
Alert
April 2011

LizaMoon, a new mass SQL injection attack, was discovered last week. It’s the latest version in a series of 
mass SQL injection hacks monitored over the last several years. This type of attack has become extremely 
common as a tool used by cybercriminals, as it is a relatively easy way to enable rapid growth of botnets, 
which are currently the most popular and widespread method for monetizing a breach. 

Mass SQL injection attack techniques differ slightly from targeted SQL injection attacks since they 
normally have a different intent. In most cases, mass SQL injection attacks are used to insert JavaScript 
and iFrames into the pages of legitimate websites, redirecting victims to malicious pages with client-side 
exploits and/or scareware and not necessarily to gain direct access to the database itself. In this specific 
case, the goal of the LizaMoon attack is the insertion of a script tag pointing to a malicious website 
promoting fake anti-virus software.

Figure 1. LizaMoon script tag pointing to a malicious site.

The second difference stems from the fact that the attack is highly “automated” in order to achieve its 
broad site penetration. Attacks require the discovery of a common attack vector for all targeted websites 
to robotize the infection. There are several ways to achieve this—for example, by exploiting a vulnerability 
in the web server application or using a generic SQL injection tool that exploits vulnerabilities in widespread 
web applications or platforms. This appears to be the case with LizaMoon, as the exploit is apparently 
finding success in injecting a broad range of applications utilizing SQL server back-end databases. 

The attack’s next step is to obfuscate the injection to bypass classical signature-based security engines. 
Below is an example of the actual encoded attack query:

Figure 2. LizaMoon encoded attack query. 

Threat Brief: LizaMoon Mass 
SQL Injection Attack



Alert      Threat Brief: LizaMoon Mass SQL Injection Attack

The LizaMoon injection doesn’t have a particularly advanced obfuscation technique—it simply implements 
a well-known CAST trick combined with the character (CHAR) function. However, even this primitive 
method obscured the threat enough to successfully bypass common security approaches and infect more 
than one million pages on the Internet, highlighting the poor level of web application and database 
security prevalent in most organizations. While the full scope of the applications affected is not yet known, 
it is clear that it has impacted a large number of sites and early feedback from those users is that the 
remediation process is running into dozens and hundreds of hours.

The encouraging fact is that these mass, automated attacks have their downside as well: a non-customized 
approach. The result is that in parallel with the successful attacks, there will also be a large number of 
failed attempts. 

Figure 3. A failed database attack attempt. 

In the above case, although the code was injected into the database, it does not execute correctly because 
it was sanitized during an internal transformation. Had this been a more targeted attack, with more active 
hacker involvement, the perpetrator would have been able to easily modify the attack to properly embed 
the malicious script. In fact, if the above example were common, we would expect a variant of LizaMoon 
that specifically targets application code that does such transformations. This is still a possibility in the 
coming weeks.

Recommendations for Preventing Breaches
Clearly, the damages from such an attack are significant, ranging from lost time to remove the inserted 
scripts or restore from backups to the potential reputation damage from exposing website visitors and 
customers to a fraudulent site or a site that will infect their systems with malware. What can be done to 
prevent these attacks?

First, the vulnerabilities these techniques exploit (generally and in this specific case as well) are not normally 
in the database itself, but in poorly written application code. Whenever possible, bind variables should be 
used, as the resulting code will not be susceptible to this type of injection.

The reality is that for many organizations, the use of third-party applications or legacy applications with 
limited developer resources available means that code changes to mitigate these weaknesses are not 
always possible. In addition, the threat of a specific, targeted SQL injection attack, or a new zero-day 
vulnerability in the database itself, is still a concern.

In these cases, a real-time database monitoring component is an important element in providing security-
in-depth for your applications and databases. McAfee® Database Activity Monitoring detects this type of 
attack out of the box, as can be seen in the snapshot from a standard installation of the product subjected 
to the LizaMoon attack.



McAfee and the McAfee logo are registered trademarks or trademarks of McAfee, Inc. or its subsidiaries in the United States and other 
countries. Other marks and brands may be claimed as the property of others. The product plans, specifications and descriptions herein are 
provided for information only and subject to change without notice, and are provided without warranty of any kind, express or implied. 
Copyright ©2011 McAfee, Inc. 
26600alrt_lizamoon_0411_fnl_ASD

McAfee 
2821 Mission College Boulevard 
Santa Clara, CA 95054 
888 847 8766 
www.mcafee.com

Alert      Threat Brief: LizaMoon Mass SQL Injection Attack

Figure 4. Detection of the LizaMoon SQL injection attack by McAfee Database Activity Monitoring.

The SQL query, despite being obfuscated, is caught by one of the system’s generic virtual patching rules, 
in this case a rule that detects attempts to inject code into SQL server. Nearly 400 rules come prepackaged 
with McAfee software to prevent exploit of database-specific vulnerabilities addressed by a patch that 
may not yet have been installed, or, as happens here, for common threat vectors to databases and the 
applications built on top of them.

It is important to note that not all database monitoring solutions provide protection for these general 
attacks, and, moreover, those that rely on monitoring SQL traffic will typically miss encrypted, encoded, 
or otherwise obfuscated attacks. Our unique approach of monitoring process memory ensures that as 
the command is translated by the database management system (DBMS) into an execution plan, it is 
evaluated against the security policy.


