step

 child

 text()

Figure 3.12: XMark Query 9: Optimized/original query plan (top/bottom)

104

3.6. Examples

with three FOR clauses, one of them including two range comparisons, and a WHERE

clause with two equality comparisons. First, the range operators are first converted to

an implementation specific Range Comparison expression, and the two equality tests are

attached to the corresponding location paths. Next, all comparisons are rewritten to first

access the appropriate index structure. Based on the database statistics, the minimum

and maximum values of the range index access are modified in order to not exceed the

limits of the actual data.

Original:
FLWOR

For

 $a

For

 $i

For

 $c
Where Return

Path

Root

Step

 descendant

 closed_auction

And

Comparison

 >=

Comparison

 <=

Path
xs:integer

 500

Step

 child

 price

Path
xs:integer

 1000

Step

 child

 price

Path

Root

Step

 descendant

 item

Path

Root

Step

 descendant

 category

And

Comparison

 =

Comparison

 =

Path Path

VarRef

 $a

Step

 child

 itemref

Step

 attribute

 item

VarRef

 $i

Step

 attribute

 id

Path Path

VarRef

 $c

Step

 attribute

 id

VarRef

 $i

Step

 child

 incategory

Step

 attribute

 category

Path

VarRef

 $c

Step

 child

 name

Compiled:

FLWOR

For

 $a

For

 $i

For

 $c
Return

Path

RangeAccess

 xmark

 500 - 540.16

 TEXT

Step

 parent

 *:price

Step

 parent

 *:closed_auction

Path

IndexAccess

 xmark

 ATTV

Step

 self

 *:id

Step

 parent

 *:item

Path

VarRef

 $a

Step

 child

 itemref

Step

 attribute

 item

Path

IndexAccess

 xmark

 ATTV

Step

 self

 *:id

Step

 parent

 *:category

Path

VarRef

 $i

Step

 child

 incategory

Step

 attribute

 category

Path

VarRef

 $c

Step

 child

 name

Query:

for $a in /descendant::closed_auction

[price >= 500 and price <= 1000]

for $i in /descendant::item

for $c in /descendant::category

where $a/itemref/@item = $i/@id

and $c/@id = $i/incategory/@category

return $c/name

Figure 3.13: (Inofficial) XMark Query 21: Optimized/original query plan

105

4 Performance

If one parses the database publications, it seems groundbreaking how many “most effi-

cient” and “best” algorithms and techniques have been designed and implemented over

the last 30 years. The same observation accounts for newer performance results on XML

and XQuery, let alone the advertisements of commercial products. Summarizing, it is no

secret that everyone wants to be Number One, and, at the same time, it is well-known

that each scientific approach and code project excels in different areas. Accordingly, we

do know that we are Number One as well, and we could easily enough limit our per-

formance tests to a “most relevant” subset of queries to prove this claim. –Instead, we

want to point out that we have not come across any XQuery processor or database that

will beat all others, but there are surely some that focus on performance, while others

put more efforts into compliance or a rich feature list. Hence, this observation is meant

as an introductory warning, and to avoid that the presented performance results are

interpreted as the only relevant dimensions.

The performance of BASEX, our native XML database and XQuery processor that em-

braces all the techniques listed in the previous two chapters, is central to this chapter.

First of all, we will benchmark the performance of our storage unit and measure the

time needed to build new database instances and index structures. The results will be

compared with some other Open Source XML databases. Second, we will focus on its

query capabilities, and compare BASEX with additional XQuery processors. Finally, we

will present some statistics on very large database instances that have been built with

our system.

ID CPU RAM Hard disk OS Bits
Dual Intel Dual Core T7300 2.0 GHz 2 GB 80 GB Windows XP SP3 32
Xeon Intel Xeon 2.33 GHz 32 GB 450 GB Linux 2.6.27 (Suse 10.2) 64
AMD AMD Opteron 2.2 GHz 16 GB 400 GB Linux 2.6.13 (Suse 10.0) 64

Table 4.1: Hardware architectures used for testing

All tests in this section have been performed with Version 6.3 of BASEX. Three different

hardware architectures have been used for testing, which are shown in Table 4.1, and

which will from now on be addressed by their IDs Xeon, Dual, and AMD.

107

4.1. Storage

4.1 Storage

sec. 1MB 11MB 111MB 1GB 11GB 55GB
� Main 0.071 0.57 4.96 50.8 508 5151
� Text 0.012 0.14 1.95 22.9 241 2152
� Attr. 0.003 0.04 0.60 10.0 132 1214
� Trie 0.092 0.86 8.60 88.2 982 8363
� Fuzzy 0.109 1.16 11.89 169.4 1981 15364

sec. 1M 11M 111M 1G 11G
� Xeon 0.06 0.75 7.7 89 917
� Dual 0.09 0.98 12.6 186 4099

Figure 4.1: Database creation of XMark instances with BASEX. Left: single times for
database and index creation, right: total time on different architectures

Figure 4.1 demonstrates the performance results for building databases from six XMark

instances ([SWK+02], see also 4.2.2). The left diagram was performed on the Xeon
machine with 32GB RAM. It lists times for creating the database and the four index

structures. Text and attribute indexing is very fast, whereas the full-text indexes, which

are optional and interchangeable, take approximately the same time as is needed for

building the database, as all text nodes need to be tokenized and normalized. The right

diagram compares build times measured on the two test architectures with a different

amount of RAM; this time, the results include the creation of the text and attribute

indexes, which are activated by default. It can be observed that more RAM speeds up

the creation of large databases. The memory consumption for creating the database

table is low for all instances, as all data is directly written to disk: instead, it is the index

creation process that takes up a lot of memory. The existing index builders have been

optimized to dynamically adapt to the available memory (see 2.6.3.3 for details). As a

result, also the 1GB and 11GB document instances can be successfully built with 2GB

RAM. 32GB RAM is needed, however, to build indexes for the 55GB instance, as the

intermediate data structures, which are created by the index builder, are too large to fit

into main memory.

Obviously, the time for building index structures is strongly dependent on the input data.

If a document contains many attributes, the costs for building the attribute index might

equal or surpass the text index. Figure 4.2 shows the numerically sorted timing results

108

4.1. Storage

sec. Factbook Shakespeare Nasa DDI Treebank Wikipedia MedLineDesc DBLP
� Main 0.112 0.58 1.98 5.84 8.69 9.42 23.27 141.63
� Text 0.012 0.28 0.40 0.64 4.88 0.12 4.35 62.92
� Attribute 0.045 0.01 0.08 0.23 0.21 0.01 0.76 62.85
� Trie 0.021 0.60 1.37 0.85 12.52 13.72 5.35 134.17
� Fuzzy 0.019 0.77 1.82 1.13 10.08 18.47 6.68 145.57
Size (MB) 1.7 7.5 23 75 82 99 260 694

Figure 4.2: Database creation of various smaller XML instances (Sources: Table 4.5)

for some smaller documents. Attribute indexing is comparatively time consuming for

the Factbook, while the Shakespeare and Treebank is predominated by text nodes. The

Wikipedia instance has just a few, but very long text nodes; consequently, most time is

spent for creating the full-text indexes.

sec. 1MB 11MB 111MB 1GB 11GB
� BASEX 0.06 0.75 7.7 89 917
� MONET 0.20 2.14 21.0 199 –
� QIZX 0.68 4.44 42.7 – –
� EXIST 0.90 6.24 65.7 702 –

MB 1MB 11MB 111MB 1GB 11GB
� BASEX 1.3 13 133 1332 13325
� MONET 2.6 26 262 2600 –
� QIZX 1.1 9 99 – –
� EXIST 2.1 18 181 1865 –

Figure 4.3: XMark documents: build times and database sizes

In Figure 4.3, BASEX is compared with some other Open Source XML engines. Com-

mercial systems have been tested as well, but were omitted in the results due to legal

restrictions. The first chart depicts the times that are needed to build XMark database

instances, using the engines’ default configurations, and the second chart summarizes

the database size on disk. All engines have been sorted by their processing speed:

• BASEX is clearly the fastest database builder, processing an average of 12 MB/sec.

109

4.1. Storage

for both creating the database and the text and attributes indexes. Moreover, it

was the only system that allowed us to create a database instance for the 11GB

instance. The complete database size is around 120% of the original document

size. The throughput rate is reduced to appr. 5.8 MB/sec. if full-text indexing is

included.

• Next comes MONETDB 4.38.5 with a throughput rate of 5.2 MB/sec. for building

the plain database. The resulting database is 260% of the original size. The largest

document we managed to shred with the latest version was 1 GB; earlier versions

of MONETDB, however, are known to have supported instances of up to 11 GB (see

e.g. [GHK+06]).

• QIZX 4.0 is placed third, parsing 2.3 MB/sec. The resulting database includes

all index structures and is only appr. 90% of the input size. Only three XMark

instances could have been built, as the free version of the software is limited to

documents of less than 1 GB.

• EXIST 1.4.0 comes last with 1.6 MB/sec. and a database size of 160% of the orig-

inal input size.

The unrivaled build performance of BASEX can be attributed to the flat table represen-

tation, which is an ideal candidate for sequential storage, and the compactification of

the table attributes, which reduces the amount of data to be written. As a result, most

of the build time is spent for parsing the XML input document and reading the data

from disk. Next, as XML attributes are inlined in the main table, the organization of

additional data structures is reduced. The inlining of integers contributes to a smaller

database size. Presumably, BASEX yields better results than MONETDB as all storage

patterns have been optimized for XML from the beginning; for example, the values of

the size property (which specify the number of descendants of a node and thus cannot

be written in the first run) are cached and sequentially stored in a second run. This is

faster than writing each value at the corresponding position once it has been evaluated

(see 2.5.1 for a reminder). Next, MONETDB is column-based, storing each attribute sep-

arately, whereas BASEX holds all values in one compactified tuple, which is comparable

to a single attribute.

Figure 4.4 opposes the bulk and incremental creation of database items. In BASEX, XML

sources can be specified as initial database input via the CREATE DB statement (Query

3). Alternatively, documents and collections can be added in a second step with the ADD

statement (Query 1 and 2). Obviously, Query 3 is performed fastest, as all documents

110

4.2. Querying

Number of documents 100 200 400 800 1600 3200 6400 12800
Input size (MB) 1.8 3.8 4.6 9 18 37 75 151
� 1: CREATE DB nyt; single ADD commands 0.19 0.4 0.92 2.78 8.56 28.97 99.47 421.32
� 2: CREATE DB nyt; ADD /path/to/nyt 0.10 0.18 0.36 0.81 1.54 3.08 6.40 14.87
� 3: CREATE DB nyt /path/to/nyt 0.10 0.17 0.34 0.77 1.48 2.70 5.13 10.32

Figure 4.4: Bulk vs. incremental database creation (NEWYORKTIMES documents)

are added in a single run. In Query 2, all documents are added to the empty database

in a second run, which nearly takes the same time, as the ADD statement triggers one

single commit. Accordingly, Query 1 performs worst of all, as all documents are inserted

one after another, leading to a repeated update of all database meta information. The

insertion time grows quadratically as internal meta data of the database is updated after

each single ADD operation.

4.2 Querying

In the following, BASEX will be compared with some more Open Source XQuery pro-

cessors. Table 4.2 lists all implementations in question, along with their version, pro-

gramming language, and the command line call that was used for testing. Due to limited

space, the project names will often be exchanged with the IDs, shown in the first column:

ID Project Version Lang. Command line call
BA BASEX 6.3 Java java -cp basex-6.3.jar org.basex.BaseX query.xq

SA SAXON-HE 9.2.0.7 Java java -cp saxon9he.jar net.sf.saxon.Query query.xq

QI QIZX 4.0 Java java -cp resolver.jar;qizx.jar com.qizx.apps.QizxCLI query.xq

ZO ZORBA 1.4 C++ zorba.exe -f -q query.xq

MX MXQUERY 0.6 Java java -jar mxquery.jar -f query.xq

BC BASEX-C 6.3 Java java -cp basex-6.3.jar org.basex.BaseXClient query.xq

MO MONETDB 4.38.5 C++ mclient.exe -lx query.xq

EX EXIST 1.4.0 Java curl http://localhost:8080/exist/rest/db -X post -T query.xml

Table 4.2: Compared XQuery processors (standalone, client-/server architecture)

BASEX was tested both in the standalone and the client/server version (termed BASEX-

C). Similar to EXIST and MONETDB, which are both based on a server architecture,

client calls will usually be executed faster, as they benefit from shorter startup times and

runtime optimizations of the server instance. The POST method of the REST interface

111

4.2. Querying

was used to communicate with EXIST, for which the respective query was wrapped into

an XML fragment. All query results are serialized to temporary files.

Most processors offer numerous options to tweak specific queries. We decided to run all

implementations with the default settings, as a fair optimization would require expert

knowledge on each single project. Moreover, we believe that most users will start off

with the default setup before going any further. Next, some implementations (includ-

ing BASEX) generate optional timing output for each processing step, such as parsing,

compilation, evaluation, or serialization. This information was ignored, and the total

runtime was measured instead, as the analyzed projects embrace a too heterogeneous

architecture to be reasonably compared in more depth:

• If an implementation processes queries in an iterative manner, the evaluation and

serialization phase usually fall together, as the query will not be evaluated before

the first result item is output.

• Some processors opt to completely evaluate simple queries in the compilation
phase, whereas others will interpret the complete query, or compile parts of it

just-in-time, i.e., in the evaluation phase.

• Last but not least, not all processors offer enough timing information to allow fair

comparisons, or the output timing results differ too much from the total processing

time.

The total runtime of the listed query processors is influenced by additional aspects: Some

overhead is generated for initializing the program code, which sometimes exceeds the

time for evaluating the actual query. This is particularly the case for Java programs,

which depend on the initialization of the Virtual Machine, and which perform much

faster after a longer runtime (as can be observed in the client version of BASEX). Finally,

some additional time is needed for launching and terminating the code and measuring

the performance.

sec. BASEX SAXON QIZX ZORBA MXQUERY BASEX-C MONETDB EXIST

min 0.252 0.562 0.308 0.143 0.253 0.202 0.057 0.049
med 0.263 0.562 0.312 0.148 0.261 0.211 0.062 0.055
max 0.270 0.624 0.375 0.157 0.270 0.217 0.065 0.068

Table 4.3: Usual runtimes for evaluating an empty sequence (15 runs)

All tests in this section were performed on the Dual system. The Linux time command

was used to measure the elapsed real time between program invocation and termination.

To get rid of the constant overhead for running the processors, the median of several runs

112

4.2. Querying

for evaluating an empty sequence () was measured (see Table 4.3), and was subtracted

from the median of the actual performance result. The median was preferred over other

values, such as the minimum value or the arithmetic mean, in order to suppress the

influence of outliers, which are more common on command line than in tighter test

settings. All tests were run 15 times. Consequently, most final results benefit from

caching behavior of the operating system (the performed cold cache tests turned out to

be too irreproducible to be further pursued in this work). A timeout of 5 minutes was

used in all tests.

4.2.1 XQuery

sec. BASEX SAXON QIZX ZORBA MXQUERY BASEX-C MONETDB EXIST

� Q1 0.002 0.05 0.03 0.003 2.19 0.001 0.10 0.65
� Q2 0.002 0.05 0.03 0.004 DNF 0.001 DNF DNF
� Q3 0.05 0.10 0.10 2.56 8.31 0.002 0.13 0.68
� Q4 0.05 0.11 31.61 DNF DNF 0.002 DNF DNF
� Q5 0.15 0.16 0.41 1.45 14.72 0.06 0.04 2.29
� Q6 0.15 0.16 21.78 1.45 DNF 0.06 0.04 125.93
� Q7 0.20 0.66 0.86 3.26 DNF 0.10 0.45 5.91

ID Query
� Q1 (1 to 1000000)[1]

� Q2 (1 to 1000000000)[1]

� Q3 (1 to 1000000)[last()]

� Q4 (1 to 1000000000)[last()]

� Q5 (1 to 1000000)[. = 1]

� Q6 for $a in 1 to 50 let $b := (1 to 1000000)[. = 1] where $a = $b return $a

� Q7 let $a := 1000000

for $a in remove(reverse(subsequence((1 to $s), 2, $s - 1)), 1)

where $a = $s - 1 return $p

Figure 4.5: Basic XQuery expressions: comparison of different processors.
DNF: did not finish within 5 min.

First, we will have a look at some basic XQuery expressions, which do not depend on

XML resources. The seven queries presented in Figure 4.5 have been chosen to demon-

strate the positive effects of performing static query optimizations, using the iterative

concept, and accessing items via offsets. As was announced in the last paragraph, the

time for evaluating an empty sequence was subtracted from the performance results. All

queries return a single integer. This way, side effects were minimized, which are caused

by the serialization of the results.

113

4.2. Querying

• Query Q1 and Q2 return the first value of a range of integers. 4 of the 7 engines

evaluated both queries in the same amount of time. This reveals two things: First,

the queries are evaluated in an iterative manner, as no time is spent for material-

izing the range expression. Second, processing is terminated after the first item,

respectively, the relevant item is directly requested. In contrast, the other 3 en-

gines either failed due to a lack of main memory, or did not terminate in the given

time frame.

• In Query Q3 and Q4, the last item of a range expression is returned. 2 engines

(BASEX and SAXON) needed the same time for both queries, which indicates that

the last item was directly requested. In QIZX, which also managed to return the

results in the given time, the query was iteratively processed, leading to a longer

execution time for the second query.

• One million integers are iterated by the filter expression in Query Q5, and the

first item (i.e., the item that matches the general comparison with the integer 1) is

chosen as result. MONETDB performs best here, most probably due to its simplified

type system and column-based processing, whereas most other implementations

create temporary objects for the integers. However, an error is raised by MONETDB

if an item of another type is added to the iterated sequence.

• Query Q6 includes the filter expression from Query Q5 in the inner LET clause.

This expression is evaluated 50 times by QIZX, MXQUERY, and EXIST. The timing

of the other 4 engines shows that the LET clause is only computed once; this

indicates that the result is either cached at runtime, or the LET clause is moved

out of the FLWOR expression, as done in BASEX.

• The FOR clause in Query Q7 specifies three sequence functions, which are wrapped

around a range expression, specified by the outer LET clause. This time, BASEX

managed to outpace the other engines: the evaluation time is nearly the same as

for Query Q5 and Q6, as the iterative processing and the direct access to values

returned by the subsequence() function ensures that no values need to be cached

(see 3.4.1).

As a follow-up, we have tested some advanced XQuery expressions, which are presented

in Figure 4.6, along with the tabular and visual results. The first three queries contain

recursive functions, while the fourth makes intensive use of sequence offsets. This time,

not all implementations managed to parse or evaluate the selected queries; MONETDB

even failed to compile any of them. The results indicate that 3 of the 7 processors

114

4.2. Querying

evaluated all four queries and did not exceed the given time frame. BASEX and SAXON

yielded the best average runtime among the tested implementations; the client version

of BASEX (which should only be compared to EXIST) delivered much better results for

all queries.

sec. BASEX SAXON QIZX ZORBA MXQUERY BASEX-C MONETDB EXIST

� Hanoi 0.004 0.12 0.007 0.008 0.10 0.001 ERR 0.002
� Fibonacci 0.06 0.25 0.06 3.78 4.83 0.01 ERR 0.20
� Tour 0.12 0.31 0.12 1.04 ERR 0.01 ERR ERR
� Unicode 1 0.94 148.03 14.84 DNF 0.50 ERR DNF

ID Query
� Hanoi Computes the Tower of Hanoi problem (n = 60):

declare function local:hanoi($n) {

if($n = 1) then (1) else (2 * local:hanoi($n - 1) + 1)

}; local:hanoi(60)

� Fibonacci Calculates the Fibonacci number (n = 20):
declare function local:fib($n) {

if($n < 2) then ($n) else (local:fib($n - 1) + local:fib($n - 2))

}; local:fib(20)

� Tour Performs a Knight’s Tour on a chessboard. Author: Michael Kay, Source (11 kb):
http://dev.w3.org/2006/xquery-test-suite/TestSuiteStagingArea/Queries/

XQuery/Expressions/PathExpr/Steps/Axes/Axes089.xq

� Unicode Returns a formatted list of all Unicode characters. Source (1.5 kb):
http://dev.w3.org/2006/xquery-test-suite/TestSuiteStagingArea/Queries/XQuery/

Expressions/Construct/DirectConElem/DirectConElemContent/Constr-cont-document-3.xq

Figure 4.6: Advanced XQuery expressions: comparison of different processors.
ERR: could not be evaluated, DNF: did not finish within 5 min.

• The first query represents a simple recursive function. It computes the Tower of
Hanoi problem for a given number n. As the number of recursive calls is linear,

this query is evaluated quickly by most implementations.

• The second function for computing the Fibonacci number contains two function

calls to itself and, hence, causes exponential costs. The Java implementations,

headed by BASEX and QIZX, yielded the best results.

• Several recursive user functions are specified by the third query, computing a solu-

tion for the Knight’s Tour problem. Due to its complexity, 3 of the 7 engines failed

to return a solution, while the others delivered competitive times. Again, BASEX

and QIZX win the race (however, the commercial version of SAXON, which has not

115

4.2. Querying

been tested in this scope, is known to yield good results on this query).

• The last query outputs a formatted list of all Unicode characters. All valid code-

points are defined in a sequence, which is accessed via offsets. The performance

results indicate that SAXON, and possibly ZORBA, offer similar optimizations to BA-

SEX, which directly accesses the addressed sequence items (as has been described

in detail in 3.3.3.1).

4.2.2 XMark

XMark is the de facto reference XQuery benchmark in scientific publications [SWK+02].

Some of the queries and their BASEX expression trees have already been demonstrated

in 3.6.2. First, we will analyze the time needed for building main-memory instances of

XMark document instances. Next, we will compare the query times and demonstrate the

scalability of BASEX. Last, based on the benchmark, we will sketch how the performance

of our query architecture has improved version by version.

4.2.2.1 Main Memory Processing

XMLGEN is used to create XML documents of arbitrary size, which then serve as input

for the XMark queries1. In the first test, we measured the time and footprint for pro-

cessing a 111MB document in main memory. To guarantee that the document is actually

opened, and to minimize the overhead for query processing, the doc() function was

used, followed by a child step on comment nodes (another attempt to wrap doc() with

a count() function did not suffice, as the query was pre-evaluated by some processors

in constant time).

Figure 4.7 shows the times needed for evaluating the query (minus the usual overhead

for an empty sequence), and the occupied memory. Both charts are numerically sorted,

placing the best results first. For Java implementations, the available memory has been

limited by setting the -Xmx flag. The memory consumption for the other engines was

approximated over several runs and document instances of different sizes. As the results

show, QIZX offers the fastest document builder, followed by the server-based BASEX

and EXIST engines. The standalone version of BASEX is comparatively slow, as the same

1Source: http://www.xml-benchmark.org

116

4.2. Querying

representation is used for disk-based database instances and document instances in main

memory (see 2.5.3).

Name Time Mem
� BASEX 8.14 218
� SAXON 6.02 455
� QIZX 4.25 255

Name Time Mem
� ZORBA 14.63 650
� MXQUERY 16.87 1044

Name Time Mem
� BASEX-C 5.69 218
� MONETDB 24.36 560
� EXIST 5.91 737

Figure 4.7: Opening a 111MB XMark document in main memory

In compensation, the identical storage structure pays off in terms of memory footprint,

which is much lower than with most other implementations: except for QIZX, all pro-

cessors need at least twice the space of BASEX, and four to ten times the memory of the

original document. Next, some more memory is saved as all texts and attribute values

of the document are automatically indexed while parsing; the resulting indexes are also

used for query processing. Last but not least, all texts in BASEX are internally stored

in UTF8 byte arrays, which take less space than Java’s UTF16 string representation for

ASCII texts.

sec. Q0 Q8 Q12 Q15 Q15-Q0
� BASEX 1 1.14 4.32 1.01 0.007
� SAXON 0.82 4.39 1.80 0.88 0.062
� QIZX 0.48 0.69 0.69 0.51 0.038
� ZORBA 1.43 12.63 6.09 1.45 0.014

sec. Q0 Q8 Q12 Q15 Q15-Q0
� MXQUERY 2.02 DNF 136.71 2.27 0.250
� BASEX-C 0.56 0.60 2.59 0.56 0.003
� MONETDB 2.16 2.32 2.38 2.27 0.106
� EXIST 0.62 46.88 92.73 0.69 0.075

Figure 4.8: Processing four queries on an 11MB XMark instance.
DNF: did not finish within 5 min.

Next, four XMark queries were run on a smaller document instance. Figure 4.8 illus-

trates that a slow build process can be counterbalanced by fast query processing: while

MONETDB needs longest for parsing the input, it shows very good performance for the

join-based queries Q8 and Q12. BASEX is particularly good at optimizing and evalu-

ating Q8, whereas it is outrun by other processors in Q12 and Q15. Due to its quick

build time and join optimizations, QIXZ yielded good results for all four queries. Finally,

117

4.2. Querying

the last column of the table, which contains the arithmetic difference between Q15 and

Q0, shows a completely different picture: BASEX and ZORBA are very fast in processing

simple child axes, after the document itself has been completely processed.

4.2.2.2 Database Processing

In this section, we will focus on the comparison of database engines. Accordingly, the

tests will be limited to query processors that create a persistent representation of XML

documents, and are backed by a client-/server architecture, namely BASEX, EXIST, and

MONETDB. Just like in all prior tests, the processing time for an evaluating empty se-

quence was subtracted from the final results.

sec. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
� BD .00 .13 .25 .14 .06 .00 .00 2.69 3.75 3.56 DNF DNF .13 .44 .06 .06 .12 .13 .37 .25
� BM .00 .06 .10 .11 .05 .00 .00 .25 .31 1.87 DNF DNF .12 .31 .05 .06 .08 .08 .24 .13
� EX .24 .71 1.94 DNF .32 .26 .11 DNF DNF DNF DNF DNF .19 1.01 .17 .99 .90 .34 2.02 1.40
� MO .07 .12 .33 .47 .08 .03 .05 .36 .46 2.44 .97 .56 .19 .59 .10 .12 .17 .08 .33 .28

Figure 4.9: Processing all XMark queries on a 111MB XMark instance.
DNF: did not finish within 5 min.

Figure 4.9 presents the time measurements for all 20 XMark queries, which are listed

in full in Section 4.2.2.3. The 111MB document was chosen as input, as it was the

largest instance that could be processed by all processors on the Dual test system with

2GB RAM (see Figure 4.3). MONETDB processes all database instances in main memory,

while EXIST is disk-oriented. BASEX was tested both in its disk-based and main memory

operating mode. The two modes, which will be abbreviated as BASEX-D and BASEX-

M, use a similar internal representation of XML documents (see 2.5.3 for a reminder).

As expected, the main memory mode of BASEX yielded better results for all queries,

although the differences are sometimes marginal. This can be attributed to the caching

behavior of the operating system, which enables quick access to all database blocks that

have been touched at least once, and fit into main memory. The results will now be

analyzed in detail:

• Query Q1 contains a predicate with an equality comparison, which is rewritten by

BASEX to an index access operator, followed by the inverted location path. As the

118

4.2. Querying

index returns a single result, the whole query was evaluated in less than 5 ms,

while MONETDB and EXIST needed 70 and 240 ms.

• Positional predicates are specified in Q2 and Q3, and the resulting items are wrapped

into new element nodes. BASEX-M offered the best performance, followed by

BASEX-D and MONETDB.

• In Query Q4, nodes are filtered by their document order. Again, node comparisons

are implemented most efficiently by BASEX, while EXIST failed to evaluate the

query in the given time frame.

• A numerical comparison is defined in Q5, which was performed comparatively fast

by all processors, especially by BASEX and MONETDB.

• Query Q6 and Q7 contain count() functions, which return the number of nodes

found for specific location paths. Both queries were evaluated in constant time

by BASEX: the traversal of the document is avoided, and the path summary is

requested instead (see Figure 3.11). The results of EXIST and MONETDB indicate

that a complete traversal of all descendants has been avoided here as well.

• Equi-joins on attribute values are specified in Q8 and Q9. The attribute index is

utilized in BASEX to avoid quadratic costs, as has been demonstrated in the query

plans in Figure 3.12. This time, BASEX-D is about ten times slower than BASEX-M,

as the index requests lead to numerous random disk accesses, which are evaluated

much faster by the main memory index structures. MONETDB applies loop lifting
for evaluating the nested loops [BGvK+05] – which is an excellent alternative as

long as enough main memory is available to the processor. EXIST was too slow

to evaluate any of the five join queries (Q8-Q12)within in the maximum allowed

time.

• Query Q10 specifies another equi-join for comparing attribute values with the re-

sults of a distinct-values() function. A large output is generated, which con-

tains numerous new elements. BASEX and MONETDB evaluated this query in a

similar time: again, BASEX-M was slightly faster than MONETDB.

• Some more theta-joins are performed in Q11 and Q12. This time, MONETDB was

the only processor to return results in the specified time frame by loop lifting the

join, whereas BASEX offers no optimizations for joins other than equality tests.

• All engines needed about the same time for evaluating Query Q13, which specifies

a FLWOR expression with a simple location path and an element constructor. While

119

4.2. Querying

BASEX was slightly faster than its competitors, EXIST managed to keep up with

MONETDB.

• All engines showed competitive performance for Q14. This query is data intensive,

as a contains() function is executed on numerous atomized text nodes.

• The Queries Q15–Q17 contain simple location paths, which are composed of single

child steps. The additional not() and empty() functions in Q16, which might be

the reason for the decreased performance of the EXIST engine, are removed by

BASEX in the compilation phase.

• Query Q18 contains a simple user-defined function, which is evaluated most effi-

ciently by MONETDB. Performance could be further improved in BASEX by inlining

the function (see Section 3.3.1.2 on the current state of the art).

• In Query Q19, most time is spent for sorting data. Again, BASEX-M performs best,

closely followed by MONETDB and BASEX-D. BASEX uses an optimized Quicksort
variant for sorting items [BM93].

• Finally, Query Q20 groups the processed data into categories and returns the car-

dinalities. Both versions of BASEX managed to outrun their competitors.

sec. 1 2 3 4 5 6 7 8 9 10
� 1MB 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.01 0.01 0.02
� 11MB 0.001 0.01 0.02 0.02 0.01 0.001 0.001 0.11 0.17 0.33
� 111MB 0.003 0.08 0.20 0.15 0.06 0.003 0.003 2 2.81 3.57
� 1GB 0.02 0.85 2.02 1.49 0.56 0.02 0.02 25.42 37.28 38.82
� 11GB 0.13 9.44 20.47 15.28 5.88 0.14 0.13 311.14 472.40 412.34
� 22GB 0.27 17.93 41.20 30.91 11.22 0.26 0.24 690.18 1000.98 828.30
� 55GB 0.50 42.25 107.68 66.26 27 0.51 0.51 1768.81 2816.09 1961.18

sec. 11 12 13 14 15 16 17 18 19 20
� 1MB 0.25 0.24 0.001 0.004 0.001 0.001 0.001 0.001 0.004 0.002
� 11MB 25.41 26.03 0.01 0.03 0.01 0.01 0.01 0.01 0.03 0.02
� 111MB 2762.12 2783.69 0.07 0.29 0.05 0.05 0.10 0.09 0.34 0.22
� 1GB DNF DNF 0.63 3.11 0.52 0.49 0.93 0.89 3.67 2.08
� 11GB DNF DNF 10.81 32.04 5.18 4.79 10 9.32 50.30 20.86
� 22GB DNF DNF 22.06 65.02 10.33 9.71 20.09 18.83 108.74 42.56
� 55GB DNF DNF 58.79 142.65 23.05 23.26 53.29 47.46 410.95 105.71

Figure 4.10: XMark Queries: Scalability of BASEX.
DNF: did not finish within 60 min.

To demonstrate that BASEX can easily process documents larger than 111MB, some other

tests were performed on the Xeon test machine with 32GB RAM, the results of which are

120

4.2. Querying

shown in Figure 4.10. The XMark queries were run on seven XMark instances, ranging

from 1MB to 55GB. The test conditions were slightly modified: The timeout was set to

60 minutes. The total runtime for testing a query was limited to 60 minutes as well, i.e.,

some queries were executed less than 15 times. Except for some queries on the 55GB

instances that generate some additional overhead, such as Q8, Q9, or Q19, the system

proved excellent scalability. Note that the good scalability is due to the large amount of

RAM. BASEX is the only Open Source database architecture known to us, however, that

allows it to perform XMark queries on instances larger than 11GB.

The query processor of BASEX has undergone several iterations before it has reached its

present performance. While many optimizations have been too diversified to be briefly

summarized, some of them have been presented in detail in Chapter 2 and 3, and will be

highlighted again by analyzing the performance of different versions of BASEX in Figure

4.11:

sec. 1 2 3 4 5 6 7 8 9 10
� 4.0 .45 .56 .65 .33 .10 .61 1.33 DNF DNF DNF
� 5.0 .04 .23 .35 .21 .10 .42 .002 DNF DNF DNF
� 6.0 .001 .09 .20 .14 .06 .001 .002 DNF DNF DNF
� 6.3 .001 .09 .20 .13 .06 .001 .001 2.63 3.66 3.59
sec. 11 12 13 14 15 16 17 18 19 20
� 4.0 DNF DNF .15 .97 .12 .11 .19 .56 8.87 .44
� 5.0 DNF DNF .19 .97 .07 .06 .16 .25 .73 .31
� 6.0 DNF DNF .07 .44 .05 .04 .09 .09 .35 .21
� 6.3 DNF DNF .06 .40 .04 .04 .09 .09 .36 .22

Figure 4.11: XMark Queries: Version history of BASEX.
DNF: did not finish within 5 min.

• The first optimizations were carried out on the storage backend: attributes (see

2.4.2.1) and numerical values (see 2.4.2.4) were inlined in the database table.

The changes were done before Version 4.0, which was the first to fully support

XQuery.

• Along with numerous other tweaks, iterative query evaluation was introduced with

Version 5.0. As the diagram indicates, the performance was increased from 50%

(Q15) up to 250% (Q2). The iterative traversal of location paths leads to a single

scanning of the database table; before, it was scanned multiple times for each axis

step. Next, the sort algorithm was improved to speed up the ORDER BY clause in

Q19, and the statistics of the name indexes were taken advantage of to speed up

the count() function of Q7.

• With Version 6.0, the index rewritings of location paths were generalized and ex-

tended to FLWOR expressions. As a result, Q1 is now evaluated via the attribute

index. Q6 was optimized by accessing statistics from the path summary and pre-

121

4.2. Querying

evaluating the count() function on arbitrary paths with child steps. A general

speedup for all location paths was achieved by reducing the number of temporary

objects and reusing existing node instances, as described in 3.4.2.3.

• Advanced rewritings of FLWOR expressions were realized in the latest version (see

Section 3.3.1.6). Q8-Q10 and numerous other queries are now rewritten to take

advantage of available content and full-text indexes.

sec. 1 2 3 4 5 6 7
� ExpDB .001 .23 .08 .10 .06 .06 .24
� 6.3 .001 .04 .12 .12 .04 .001 .001

sec. 8 9 10 11 12 13 14
� ExpDB .69 1.03 7.90 .66 .33 .39 .66
� 6.3 .27 .36 2.16 DNF DNF .06 .25

sec. 15 16 17 18 19 20
� ExpDB .07 .07 .18 .11 .35 .25
� 6.3 .04 .04 .08 .05 .26 .16

Figure 4.12: XMark Queries: Comparing BASEX 6.3 with results in [GHK+06].
DNF: did not finish within 5 min.

This section is concluded with another review of a prototype of BASEX, which has been

compared with MONETDB in 2006 [GHK+06]. The XQuery expressions had been sim-

ulated with Java and XPath 1.0. At that time, we were confident that a future XQuery

implementation would yield comparable results. Figure 4.12 demonstrates that the as-

sumption was not only realistic, but was even exceeded. All tests were performed on

the AMD architecture, which was also used for the published results. For most queries,

the latest version of BASEX yields much better results than the former XPath implemen-

tation. Most time was saved for queries using the child step, as the original pre/parent

encoding was replaced by the pre/dist/size representation. Next, the switch to the iter-

ative processing model has been another important improvement, which is reflected by

nearly all queries.

4.2.2.3 XMark Queries

In the following, all 20 XMark queries have been reprinted2. We have added two Queries

Q0 and Q21, which have additionally been used for testing.

Q0 Open document and return non-existing child comment nodes.

2Source: http://www.ins.cwi.nl/projects/xmark/Assets/xmlquery.txt

122

4.2. Querying

doc("xmark.xml")/comment()

Q1 Return the name of the person with ID ‘person0’.
let $auction := doc("xmark.xml") return

for $b in $auction/site/people/person[@id = "person0"]

return $b/name/text()

Q2 Return the initial increases of all open auctions.
let $auction := doc("xmark.xml") return

for $b in $auction/site/open_auctions/open_auction

return <increase>{ $b/bidder[1]/increase/text() }</increase>

Q3 Return the IDs of all open auctions whose current increase is at least twice as high

as the initial increase.
let $auction := doc("xmark.xml") return

for $b in $auction/site/open_auctions/open_auction

where zero-or-one($b/bidder[1]/increase/text()) * 2 <=

$b/bidder[last()]/increase/text()

return <increase first="{$b/bidder[1]/increase/text()}"

last="{$b/bidder[last()]/increase/text()}"/>

Q4 List the reserves of those open auctions where a certain person issued a bid before

another person.
let $auction := doc("xmark.xml") return

for $b in $auction/site/open_auctions/open_auction

where some $pr1 in $b/bidder/personref[@person = "person20"],

$pr2 in $b/bidder/personref[@person = "person51"]

satisfies $pr1 << $pr2

return <history>{$b/reserve/text()}</history>

Q5 How many sold items cost more than 40?
let $auction := doc("xmark.xml") return

count(for $i in $auction/site/closed_auctions/closed_auction

where $i/price/text() >= 40

return $i/price)

Q6 How many items are listed on all continents?
let $auction := doc("xmark.xml") return

for $b in $auction//site/regions

return count($b//item)

Q7 How many pieces of prose are in our database?
let $auction := doc("xmark.xml") return

for $p in $auction/site

return count($p//description) + count($p//annotation) + count($p//emailaddress)

Q8 List the names of persons and the number of items they bought.
let $auction := doc("xmark.xml") return

for $p in $auction/site/people/person

123

4.2. Querying

let $a := for $t in $auction/site/closed_auctions/closed_auction

where $t/buyer/@person = $p/@id

return $t

return <item person="{ $p/name/text() }">{ count($a) }</item>

Q9 List the names of persons and the names of the items they bought in Europe.
let $auction := doc("xmark.xml") return

let $ca := $auction/site/closed_auctions/closed_auction return

let $ei := $auction/site/regions/europe/item

for $p in $auction/site/people/person

let $a := for $t in $ca

where $p/@id = $t/buyer/@person

return let $n := for $t2 in $ei

where $t/itemref/@item = $t2/@id

return $t2

return <item>{ $n/name/text() }</item>

return <person name="{ $p/name/text() }">{ $a }</person>

Q10 List all persons according to their interest; use French markup in the result.
let $auction := doc("xmark.xml") return

for $i in distinct-values($auction/site/people/person/profile/interest/@category)

let $p := for $t in $auction/site/people/person

where $t/profile/interest/@category = $i

return

<personne>

<statistiques>

<sexe>{$t/profile/gender/text()}</sexe>

<age>{$t/profile/age/text()}</age>

<education>{$t/profile/education/text()}</education>

<revenu>{fn:data($t/profile/@income)}</revenu>

</statistiques>

<coordonnees>

<nom>{$t/name/text()}</nom>

<rue>{$t/address/street/text()}</rue>

<ville>{$t/address/city/text()}</ville>

<pays>{$t/address/country/text()}</pays>

<reseau>

<courrier>{$t/emailaddress/text()}</courrier>

<pagePerso>{$t/homepage/text()}</pagePerso>

</reseau>

</coordonnees>

<cartePaiement>{$t/creditcard/text()}</cartePaiement>

</personne>

return <categorie>{ <id>{ $i }</id>, $p }</categorie>

Q11 For each person, list the number of items currently on sale whose price does not

exceed 0.02% of the person’s income.
let $auction := doc("xmark.xml") return

for $p in $auction/site/people/person

let $l := for $i in $auction/site/open_auctions/open_auction/initial

where $p/profile/@income > 5000 * exactly-one($i/text())

return $i

124

4.2. Querying

return <items name="{ $p/name/text() }">{ count($l) }</items>

Q12 For each richer-than-average person, list the number of items currently on sale

whose price does not exceed 0.02% of the person’s income.
let $auction := doc("xmark.xml") return

for $p in $auction/site/people/person

let $l := for $i in $auction/site/open_auctions/open_auction/initial

where $p/profile/@income > 5000 * exactly-one($i/text())

return $i

where $p/profile/@income > 50000

return <items person="{ $p/profile/@income }">{ count($l) }</items>

Q13 List the names of items registered in Australia along with their descriptions.
let $auction := doc("xmark.xml") return

for $i in $auction/site/regions/australia/item

return <item name="{ $i/name/text() }">{ $i/description }</item>

Q14 Return the names of all items whose description contains the word ‘gold’.
let $auction := doc("xmark.xml") return

for $i in $auction/site//item

where contains(string(exactly-one($i/description)), "gold")

return $i/name/text()

Q15 Print the keywords in emphasis in annotations of closed auctions.
let $auction := doc("xmark.xml") return

for $a in $auction/site/closed_auctions/closed_auction/annotation/description/

parlist/listitem/parlist/listitem/text/emph/keyword/text()

return <text>{ $a }</text>

Q16 Return the IDs of those auctions that have one or more keywords in emphasis.
let $auction := doc("xmark.xml") return

for $a in $auction/site/closed_auctions/closed_auction

where not(empty($a/annotation/description/parlist/listitem/parlist/listitem/text/

emph/keyword/text()))

return <person id="{ $a/seller/@person }"/>

Q17 Which persons don’t have a homepage?
let $auction := doc("xmark.xml") return

for $p in $auction/site/people/person

where empty($p/homepage/text())

return <person name="{ $p/name/text() }"/>

Q18 Convert the currency of the reserve of all open auctions to another currency.
declare namespace local = "http://www.foobar.org";

declare function local:convert($v as xs:decimal?) as xs:decimal? {

2.20371 * $v (: convert Dfl to Euro :)

};

let $auction := doc("xmark.xml") return

for $i in $auction/site/open_auctions/open_auction

return local:convert(zero-or-one($i/reserve))

125

4.2. Querying

Q19 Give an alphabetically ordered list of all items along with their location.
let $auction := doc("xmark.xml") return

for $b in $auction/site/regions//item

let $k := $b/name/text()

order by zero-or-one($b/location) ascending empty greatest

return <item name="{ $k }">{ $b/location/text() }</item>

Q20 Group customers by their income and output the cardinality of each group.
let $auction := doc("xmark.xml") return

<result>

<preferred>{

count($auction/site/people/person/profile[@income >= 100000])

}</preferred>

<standard>{

count($auction/site/people/person/

profile[@income < 100000 and @income >= 30000])

}</standard>

<challenge>{

count($auction/site/people/person/profile[@income < 30000])

}</challenge>

<na>{

count(for $p in $auction/site/people/person

where empty($p/profile/@income)

return $p)

}</na>

</result>

Q21 Return the category names of closed auctions in a certain price range.
let $auction := doc("xmark.xml") return

for $a in $auction/descendant::closed_auction[price >= 500 and price <= 1000]

for $i in $auction/descendant::item

for $c in $auction/descendant::category

where $a/itemref/@item = $i/@id and $c/@id = $i/incategory/@category

return $c/name

4.2.3 XQuery Full Text

BASEX was the first query processor to support the XQuery Full Text Recommendation

(see 3.1.3), and, at the time of writing, it is still the only freely available implementation

that works on large XML instances. This section presents some performance results on a

complete XML dump of the English Wikipedia:

• Source: dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2

• Accessed: 7 Jul 2010

• Document size: 25.4 GB

• XML nodes: 198.5 million

• Total database size: 45.4 GB (Full-text index: 20.0 GB)

126

4.2. Querying

sec. Q1 Q2 Q3 Q4 Q5 Q6 Q7
� xquery .001 .001 .004 .004 .001 .001 .004
� querying .004 .004 .02 .01 .001 .001 .02
� queries .03 .03 .12 .12 .002 .002 .02
� query .27 .27 1.56 1.38 .02 .02 .05
� text 1.43 1.43 8.16 7.47 .29 .29 .31
� name 6.04 6.04 49.8 47.6 1.87 1.87 1.94

Bytes Q1/2 Q3/4 Q5 Q6 Q7
� xquery 571 19 K 165 1 K 19 K
� querying 309 94 K 161 1 K 94 K
� queries 3 K 699 K 161 1 K 136 K
� query 20 K 8 M 161 1 K 94 K
� text 235 K 51 M 163 1 K 131 K
� name 1 M 329 M 163 1 K 129 K

ID Query
prolog declare default element namespace "http://www.mediawiki.org/xml/export-0.4/";

declare variable $term := ".....";

Q1 doc(’wiki’)//title[text() contains text { $term }]

Q2 let $doc := doc(’wiki’)

for $title in $doc//title

where $title/text() contains text { $term }

return $title

Q3 doc(’wiki’)//page[.//text contains text { $term }]/title

Q4 doc(’wiki’)//page[revision/text contains text { $term }]/title

Q5 (doc(’wiki’)//page[revision/text contains text { $term }]/title)[1]

Q6 (doc(’wiki’)//page[revision/text contains text { $term }]/title)[position() <= 10]

Q7 (doc(’wiki’)//page[revision/text contains text { $term }]/title)[position() <= 1000]

Figure 4.13: English Wikipedia: Processing times and
result sizes of seven full-text queries and six search terms

• Applied full-text index: Fuzzy Index

• Distinct full-text tokens: 42.9 million

• Index options: case/diacritics insensitive, no stemming/stopwords, default scoring

The client-/server-architecture of BASEX was used for all tests. The query results were

written to a temporary file, and the mean of the total processing time of 5 runs, as

returned by the following command call, was adopted for the figures:

java -cp basex-6.3.jar org.basex.BaseXClient -r5 -otmp -v query.xq

Figure 4.13 summarizes the results of the first test run, which demonstrates the scala-

bility of the XQuery Full Text implementation. Each query is introduced with the prolog,

shown in the table. Six different search terms were assigned to the $term variable, which

served as input for the full-text expression of the queries Q1-Q7 (totaling in 42 different

queries):

• Q1 and Q2 return all titles that contain the specified search term. Both queries

return the same results, as they are compiled and rewritten to the same internal,

127

4.2. Querying

index-based query plan. The FLWOR rewriting takes fractions of milliseconds;

hence, it is not reflected in the result times.

• In Q3 and Q4, the same text nodes are addressed by the full-text expression. Both

queries return the titles of all pages that contain the specified term in the full-text.

Due to the descendant step in the predicate, Q3 is supposed to take slightly longer

than Q4.

• Q5-Q7 return the first 1, 10, and 1000 results of Q4.

The search terms were selected by their number of occurrences: the term xquery occurs

in only 144 distinct text nodes, whereas the term name is placed 34th on the list of

most frequent terms in the Wikipedia corpus, occurring in 2,65 million nodes and 10,54

million times in total3. This means that there are appr. 18,400 times more text nodes

containing name than xquery. This difference is clearly reflected in the query results:

while all queries for the term xquery are processed in less than 5 milliseconds, including

the time for compiling the query and serializing the result, the output of 2,4 million

titles, the articles of which contain the term name, takes about 50 seconds and produces

329 MiB of data. As can be seen in Q5-Q7, much time can be saved by limiting the

number of results: the proportional difference for returning 1 or 1000 results is less

than 10% of the the total processing time for queries with large result sets.

ID sec. MB Query
prolog — — declare default element namespace

"http://www.mediawiki.org/xml/export-0.4/";

� Q1 .022 131 K //page[.//text contains text "Bu~nuel" ftor "Tanguy"]/title

� Q2 .010 19 K //page[.//text contains text "Yves" ftand "Tanguy"]/title

� Q3 .010 12 K //page[.//text contains text ("Yves" ftand "Tanguy")

distance at most 3 words]/title

� Q4 .084 14 K //page[.//text contains text ("Yves" ftand "Tanguy") same sentence]/title

� Q5 .006 12 K //page[.//text contains text "Yves Tanguy"]/title

� Q6 .009 4 K for $page score $s in //page[.//text contains text "Yves Tanguy"]

let $title := $page/title/text()

let $score := round($s * 100)

order by $s descending

return <hit xmlns="" s="{ $score }%">{ $title }</hit> }

� Q7 5.16 10 K //page[.//text contains text "ives tangui" using fuzzy]/title

Figure 4.14: English Wikipedia: Processing times and
result sizes of seven advanced full-text queries

3The BASEX command INFO INDEX FULLTEXT returns statistics on the full-text index structure.

128

4.2. Querying

Figure 4.14 shows the timings and result sizes of some more advanced XQuery Full Text

expressions:

• Q1 and Q2 demonstrate the logical connectives ftand and ftor, which combine the

results of two search tokens.

• Q3 and Q4 specify positional filters, namely a distance and a scope selection, to

further restrict the results returned by the ftand operator.

• Q5 performs a phrase search, which is comparable to a full-text query using ftand,

a distance and an ordered selection.

• Q6 calculates the score values of a location path with a full-text expression and

a phrase as search token. All scores are sorted in a descending manner and em-

bedded in new element fragments, along with the title elements of the original

document.

• Q7 demonstrates the BASEX specific fuzzy match option, which finds results that

are equal or similar to the specified tokens.

As the performance results indicate, all expressions were rewritten to access the full-text

index, and were evaluated in an iterative manner. Except for Q4 and Q7, all queries are

evaluated and serialized in a few milliseconds. For Query Q4, additional time is needed

for computing the sentence positions of all tokens, as this information is not stored in

the full-text index. The fuzzy option in Q7 leads to a large number of intermediate

results for the two single search terms, which are eventually combined to a small result

set. – Last but not least, the first 12 results of Q6 are printed in Table 4.4 and, for fun,

compared with the results of a Google query to indicate that the default scoring yields

good results:

BASEX, Q6 (first 12 of 90 results) site:en.wikipedia.org "Yves Tanguy"

<hit s="38%">Yves Tanguy</hit>

<hit s="35%">File:Reply to Red.jpg</hit>

<hit s="35%">File:Multiplication of the Arcs.jpg</hit>

<hit s="35%">File:Promontory Palace.jpg</hit>

<hit s="34%">File:Mama, Papa is Wounded!.jpg</hit>

<hit s="33%">File:Indefinite Divisibility.jpg</hit>

<hit s="30%">Kay Sage</hit>

<hit s="28%">Portal:Visual arts/Selected picture</hit>

<hit s="26%">Tanguay</hit>

<hit s="25%">Musick to Play in the Dark Vol. 1</hit>

<hit s="24%">Biomorph</hit>

<hit s="24%">Surrealism</hit>

1. Yves Tanguy

2. File:Indefinite Divisibility.jpg

3. Tanguy
4. Kay Sage

5. File:Multiplication of the Arcs.jpg

6. Surrealism
7. Bodley Gallery

8. André Breton

9. File:Reply to Red.jpg

10. Tanguy (film)

11. File:Promontory Palace.jpg

12. Yves (given name)

Table 4.4: Wikipedia: Ranking results of Query Q6, compared with a Google query

129

4.3. Statistics

4.3 Statistics

While many developers of scientific XML database prototypes and vendors of commercial

systems claim that they can “large” or “huge” XML documents, it is difficult to find

information on the factual limits of the presented architectures. It can be observed,

instead, that most publications on XML processing limit performance tests to documents

or collections of less than a Gigabyte, down to some Megabytes.

For this section, we first assembled the largest XML documents and collections that we

could locate online and offline. While many of the documents are freely available, some

of them have only been made available for testing purposes. Next, we approached the

theoretical limits of our storage architecture, which have been elaborated in Section

2.4.1. We hope that the resulting survey, shown in Table 4.5, might be helpful for other

XML developers as well. It offers the following information, specified in columns:

• file size represents the size of the original XML sources,

• db size is the size of the resulting database, excluding optional index structures,

• #nodes lists the number of unique XML nodes of a document,

• #atr reflects the maximum number of attribute nodes of a single element node,

• #eln and #atn represent the number of unique tag and attribute names,

• #uri indicates the number of distinct namespace URIs,

• height shows the tree height, and

• #docs contains the number of documents stored in the database.

The largest document we could get our hands – which was too large to be processed

by BASEX – was the complete, zipped dump of the Wikipedia Encyclopedia4, occupying

more than 3 TiB in a single file. References to all documents and collections (or the

homepages of its suppliers) that have been used for creating the survey are listed in

Table 4.6.

4XML dump of the Wikipedia, containing all pages with complete edit history:
http://download.wikimedia.org/enwiki/latest/pages-meta-history.xml.7z

130

4.3. Statistics

INSTANCES file size db size #nodes #atr #eln #atn #uri height #docs
RUWIKIHIST 421 GiB 416 GiB 324,848,508 3 21 6 2 6 1
ZHWIKIHIST 126 GiB 120 GiB 179,199,662 3 21 6 2 6 1
ENWIKTIONARY 79 GiB 75 GiB 134,380,393 3 21 6 2 6 1
XMARK 55 GiB 64 GiB 1,615,071,348 2 74 9 0 13 1
ENWIKIMETA 54 GiB 52 GiB 401,456,348 3 21 6 2 6 1
MEDLINE 38 GiB 36 GiB 1,623,764,254 2 84 6 0 9 379
IPROCLASS 36 GiB 37 GiB 1,631,218,984 3 245 4 2 9 1
INEX209 31 GiB 34 GiB 1,336,110,639 15 28,034 451 1 37 2,666,500
COPHIR 29 GiB 31 GiB 1,104,623,376 10 42 42 0 8 10,000,000
ENWIKIPEDIA 26 GiB 25 GiB 198,546,747 3 24 21 2 6 1
XMARK 22 GiB 26 GiB 645,997,965 2 74 9 0 13 1
INTERPRO 14 GiB 19 GiB 860,304,235 5 7 15 0 4 1
GENOME1 13 GiB 13 GiB 432,628,105 12 26 101 2 6 1
NEWYORKTIMES 12 GiB 13 GiB 280,407,005 5 41 33 0 6 1,855,659
TREMBL 11 GiB 14 GiB 589,650,535 8 47 30 2 7 1
XMARK 11 GiB 13 GiB 323,083,409 2 74 9 0 13 1
INTACT 7973 MiB 6717 MiB 297,478,392 7 64 22 2 14 25,624
FREEBASE 7366 MiB 10 GiB 443,627,994 8 61 283 1 93 1
SDMX 6356 MiB 8028 MiB 395,871,872 2 22 6 3 7 1
OPENSTREETMAP 5312 MiB 5171 MiB 6,910,669 3 19 5 2 6 1
SWISSPROT 4604 MiB 5422 MiB 241,274,406 8 70 39 2 7 1
EURLEX 4815 MiB 5532 MiB 167,328,039 23 186 46 1 12 1
WIKICORPUS 4492 MiB 4432 MiB 157,948,561 12 1,257 2,687 2 50 659,338
ENWIKIRDF 3679 MiB 3537 MiB 98,433,194 1 11 2 11 4 1
COPHIR 2695 MiB 2882 MiB 101,638,857 10 42 42 0 8 1,000,000
MESH 2091 MiB 2410 MiB 104,845,819 3 6 5 2 5 1
FREEDB 1723 MiB 2462 MiB 102,901,519 2 7 3 0 4 1
XMARK 1134 MiB 1303 MiB 32,298,989 2 74 9 0 13 1
DEEPFS 810 MiB 850 MiB 44,821,506 4 3 6 0 24 1
LIBRARYUKN 760 MiB 918 MiB 46,401,941 3 23 3 0 5 1
TWITTER 736 MiB 767 MiB 15,309,015 0 8 0 0 3 1,177,495
ORGANIZATIONS 733 MiB 724 MiB 33,112,392 3 38 9 0 7 1,019,132
DBLP 694 MiB 944 MiB 36,878,181 4 35 6 0 7 1
FEEDS 692 MiB 604 MiB 5,933,713 0 8 0 0 3 444,014
MEDLINESUPP 477 MiB 407 MiB 21,602,141 5 55 7 0 9 1
AIRBASE 449 MiB 273 MiB 14,512,851 1 111 5 0 11 38
MEDLINEDESC 260 MiB 195 MiB 10,401,847 5 66 8 0 9 1
ZDNET 130 MiB 133 MiB 3,060,186 21 40 90 0 13 95,663
JMNEDICT 124 MiB 171 MiB 8,592,666 0 10 0 0 5 1
XMARK 111 MiB 130 MiB 3,221,926 2 74 9 0 13 1
FRESHMEAT 105 MiB 86 MiB 3,832,028 1 58 1 0 6 1
DEEPFS 83 MiB 93 MiB 4,842,638 4 3 6 0 21 1
TREEBANK 82 MiB 92 MiB 3,829,513 1 250 1 0 37 1
DBLP2 80 MiB 102 MiB 4,044,649 4 35 6 0 6 170,843
DDI 76 MiB 39 MiB 2,070,157 7 104 16 21 11 3
ALFRED 75 MiB 68 MiB 3,784,285 0 60 0 0 6 1
UNIVERSITY 56 MiB 66 MiB 3,468,606 1 28 4 0 5 6
MEDIAUKN 38 MiB 45 MiB 1,619,443 3 21 3 0 5 1
HCIBIB2 32 MiB 33 MiB 617,023 1 39 1 0 4 26,390
NASA 24 MiB 25 MiB 845,805 2 61 8 1 9 1
MOVIEDB 16 MiB 19 MiB 868,980 6 7 8 0 4 1
KANJIDIC2 13 MiB 18 MiB 917,833 3 27 10 0 6 1
XMARK 11 MiB 13 MiB 324,274 2 74 9 0 13 1
SHAKESPEARE 7711 KiB 9854 KiB 327,170 0 59 0 0 9 1
TREEOFLIFE 5425 KiB 7106 KiB 363,560 7 4 7 0 243 1
THESAURUS 4288 KiB 4088 KiB 201,798 7 33 9 0 7 1
MUSICXML 3155 KiB 2942 KiB 171,400 8 179 56 0 8 17
BIBDBPUB 2292 KiB 2359 KiB 80,178 1 54 1 0 4 3,465
FACTBOOK 1743 KiB 1560 KiB 77,315 16 23 32 0 6 1
XMARK 1134 KiB 1334 KiB 33,056 2 74 9 0 13 1

Table 4.5: Statistics on selected XML documents and collections

131

4.3. Statistics

INSTANCES Source
AIRBASE air-climate.eionet.europa.eu/databases/airbase/airbasexml
ALFRED alfred.med.yale.edu/alfred/alfredWithDescription.zip
BIBDBPUB inex.is.informatik.uni-duisburg.de/2005
COPHIR cophir.isti.cnr.it
DBLP dblp.uni-trier.de/xml
DBLP2 inex.is.informatik.uni-duisburg.de/2005
DDI tools.ddialliance.org
ENWIKIMETA dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-meta-current.xml.bz2
ENWIKIPEDIA dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
ENWIKIRDF www.xml-benchmark.org: generated with xmlgen
ENWIKTIONARY wikimedia.org/enwiktionary/latest (pages-meta-history.xml.7z)
EURLEX www.epsiplatform.eu
FACTBOOK www.cs.washington.edu/research/xmldatasets/www/repository.html
FREEBASE download.freebase.com/wex
FREEDB www.xmldatabases.org/radio/xmlDatabases/projects/FreeDBtoXML
FRESHMEAT freshmeat.net/articles/freshmeat-xml-rpc-api-available
GENOME1 ftp.ncbi.nih.gov/snp/organisms/human 9606/XML/ds ch1.xml.gz
HCIBIB2 inex.is.informatik.uni-duisburg.de/2005
INEX2009 www.mpi-inf.mpg.de/departments/d5/software/inex
INTACT ftp.ebi.ac.uk/pub/databases/intact/current/index.html
INTERPRO ftp.bio.net/biomirror/interpro/match complete.xml.gz
IPROCLASS ftp.pir.georgetown.edu/pir databases/iproclass/iproclass.xml.gz
JMNEDICT ftp.monash.edu.au/pub/nihongo/enamdict doc.html
KANJIDIC2 www.csse.monash.edu.au/ jwb/kanjidic2
MEDLINE www.nlm.nih.gov/bsd
MESH www.nlm.nih.gov/mesh/xmlmesh.html
MOVIEDB InfoVis 2007 Contest: IMDB Data
MUSICXML www.recordare.com/xml/samples.html
NASA www.cs.washington.edu/research/xmldatasets/www/repository.html
NEWYORKTIMES www.nytimes.com/ref/membercenter/nytarchive.html
OPENSTREETMAP dump.wiki.openstreetmap.org/osmwiki-latest-files.tar.gz
ORGANIZATIONS www.data.gov/raw/1358
RUWIKIHIST dumps.wikimedia.org/ruwiki/latest/ruwiki-latest-pages-meta-history.xml.7z
SDMX www.metadatatechnology.com
SHAKESPEARE www.cafeconleche.org/examples/shakespeare
SWISSPROT ftp.uniprot.org/pub/databases/uniprot/current release/knowledgebase
THESAURUS www.drze.de/BELIT/thesaurus
TREEBANK www.cs.washington.edu/research/xmldatasets
TREEOFLIFE tolweb.org/data/tolskeletaldump.xml
TREMBL ftp.uniprot.org/pub/databases/uniprot/current release/knowledgebase
WIKICORPUS www-connex.lip6.fr/ denoyer/wikipediaXML
XMARK www.xml-benchmark.org: generated with xmlgen
ZDNET inex.is.informatik.uni-duisburg.de/2005
ZHWIKIHIST dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-meta-history.xml.7z
LIBRARYUKN generated from university library data
MEDIAUKN generated from university library data
DEEPFS generated from filesystem structure
UNIVERSITY generated from students test data
FEEDS compiled from news feeds
TWITTER compiled from Twitter feeds

Table 4.6: References to document sources (last accessed: 1 Oct 2010)

132

5 Conclusion

XML is here to stay – and so are techniques for storing and querying XML. In this thesis,

we hope to have shown that a database architecture needs to rely on both theoretical and

practical aspects to cover the demands of real-life applications and workloads. While this

may sound hackneyed, we have frequently come across counter examples, which either

focused on theoretical, albeit artificial scenarios, or which lacked a solid theoretical

background to be extensible enough for advanced use cases.

As a final conclusion, we have summarized the major contributions of this thesis:

• Section 2.4: We have presented Pre/Dist/Size as a powerful encoding for mapping

XML data to flat tables: the size property facilitates quick access to descendants

and following siblings of an XML node, and the dist property serves as direct,

update-invariant parent reference.

• Section 2.4.1.2: Using our architecture, we have collected statistical data of a

wide range of large-scale, real-life XML documents and collections. While the re-

sulting information was primarily evaluated to find a good tradeoff between a

minimum database size and maximum input document size, we also believe it rep-

resents one of the most comprehensive surveys on large XML instances that has

been published so far.

• Section 2.4.2: The proposed encoding is represented in a single compactified,

fixed-size tuple of 16 bytes. Static and redundant information were dropped, and

numerical document contents were inlined in the tuple. Next, attribute nodes were

inlined as well, i.e., stored in the same way as other XML nodes. This way, both

memory is saved and queries are accelerated.

• Section 2.6: In contrast to other data structures, our storage can be easily ex-

tended by various structural and content-based index structures, which provide a

base for accelerating many queries by orders of magnitudes.

• Section 3.3.1: In the Querying chapter, a thorough insight is given how classical

and XML-specific optimizations can be applied to arbitrary XQuery processors.

133

• Section 3.3.2: We were the first, to the best of our knowledge, to describe how lo-

cation paths with equality tests or full-text expressions as predicates can be rewrit-

ten for accessing index structures of an underlying database. This optimization,

which is comparatively straightforward in relational databases, requires that many

preconditions are met in the context of XPath/XQuery.

• Section 3.4.1: We have shown how an adaptive evaluation approach can be real-

ized to benefit from both the iterative and atomic processing paradigm.

• Section 3.4.2: Based on our Pre/Dist/Size encoding, the traversal of location paths

and all XPath axes was illustrated.

• Section 3.5: A detailed summary describes what optimizations exist for the most

important XQuery expressions. We hope that other implementors of XQuery might

benefit from this summary, too.

• Finally, Chapter 4 demonstrates that the chosen architecture yields excellent per-

formance results, both regarding efficiency and scalability.

In short, we believe that the proposed storage and query architecture represents a pow-

erful yet light-weight framework for both processing very large XML instances and eval-

uating queries with impressive performance. The Open Source database system BASEX

represents an elaborate proof of concept for the ideas discussed in this work.

134

Bibliography

Bibliography

[ABC+99] Vidur Apparao, Steve Byrne, Mike Champion, Scott Isaacs, Ian Jacobs, Ar-

naud Le Hors, Gavin Nicol, Jonathan Robie, Robert Sutor, Chris Wilson, and

Lauren Wood. Document Object Model Level 1. http://www.w3.org/DOM,

October 1999.

[ABF+09] Cezar Andrei, Matthias Brantner, Daniela Florescu, David Graf, Don-

ald Kossmann, and Markos Zacharioudakis. Extending XQuery with

Collections, Indexes, and Integrity Constraints, Working Draft, 2009.

http://www.flworfound.org/pubs/xqddf.pdf, 2009.

[Abi97] Serge Abiteboul. Querying Semi-Structured Data. In ICDT, volume 1186 of

Lecture Notes in Computer Science, pages 1–18. Springer, 1997.

[AMS92] Jun-Ichi Aoe, Katsushi Morimoto, and Takashi Sato. An Efficient Implemen-

tation of Trie Structures. Softw., Pract. Exper., 22(9):695–721, 1992.

[AOV+99] Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B.

Zdonik, and Michael L. Brodie, editors. VLDB’99, Proceedings of 25th In-
ternational Conference on Very Large Data Bases, September 7-10, 1999, Ed-
inburgh, Scotland, UK. Morgan Kaufmann, 1999.

[AQM+97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and

Janet L. Wiener. The Lorel Query Language for Semistructured Data. Int. J.
on Digital Libraries, 1(1):68–88, 1997.

[AS08] Ramez Alkhatib and Marc H. Scholl. CXQU: A compact XML storage for

efficient query and update processing. In ICDIM, pages 605–612. IEEE,

2008.

[AS09] Ramez Alkhatib and Marc H. Scholl. Compacting XML Structures Using

a Dynamic Labeling Scheme. In BNCOD, volume 5588 of Lecture Notes in
Computer Science, pages 158–170. Springer, 2009.

135

Bibliography

[AYBB+09] Sihem Amer-Yahia, Chavdar Botev, Stephen Buxton, Pat Case, Jochen Do-

erre, et al. XQuery and XPath Full Text 1.0. W3C Candidate Recommenda-

tion. http://www.w3.org/TR/xpath-full-text-10, July 2009.

[BBB00] Ron Bourret, Christof Bornhövd, and Alejandro P. Buchmann. A Generic

Load/Extract Utility for Data Transfer between XML Documents and Rela-

tional Databases. In WECWIS, pages 134–143, 2000.

[BCF+07] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,

Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Lan-

guage. W3C Recommendation. http://www.w3.org/TR/xquery, January

2007.

[BGvK+05] Peter A. Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan

Rittinger, and Jens Teubner. Pathfinder: XQuery - The Relational Way. In

VLDB, pages 1322–1325. ACM, 2005.

[Bib99] Die Deutsche Bibliothek. MAB2: Maschinelles Austauschformat für Biblio-
theken. Die Deutsche Bibliothek, Leipzig/Frankfurt am Main, second edi-

tion, 1999.

[BIRP02] Philip A. Bernstein, Yannis E. Ioannidis, Raghu Ramakrishnan, and Dimitris

Papadias, editors. VLDB 2002, Proceedings of 28th International Conference
on Very Large Data Bases, August 20-23, 2002, Hong Kong, China. Morgan

Kaufmann, 2002.

[BK89] Elisa Bertino and Won Kim. Indexing Techniques for Queries on Nested

Objects. IEEE Trans. Knowl. Data Eng., 1(2):196–214, 1989.

[BKT+07] Scott Boag, Michael Kay, Joanne Tong, Norman Walsh, and Henry Zon-

garo. XSLT 2.0 and XQuery 1.0 Serialization. http://www.w3.org/TR/xslt-

xquery-serialization, January 2007.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and Maintenance of

Large Ordered Indices. Acta Inf., 1:173–189, 1972.

[BM93] Jon Louis Bentley and M. Douglas McIlroy. Engineering a Sort Function.

Softw., Pract. Exper., 23(11):1249–1265, 1993.

[BMR05] Peter A. Boncz, Stefan Manegold, and Jan Rittinger. Updating the Pre/Post

Plane in MonetDB/XQuery. In XIME-P, 2005.

136

Bibliography

[Boa05] Scott Boag. Building a Tokenizer for XPath or XQuery. http://www.w3.org/

TR/xquery-xpath-parsing, April 2005.

[Bot04] Per Bothner. Compiling XQuery to Java Bytecodes. In XIME-P, pages 31–36,

2004.

[BPSM+08] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, et al. Extensible

Markup Language (XML) 1.0 (Fifth Edition). http://www.w3.org/TR/xml,

November 2008.

[BSAY04] Chavdar Botev, Jayavel Shanmugasundaram, and Sihem Amer-Yahia. A

TeXQuery-Based XML Full-Text Search Engine. In Weikum et al. [WKD04],

pages 943–944.

[Bun97] Peter Buneman. Semistructured Data. In PODS, pages 117–121. ACM Press,

1997.

[CB74] Donald D. Chamberlin and Raymond F. Boyce. SEQUEL: A Structured En-

glish Query Language. In SIGMOD Workshop, Vol. 1, pages 249–264. ACM,

1974.

[CD99] James Clark and Steven J. DeRose. XML Path Language (XPath) Version 1.0.

W3C Recommendation. http://www.w3.org/TR/xpath, November 1999.

[CD07] James Clark and Steven J. DeRose. XML Path Language (XPath) Version 2.0.

W3C Recommendation. http://www.w3.org/TR/xpath20, January 2007.

[CDF+09] Don Chamberlin, Michael Dyck, Daniela Florescu, Jim Melton,

Jonathan Robie, and Jérôme Siméon. XQuery Update Facility.

http://www.w3.org/TR/xqupdate, June 2009.

[CEF+08] Don Chamberlin, Daniel Engovatov, Dana Florescu, Giorgio Ghelli, Jim

Melton, Jérôme Siméon, and John Snelson. XQuery Scripting Extension

1.0. http://www.w3.org/TR/xquery-sx-10, April 2008.

[CKM02] Edith Cohen, Haim Kaplan, and Tova Milo. Labeling Dynamic XML Trees.

In PODS, pages 271–281. ACM, 2002.

[Cla99] James Clark. XSL Transformations (XSLT) Version 1.0. http://www.w3.org/

TR/xslt, November 1999.

137

Bibliography

[CMS02] Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. APEX: an adaptive path

index for XML data. In Franklin et al. [FMA02], pages 121–132.

[CMV05] Barbara Catania, Anna Maddalena, and Athena Vakali. XML Document In-

dexes: A Classification. IEEE Internet Computing, 9(5):64–71, 2005.

[Cow08] John Cowan. TagSoup. http://ccil.org/˜cowan/XML/tagsoup, 2008.

[CRF00] Donald D. Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An

XML Query Language for Heterogeneous Data Sources. In WebDB (Selected
Papers), volume 1997 of Lecture Notes in Computer Science, pages 1–25.

Springer, 2000.

[Cro06] Douglas Crockford. JSON: The Fat-Free Alternative to XML. In XML, 2006.

[Dam64] Fred Damerau. A technique for computer detection and correction of

spelling errors. Commun. ACM, 7(3):171–176, 1964.

[DFF+98] Alin Deutsch, Mary F. Fernández, Daniela Florescu, Alon Y. Levy, and Dan

Suciu. XML-QL. In QL, 1998.

[DFF+99] Alin Deutsch, Mary F. Fernández, Daniela Florescu, Alon Y. Levy, and Dan

Suciu. A Query Language for XML. Computer Networks, 31(11-16):1155–

1169, 1999.

[DFF+07] Denise Draper, Peter Fankhauser, Mary F. Fernández, Ashok Malhotra,

Kristoffer Rose, Michael Rys, Jérôme Siméon, and Philip Wadler. XQuery

1.0 and XPath 2.0 Formal Semantics. http://www.w3.org/TR/xquery-

semantics, January 2007.

[DFS99] Alin Deutsch, Mary F. Fernández, and Dan Suciu. Storing Semistructured

Data with STORED. In SIGMOD Conference, pages 431–442. ACM Press,

1999.

[Die82] Paul F. Dietz. Maintaining Order in a Linked List. In STOC, pages 122–127.

ACM, 1982.

[ECM06] ECMA. ECMA-376: Office Open XML File Formats. ECMA (European Associ-

ation for Standardizing Information and Communication Systems), 2006.

[EH00] Richard Edwards and Sian Hope. Persistent DOM: An Architecture for XML

Repositories in Relational Databases. In IDEAL, volume 1983 of Lecture
Notes in Computer Science, pages 416–421. Springer, 2000.

138

Bibliography

[FG89] Johann Christoph Freytag and Nathan Goodman. On the Translation of

Relational Queries into Iterative Programs. ACM Trans. Database Syst.,
14(1):1–27, 1989.

[FHK+02] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido Moerkotte, Julia

Neumann, Robert Schiele, and Till Westmann. Anatomy of a native XML

base management system. VLDB J., 11(4):292–314, 2002.

[FHK+03] Daniela Florescu, Chris Hillery, Donald Kossmann, Paul Lucas, Fabio Ric-

cardi, Till Westmann, Michael J. Carey, Arvind Sundararajan, and Geetika

Agrawal. The BEA/XQRL Streaming XQuery Processor. In Freytag et al.

[FLA+03], pages 997–1008.

[FHK+04] Daniela Florescu, Chris Hillery, Donald Kossmann, Paul Lucas, Fabio Ric-

cardi, Till Westmann, Michael J. Carey, and Arvind Sundararajan. The BEA

streaming XQuery processor. VLDB J., 13(3):294–315, 2004.

[FK99] Daniela Florescu and Donald Kossmann. Storing and Querying XML Data

using an RDMBS. IEEE Data Eng. Bull., 22(3):27–34, 1999.

[FLA+03] Johann Christoph Freytag, Peter C. Lockemann, Serge Abiteboul, Michael J.

Carey, Patricia G. Selinger, and Andreas Heuer, editors. VLDB 2003, Proceed-
ings of 29th International Conference on Very Large Data Bases, September
9-12, 2003, Berlin, Germany. Morgan Kaufmann, 2003.

[FMA02] Michael J. Franklin, Bongki Moon, and Anastassia Ailamaki, editors. Pro-
ceedings of the 2002 ACM SIGMOD International Conference on Management
of Data, Madison, Wisconsin, June 3-6, 2002. ACM, 2002.

[FMM+07] Mary Fernández, Ashok Malhotra, Jonathan Marsh, Marton Nagy,

and Norman Walsh. XQuery 1.0 and XPath 2.0 Data Model.

http://www.w3.org/TR/xpath-datamodel, January 2007.

[Fre60] Edward Fredkin. Trie Memory. j-CACM, 3(9):490–499, 1960.

[FRSV05] Achille Fokoue, Kristoffer Høgsbro Rose, Jérôme Siméon, and Lionel Villard.

Compiling XSLT 2.0 into XQuery 1.0. In WWW, pages 682–691. ACM, 2005.

[Gat09] Sebastian Gath. Verarbeitung und Visualisierung von XML-Full-Text Daten.

Master’s thesis, University of Konstanz, Germany, May 2009.

139

Bibliography

[GC07] Gang Gou and Rada Chirkova. Efficiently Querying Large XML Data Repos-

itories: A Survey. IEEE Trans. Knowl. Data Eng., 19(10):1381–1403, 2007.

[GCCM98] Roy Goldman, Sudarshan Chawathe, Arturo Crespo, and Jason McHugh.

A Standard Textual Interchange Format for the Object Exchange Model

(OEM). Technical Report CS-TN-98-64, Stanford University, Stanford, CA,

1998.

[GGHS09a] Christian Grün, Sebastian Gath, Alexander Holupirek, and Marc H. Scholl.

INEX Efficiency Track meets XQuery Full Text in BaseX. In Pre-Proceedings
of the 8th INEX Workshop, pages 192–197, 2009.

[GGHS09b] Christian Grün, Sebastian Gath, Alexander Holupirek, and Marc H. Scholl.

XQuery Full Text Implementation in BaseX. In XSym, volume 5679 of Lec-
ture Notes in Computer Science, pages 114–128. Springer, 2009.

[GGJ+05] Christian Grün, Jens Gerken, Hans-Christian Jetter, Werner A. König, and

Harald Reiterer. MedioVis – A User-Centred Library Metadata Browser. In

ECDL, volume 3652 of Lecture Notes in Computer Science, pages 174–185.

Springer, 2005.

[GHK+06] Christian Grün, Alexander Holupirek, Marc Kramis, Marc H. Scholl, and

Marcel Waldvogel. Pushing XPath Accelerator to its Limits. In ExpDB. ACM,

2006.

[GHS07] Christian Grün, Alexander Holupirek, and Marc H. Scholl. Visually Explor-

ing and Querying XML with BaseX. In BTW, volume 103 of LNI, pages

629–632. GI, 2007.

[GK02] Maxim Grinev and Sergei D. Kuznetsov. Towards an Exhaustive Set of

Rewriting Rules for XQuery Optimization: BizQuery Experience. In ADBIS,

volume 2435 of Lecture Notes in Computer Science, pages 340–345. Springer,

2002.

[GL04] Maxim Grinev and Dmitry Lizorkin. XQuery Function Inlining for Optimiz-

ing XQuery Queries. In ADBIS, volume 3255 of Lecture Notes in Computer
Science. Springer, 2004.

[GMR+07] Torsten Grust, Manuel Mayr, Jan Rittinger, Sherif Sakr, and Jens Teubner. A

SQL: 1999 Code Generator for the Pathfinder XQuery Compiler. In SIGMOD
Conference, pages 1162–1164. ACM, 2007.

140

Bibliography

[Gra93] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM Com-
put. Surv., 25(2):73–170, 1993.

[Gru02] Torsten Grust. Accelerating XPath location steps. In Franklin et al. [FMA02],

pages 109–120.

[Grü06] Christian Grün. Pushing XML Main Memory Databases to their Limits. In

Grundlagen von Datenbanken, pages 60–64. Institute of Computer Science,

Martin-Luther-University, 2006.

[Grü10] Christian Grün. BaseX – The XML Database for Processing, Querying and

Visualizing large XML data. http://basex.org, October 2010.

[GSBS03] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.

XRANK: Ranked Keyword Search over XML Documents. In SIGMOD Confer-
ence, pages 16–27. ACM, 2003.

[GT04] Torsten Grust and Jens Teubner. Relational Algebra: Mother Tongue –

XQuery: Fluent. In TDM, CTIT Workshop Proceedings Series, pages 9–

16. Centre for Telematics and Information Technology (CTIT), University of

Twente, Enschede, The Netherlands, 2004.

[GVK04] Torsten Grust, Roel Vercammen, and Maurice Van Keulen. Supporting Po-

sitional Predicates in Efficient XPath Axis Evaluation for DOM Data Struc-

tures. Technical Report TR 2004-05, University of Antwerp, 2004.

[GvKT03] Torsten Grust, Maurice van Keulen, and Jens Teubner. Staircase Join: Teach

a Relational DBMS to Watch its (Axis) Steps. In Freytag et al. [FLA+03],

pages 524–525.

[GW89] Goetz Graefe and Karen Ward. Dynamic Query Evaluation Plans. In SIG-
MOD Conference, pages 358–366. ACM Press, 1989.

[GW97] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formula-

tion and Optimization in Semistructured Databases. In VLDB, pages 436–

445. Morgan Kaufmann, 1997.

[Hau09] Jörg Hauser. Entwicklung effizienter Treemap-Visualisierungen im XML-

Kontext. Bachelor’s Thesis, University of Konstanz, Germany, November

2009.

141

Bibliography

[HGS09] Alexander Holupirek, Christian Grün, and Marc H. Scholl. BaseX & DeepFS

– Joint Storage for Filesystem and Database. In EDBT, volume 360 of ACM
International Conference Proceeding Series, pages 1108–1111. ACM, 2009.

[HHMW07] Theo Härder, Michael Peter Haustein, Christian Mathis, and Markus Wag-

ner. Node labeling schemes for dynamic XML documents reconsidered. Data
Knowl. Eng., 60(1):126–149, 2007.

[HM99] Gerald Huck and Ingo Macherius. GMD-IPSI XQL Engine. http://xml.

darmstadt.gmd.de/xql, 1999.

[HMV05] Jan Hidders, Philippe Michiels, and Roel Vercammen. Optimizing Sort-

ing and Duplicate Elimination in XQuery Path Expressions. Bulletin of the
EATCS, 86:199–223, 2005.

[Ioa96] Yannis E. Ioannidis. Query Optimization. ACM Comput. Surv., 28(1):121–

123, 1996.

[JAKC+02] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V. S. Laksh-

manan, Andrew Nierman, Stelios Paparizos, Jignesh M. Patel, Divesh Sri-

vastava, Nuwee Wiwatwattana, Yuqing Wu, and Cong Yu. TIMBER: A native

XML database. VLDB J., 11(4):274–291, 2002.

[Joh84] Thomas Johnsson. Efficient compilation of lazy evaluation. In SIGPLAN
Symposium on Compiler Construction, pages 58–69. ACM, 1984.

[Kay04] Michael Kay. XSLT 2.0. Programmer’s Reference. Wiley Publishing, 2004.

[Kay08] Michael Kay. Ten Reasons Why Saxon XQuery is Fast. IEEE Data Eng. Bull.,
31(4):65–74, 2008.

[Kir10] Lukas Kircher. Extending a native XML database with XQuery Update. Bach-

elor’s Thesis, University of Konstanz, Germany, October 2010.

[KKN03] Rajasekar Krishnamurthy, Raghav Kaushik, and Jeffrey F. Naughton. XML-

SQL Query Translation Literature: The State of the Art and Open Problems.

In XSym, volume 2824 of Lecture Notes in Computer Science, pages 1–18.

Springer, 2003.

[KM00] Carl-Christian Kanne and Guido Moerkotte. Efficient Storage of XML Data.

In ICDE, pages 198–218. IEEE Computer Society, 2000.

142

Bibliography

[Knu68] Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental
Algorithms. Addison-Wesley, 1968.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and
Searching. Addison-Wesley, 1973.

[Lev66] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, inser-

tions, and reversals. Soviet Physics Doklady, 10:707–710, 1966.

[Lew51] Kurt Lewin. Field theory in social science: Selected theoretical papers. Harper,

1951.

[LM01] Quanzhong Li and Bongki Moon. Indexing and Querying XML Data for

Regular Path Expressions. In VLDB, pages 361–370. Morgan Kaufmann,

2001.

[LM03] Andreas Laux and Lars Martin. XUpdate – XML Update Language Working

Draft. http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html, 2003.

[MAG+97] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, and Jennifer

Widom. Lore: A Database Management System for Semistructured Data.

SIGMOD Record, 26(3):54–66, 1997.

[MB04] David Megginson and David Brownell. SAX – Simple API for XML.

http://www.saxproject.org, 2004.

[Mei02] Wolfgang Meier. eXist: An Open Source Native XML Database. In Web, Web-
Services, and Database Systems, volume 2593 of Lecture Notes in Computer
Science, pages 169–183. Springer, 2002.

[MMW07] Ashok Malhotra, Jim Melton, and Norman Walsh. XQuery 1.0 and XPath

2.0 Functions and Operators. http://www.w3.org/TR/xpath-functions, Jan-

uary 2007.

[Mor68] Donald R. Morrison. PATRICIA - Practical Algorithm To Retrieve Information

Coded in Alphanumeric. J. ACM, 15(4):514–534, 1968.

[MW99] Jason McHugh and Jennifer Widom. Query Optimization for XML. In Atkin-

son et al. [AOV+99], pages 315–326.

[MWA+98] Jason McHugh, Jennifer Widom, Serge Abiteboul, Qingshan Luo, and

Anand Rajaraman. Indexing semistructured data. Technical Report, Stan-

ford University, Stanford, CA, 1998.

143

Bibliography

[OMFB02] Dan Olteanu, Holger Meuss, Tim Furche, and François Bry. XPath: Looking

Forward. In EDBT Workshops, volume 2490 of Lecture Notes in Computer
Science, pages 109–127. Springer, 2002.

[OOP+04] Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan Cseri, Gideon

Schaller, and Nigel Westbury. ORDPATHs: Insert-Friendly XML Node La-

bels. In Weikum et al. [WKD04], pages 903–908.

[PGMW95] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Ob-

ject Exchange Across Heterogeneous Information Sources. In ICDE, pages

251–260. IEEE Computer Society, 1995.

[PMC02] Chang-Won Park, Jun-Ki Min, and Chin-Wan Chung. Structural Function

Inlining Technique for Structurally Recursive XML Queries. In Bernstein

et al. [BIRP02], pages 83–94.

[RLS98] Jonathan Robie, Joe Lapp, and David Schach. XML Query Language (XQL).

In QL, 1998.

[RM01] Flavio Rizzolo and Alberto O. Mendelzon. Indexing XML Data with ToXin.

In WebDB, pages 49–54, 2001.

[Rod03] Henning Rode. Methods and Cost Models for XPath Query Processing in

Main Memory Databases. Master’s thesis, University of Konstanz, Germany,

October 2003.

[SCCS09] Haw Su-Cheng and Lee Chien-Sing. Node Labeling Schemes in XML Query

Optimization: A Survey and Trends. IETE Technical Review, 26(2):88–100,

2009.

[SHS04] Gargi M. Sur, Joachim Hammer, and Jérôme Siméon. An XQuery-Based

Language for Processing Updates in XML. In PLAN-X, number NS-03-4 in

BRICS Notes Series, Venice, Italy, 2004.

[STZ+99] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J.

DeWitt, and Jeffrey F. Naughton. Relational Databases for Querying XML

Documents: Limitations and Opportunities. In Atkinson et al. [AOV+99],

pages 302–314.

[SWK+02] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana

Manolescu, and Ralph Busse. XMark: A Benchmark for XML Data Manage-

ment. In Bernstein et al. [BIRP02], pages 974–985.

144

Bibliography

[TIHW01] Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Updat-

ing XML. In SIGMOD Conference, pages 413–424, 2001.

[TS04] Andrew Trotman and Börkur Sigurbjörnsson. Narrowed Extended XPath I

(NEXI). In INEX, volume 3493 of Lecture Notes in Computer Science, pages

16–40. Springer, 2004.

[TVB+02] Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram,

Eugene J. Shekita, and Chun Zhang. Storing and Querying Ordered XML

Using a Relational Database System. In Franklin et al. [FMA02], pages

204–215.

[TW02] Anja Theobald and Gerhard Weikum. The XXL search engine: Ranked

Retrieval of XML data using Indexes and Ontologies. In Franklin et al.

[FMA02], page 615.

[Ukk85] Esko Ukkonen. Algorithms for Approximate String Matching. Information
and Control, 64(1-3):100–118, 1985.

[Vee09] Rolf Veen. OGDL – Ordered Graph Data Language. http://www.ogdl.org,

2009.

[vZAW99] Roelof van Zwol, Peter M. G. Apers, and Annita N. Wilschut. Modelling and

Querying Semistructured Data with MOA. In In proceedings of Workshop on
Query Processing for Semistructured Data and Non-standard Data Formats,
1999.

[Wei09] Rob Weir. OpenDocument Format: The Standard for Office Documents.

IEEE Internet Computing, 13(2):83–87, 2009.

[Wei10] Andreas Weiler. Client-/Server-Architektur in XML Datenbanken. Master’s

thesis, University of Konstanz, Germany, September 2010.

[WG09] G. N. Wikramanayake and J. S. Goonetillake. Managing Very Large

Databases and Data Warehousing. Sri Lankan Journal on Librarianship and
Information Management, 2(1):22–29, 2009.

[Wir77] Niklaus Wirth. What Can We Do about the Unnecessary Diversity of Nota-

tion for Syntactic Definitions. CACM, 20(11):822–823, 1977.

145

Bibliography

[WK06] Utz Westermann and Wolfgang Klas. PTDOM: a Schema-Aware XML

Database System for MPEG-7 Media Descriptions. Softw., Pract. Exper.,
36(8):785–834, 2006.

[WKD04] Gerhard Weikum, Arnd Christian König, and Stefan Deßloch, editors. Pro-
ceedings of the ACM SIGMOD International Conference on Management of
Data, Paris, France, June 13-18, 2004. ACM, 2004.

[WMB99] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images, Second Edition. Morgan

Kaufmann, 1999.

146

List of Figures

List of Figures

2.1 Preorder, postorder, and inorder traversal 8

2.2 XML document, tree with pre/post values, pre/post plane 9

2.3 Bitwise distribution of node properties in BASEX 6.0. Note: the ns bit is

located to the right of the uri property . 22

2.4 Directory of logical pages: a) initial state for a page size of 4096 bytes, b)

deletion of 100 nodes, and c) insertion of 100 nodes 24

2.5 Main structure of a database instance . 25

2.6 Class diagram for building a database with a SAX parser 26

2.7 Class diagram: extended architecture for database construction 30

2.8 XML document, tree representation, path summary incl. cardinalities . . . 34

2.9 Trie representation of the XML sample document 41

3.1 Class diagram with expression types . 52

3.2 Query with a function declaration, variables, arithmetic expressions, and

a conditional branch . 58

3.3 Type hierarchy of the XML Data Model [FMM+07] 59

3.4 XML document, tree representation, summary, and path expressions 60

3.5 FLWOR expression: original and optimized query 64

3.6 pre/post planes; descendant step for the three A elements: a) conven-

tional, b) with Pruning, c) with Partitioning, d) with Skipping 84

3.7 Class diagram: location path expressions 86

3.8 Query 1 & 2: Path expressions with equality comparison 100

3.9 Query 3: FLWOR expression with equality comparison 101

3.10 XMark Query 1: Original and optimized query plan 102

3.11 XMark Query 7: Original query plan . 103

3.12 XMark Query 9: Optimized/original query plan (top/bottom) 104

3.13 (Inofficial) XMark Query 21: Optimized/original query plan 105

147

List of Figures

4.1 Database creation of XMark instances with BASEX. Left: single times for

database and index creation, right: total time on different architectures . . 108

4.2 Database creation of various smaller XML instances (Sources: Table 4.5) . 109

4.3 XMark documents: build times and database sizes 109

4.4 Bulk vs. incremental database creation (NEWYORKTIMES documents) . . . 111

4.5 Basic XQuery expressions: comparison of different processors. DNF: did

not finish within 5 min. 113

4.6 Advanced XQuery expressions: comparison of different processors. ERR:

could not be evaluated, DNF: did not finish within 5 min. 115

4.7 Opening a 111MB XMark document in main memory 117

4.8 Processing four queries on an 11MB XMark instance. DNF: did not finish

within 5 min. 117

4.9 Processing all XMark queries on a 111MB XMark instance. DNF: did not

finish within 5 min. 118

4.10 XMark Queries: Scalability of BASEX. DNF: did not finish within 60 min. . 120

4.11 XMark Queries: Version history of BASEX. DNF: did not finish within 5 min.121

4.12 XMark Queries: Comparing BASEX 6.3 with results in [GHK+06]. DNF:

did not finish within 5 min. 122

4.13 English Wikipedia: Processing times and result sizes of seven full-text

queries and six search terms . 127

4.14 English Wikipedia: Processing times and result sizes of seven advanced

full-text queries . 128

148

List of Tables

List of Tables

2.1 Summary of node properties (X: fixed size, +: variable size) 13

2.2 Summary of normalized node properties. +/–: large/small address space,

c: constant value . 17

2.3 Value ranges for XML documents and collections. See Table 4.5 for a

complete survey . 18

2.4 Bits needed to allocate value ranges . 20

2.5 Concrete bit ranges for all node kinds . 21

2.6 Compression of numeric values. b represents a bit, B represents a byte . . 36

2.7 Fuzzy Index instance, sorted by token length and lexicographical order . . 39

2.8 Trie Index instance, tabular representation 40

3.1 Comparison between SQL and XQL (taken from [RLS98]) 44

4.1 Hardware architectures used for testing 107

4.2 Compared XQuery processors (standalone, client-/server architecture) . . 111

4.3 Usual runtimes for evaluating an empty sequence (15 runs) 112

4.4 Wikipedia: Ranking results of Query Q6, compared with a Google query . 129

4.5 Statistics on selected XML documents and collections 131

4.6 References to document sources (last accessed: 1 Oct 2010) 132

149

	Text1: Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-127142
URL: http://kops.ub.uni-konstanz.de/volltexte/2011/12714/

