CLARREO Mission Overview

Climate Absolute Radiance & Refractivity Observatory MCR

CLARR/

320 K

280 K

January 21, 2011 NASA Langley Research Center

This package contains a top-level overview of the CLARREO mission as of January 21, 2011.

For the latest news on the CLARREO mission or for contact information, please visit the mission web site at:

http://clarreo.larc.nasa.gov/

- 1. CLARREO Background
- 2. Science Measurements
- 3. Mission Concept
- 4. Observatory Concepts
- 5. Spacecraft Bus Concept
- 6. Mission Status

1. CLARREO Background

CLARREO = Climate Absolute Radiance and Refractivity Observatory

- CLARREO was recommended as a top priority for NASA by the National Academy of Science
 - The 2007 Decadal Survey of "Earth Science and Applications from Space" identified CLARREO as one of the four high-priority "Tier 1" earth science missions
- CLARREO will be the cornerstone of the long-term climate observing system
 - Trend detection (decadal scale)
 - Improvement and testing of climate predictions
 - Calibration of operational and research sensors

CLARREO is the Next Step in Climate Observation

Mission Benefits and Objectives

Societal Benefits

- Enable knowledgeable policy decisions based on internationally acknowledged climate measurements and models through:
 - Observation of high accuracy long-term climate change trends
 - Use the long term climate change observations to test and improve climate forecasts

Science Objectives

- Make highly accurate and SI-traceable decadal change observations sensitive to the most critical but least understood climate radiative forcings, responses, and feedbacks
 - Infrared spectra to infer temperature and water vapor feedbacks, cloud feedbacks, and decadal change of temperature profiles, water vapor profiles, clouds, and greenhouse gas radiative effects
 - GNSS-RO to infer decadal change of temperature profiles
 - Solar reflected spectra to infer cloud feedbacks, snow/ice albedo feedbacks, and decadal change of clouds, radiative fluxes, aerosols, snow cover, sea ice, land use
 - Serve as an in-orbit standard to provide Reference Intercalibration for broadband CERES, and operational sounders (CrIS, IASI), imagers such as VIIRS, AVHRR, geostationary

A Mission with Decadal Change Accuracy Traceable to SI Standards

2. Science Measurements

- As outlined in the Decadal Survey, CLARREO will make the following science measurements:
 - Solar reflected spectra: SI traceable relative uncertainty of 0.3% (k=2)*
 - Infrared emitted spectra: SI traceable uncertainty of 0.1K (k=3)*
 - Global Navigational Satellite System Radio Occultation: SI traceable uncertainty of 0.1K (*k*=3)*
- For each measurement CLARREO will acquire:
 - At least five (5) years of data to establish an initial climate benchmark
 - At least one (1) year of overlapping data between two like instruments for measurement verification

• To accomplish these measurements CLARREO will fly:

- Two infrared spectrometers
- Two solar reflected spectrometers
- Two GNSS radio occultation instruments

* The term "k" refers to Coverage Factor as defined in NIST TN 1297.

Science Instruments

Infrared (IR) Instrument Suite

Fourier Transform Spectrometer

- Systematic error less than 0.1K (*k*=3)
- 200 2000 cm⁻¹ contiguous spectral coverage
- 0.5 cm⁻¹ unapodized spectral resolution
- Nadir pointing, systematic within 0.2°
- GIFOV: 25 km
- Consecutive earth view orbit samples ≤ 200 km
- NeDT < 10 K (1 σ)

Reflected Solar (RS) Instrument Suite

Two Grating Spectrometers with Gimbal-mounted (1-axis)

- Systematic error less than 0.3% (*k*=2) of earth mean reflectance
- 320 2300 nm contiguous spectral coverage
- 4 nm sampling, 8 nm resolution
- GIFOV < 0.5 km by 0.5 km
- Swath width ≥ 100km @600 km
- Nadir viewing > 90% of the time
- S/N ratio > 33 for λ < 900 nm, S/N ratio > 25 for λ > 900 nm
- Polarization sensitivity < 0.5% (*k=2*) for λ < 1000 nm, < 0.75% (*k=2*) for λ > 1000 nm

GNSS Radio Occultation Receiver

GNSS Receiver, POD Antenna, RO Antennae

- Refractivity uncertainty 0.03% (*k*=1) for 5 to 20 km altitude range
- Sampling for annual mean 10 degree latitude zones (1000 occultations/day)

Infrared Instrument Concept

Infrared Instrument Operations

Earth views alternate with verification system views

CLARREO Mission Overview

Reflected Solar Instrument Concept

- 2x Optical Packages
- Blue Channel 320-640nm, silicon detectors
- Red/NIR Channel 600-2300nm, HgCdTe detectors

- Commonality of design of two optical packages aids in calibration
- All-aluminum materials including telescope optics with Offner design
- Cooled focal planes tailored for each spectral region
 - 250 K for Silicon
 - 200 K for HgCdTe

Reflected Solar Instrument Operations

- Reflectance retrieval, calibration and inter-calibration requirements lead to three basic operating modes
 - Nadir Data Collection (>90% data collection time)
 - Solar Calibration
 - Inter-calibration of other on-orbit assets
- Verification of calibration drives the need for lunar views

Three basic operating modes for RSS instrument

Radio Occultation Instrument Concept

<u>**Receiver**</u> – RF receiver with additional capability for radio occultation processing (located inside spacecraft bus)

Ultra-stable Oscillator

Provides high-precision time reference for zerodifferencing (inside Bus)

Laser Retro Reflector

Located on nadir side of spacecraft for precise orbit determination (POD) validation using Satellite Laser Ranging

Phased Array RO Antennas

Located on ram and wake faces with fieldsof-view (FOV) oriented towards the Earth's limb to view GNSS constellation Earthocculting satellites (rising and setting)

Calibration Characterization at climate accuracy and time scales

- Pre-launch characterization, testing, and calibration
 - Instrument builder site
 - Independent site calibration
 - SI traceable transfer radiometers, sources (e.g. NIST SIRCUS system)
- Spacecraft Integration testing and calibration (vacuum chamber)
- In orbit characterization, testing, and calibration
 - On orbit sources, verification of source accuracy
 - Earth viewing, solar, lunar & calibration operations schedules
 - Aircraft instrument under-flights
 - Future absolute calibration of the moon using high altitude balloon (30km) would provide an additional verification (5, 10, or even 20 yrs from now)
 - Engineering unit or instrument spares for ground testing anomalies.

Traceability to SI Standards is Key to Decadal Change Accuracy

3. Mission Concept

- Lead Center: Langley Research Center
 - Project Management; Science; Systems Engineering; Spacecraft; Payload; Infrared Instrument Suite; GNSS-RO; System Integration; Mission Operations; Science Data Processing
- Supporting Center: Goddard Space Flight Center
 - Reflected Solar Instrument Suite; Science support; Science Data Processing support
- Category 1 mission, as defined in NPR 7120.5D (NID NM 7120-81)
- Class C payload risk classification, as defined in NPR 8705.4

Mission Concept

- Three instruments (two of each)
 - Infrared (IR) Spectrometer
 - Reflected Solar (RS) Spectrometer
 - Global Navigation Satellite System-Radio Occultation (GNSS-RO)
- Four observatories, two dual-manifested launches on Minotaur IV+ vehicles
 - July 2018: Two Infrared (IR) Observatories, each with GNSS-RO
 - May 2020: Two Reflected Solar (RS) Observatories

• 609 km polar orbits (90° inclination)

CLARREO Orbit Selection

Orbit Parameters:

- Mean Altitude = 609 km (61-day ground track repeat cycle)
- Period = 5812.4 ± 0.25 secs (orbit maintenance requirement)
- Inclination = 90°
- RAAN = 0° or 180° (for reference inter-calibration)

CLARREO Mission Overview

4. Observatory Concepts

Observatory Summaries

CLARREO Observatory Comparison

Observatory Concept Mass Summaries

IR OBSERVATORY MASS BUDGET	CBE (kg)	Cont. (%)	Allocation (kg)
Payload	94	30%	122
Spacecraft ¹	279	15%	319
Observatory Dry Mass Total	373	18%	441
Propellant	16	0%	16
Observatory Wet Mass Total	389		457

Reflected Solar	,
Observatory	

RS OBSERVATORY MASS BUDGET	CBE (kg)	Cont. (%)	Allocation (kg)
Payload	84	29%	108
Spacecraft ¹	282	15%	322
Observatory Dry Mass Total	366	18%	430
Propellant	16	0%	16
Observatory Wet Mass Total	381		445

Notes:

1. Spacecraft mass include 6 kg for separation system components that stay with the bus

Observatory Concept Power Summaries

IR OBSERVATORY POWER BUDGET	CBE (W)	Cont. (%)	Allocation (W)
Payload	159	30%	207
Spacecraft	278	10%	307
Observatory Power Total	437	17%	513
Available System Power (4.9 m ² array) = 668 W			
Available Power Growth	53%		30%

Reflected	Solar
Observato	ory

RS OBSERVATORY POWER BUDGET	CBE (W)	Cont. (%)	Allocation (W)
Payload	113	30%	147
Spacecraft	287	10%	317
Observatory Power Total	400	16%	463
Available System Power (4.9 m² array) = 668 W			
Available Power Growth	67%		44%

Observatory Delta-V Budget

IR/GNSS-RO and RS Observatories	∆V (m/s)	Hydrazine (kg)
Correction for Minotaur IV+ orbit insertion errors	40.1	10.6
In-plane transfer (pending Phase A trade studies)	2.7	0.7
Collision avoidance	0.3	0.1
Orbit inclination station keeping for 5 years	0.0	0.0
Orbit altitude (period) station keeping for 5 years	16.2	4.2
Controlled de-orbit	0.0	0.0
TOTALS	59.3	15.6
Hydrazine capacity (ATK 80389-1 spherical tank) = 22.5 kg		
Tank propellant margin = 44%		

Notes:

- 1) Minotaur IV+ insertion errors are 3-sigma values for altitude and inclination errors combined
- 2) Specific impulse = 210 s
- 3) Propellant calculated using 550 kg observatory NTE mass
- 4) In-plane transfer based on a 30-day, 180° change in true anomaly

Observatory Launch Configurations

Dual-manifest Configurations in Minotaur IV+ Fairing

2018 Dual Infrared/RO Observatory Launch 2020 Dual Reflected Solar Observatory Launch

Launch Vehicle Flexibility

5. Spacecraft Bus Concept

The Infrared Observatory and Reflected Solar Observatory will use a <u>common</u> <u>spacecraft bus</u> meeting the following top-level performance requirements

Orbit Definition:

Orbit Period: 5812.4 +/- 0.25 s (609 km +/- 200m)

Inclination: 90 +/- 0.1 degree

Spacecraft Reliability:

The CLARREO spacecraft bus shall have a reliability of no less than 0.70 at 5 years

Consumables Lifetime:

The CLARREO spacecraft bus shall have sufficient consumable resources to last 5 years

Decommissioning Policy:

The CLARREO spacecraft bus shall comply with NPR-8715.6 for decommissioning

Launch Vehicle:

The spacecraft bus shall be compatible for a dual manifested launch on a Minotaur IV+ launch vehicle

Payload:

The spacecraft shall accommodate the payload mass, power, data rate/volume and Fields of Regard

Reflected Solar Observatory Drivers

CLARREO Mission Overview

IR/RO Observatory Drivers

Key Drivers for IR/RO Observatory

Side view of IR/GNSS-RO Observatory showing FOV's

AD&CS components sized to handle torque from array

Iso view of IR/RO Observatory showing FOV's

Common Spacecraft Bus Subsystems

Electronic Power System

- 83 A-Hr Li-Ion battery capacity
- 28V Direct Energy Transfer Power System
- Deployable, 4.9 m² (1262W EOL) single, two-axis articulating four panel array

Command and Data Handling

- Central Electronics Processor (C&DH / AD&CS)
 Provide C&DH, Comm., Thermal, Propulsion, AD&CS and payload command and telemetry interfaces
- SSR: 128 Gbits/day (Includes contingency, margin & encoding)

Communication

- X-band downlink for science and engineering data
- S-Band for command uplink and H/K telemetry downlink

Attitude Determination & Control

- 3- axis stabilized attitude control system
- Star trackers, IMU, Coarse Sun Sensors, Magnetometer
- Reaction wheels, Magnetic Torque Bars
- GPS for orbit determination

Propulsion

- Monopropellant Hydrazine blow down system
- 59.9 m/s estimated delta V budget (15.6 kg propellant)
- 4 + 4 2 N thrusters for injection dispersion, collision avoidance, and orbit maintenance

CLARREO IR/GNSS-RO Observatory

(Side view with S/A removed)

Thermal

- Bus thermal control using radiators, heaters and MLI
 - RS and GNSS-RO electronics rely on S/C bus for thermal control
- Passive bus thermal control using radiators and MLI

Mechanical / Structural

Al sheet over Al honeycomb panels

Spacecraft Bus Block Diagram

6. Mission Status

- CLARREO successfully completed its Mission Concept Review (MCR) on November 17, 2010
- The next mission milestone is to complete Key Decision Point -A (KDP-A) planned for February/March 2011
- Following KDP-A the mission team will commence Phase A activities leading to a mission System Requirements Review (SRR) planned for early to mid-2012