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Contents of Talk

• Description of the supersonic PJMIF concept

• Review ignition criteria for a hot, compressed magnetized target

• Liner implosion dynamics determine plasma jet parameters

• A theory for the fuel disassembly time

• Heating the surrounding liner fuel by an alpha-driven thermal wave

• Conclusion and future work needs
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Supersonic plasma jets create imploding plasma liner

rc

rm

! 

N jet ~ 70 (number of jets)

M jet ~ 10 " 60  (Mach Number)

Plasma guns at chamber wall rc ~ 6 m allow good clearance distance

jet

target plasma liner formed
by jet merging

liner compresses
magnetized target
to fusion condition

Thio et al (1999)
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2D axisymmetric Simulation of high-M jet
propagation using FLUENT CFD code

M = 50 hydrogen

M = 10 argon

ujet = 100 km/s,  njet = 1025 m-3

Gun diameter = 10 cm
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Oblique shocks formed at merging radius
downshift the liner Mach number

– θ ~  (π/Njet)1/2 ~  12 deg

– Problem is related to
planar supersonic flow past
a wedge with turning angle

! 

M jet ~ 60

! 

" M m ~ 9

! 

Mm "
2N jet

#$($ %1)

– D. Ryutov’s improved
round-jet free-energy
model:

• Mitigate the oblique shocks by radiation cooling using
trace impurities (F. Thio, D. Ryutov)

! 

rm

! 

shock

! 

" M m # 2Mm

Downstream
liner Mach number
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 Ignition criterion for a magnetized target

• Magnetized target fuel has ρR <<  0.3 g/cm2 (nominal ICF value)

! 

f" = 0.1

! 

fesc = 0.965

★ ★

we are 
here

– Fraction of α energy
escaping target (from B-K-M)

Basco, Kemp, Meyer-
ter-Vehn (2000)

! 

B /" = 7.8 #107  G $ cm3 /g

"R = 0.0064  g /cm2

! 

nhot =
"

mDT

=  3.2 #10
21

cm
$3
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R = 0.5  cm, B =1 MG

BR = ("R)
B

"
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Ignition conditions set target parameters

• Plasma Liner needs to implode target to these pressures and energies:

target pressure*

 target thermal energy
! 

phot =
2("R)Thot

mR
=100  Mbar

! 

Et = 4" (#R)R
2
Thot /m =  8  MJ

 magnetic field pressure

! 

pmag =
B

2

2µ0

= 0.04  Mbar

* The advantage of enlisting magnetic fields is a factor 300
lower hot spot pressure compared with conventional ICF
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Supersonic flow field within imploding liner
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Steady-state fictitious flow
Liner flow is represented by a spherical
annulus of the fictitious flow

target
sink
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jet merging radius ~ 0.58 m rm
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Plasma liner just after stagnation time

• Supersonic liner flow disappears into outbound shock.

rt

us

rm ≈ 0.6 m

shocked liner “2”

un-shocked liner “1”
MTF 
target

• High pressure shocked liner
matter inertially confines target:
 p2 = phot at stagnation moment

u1

outbound shock front

r0 ≈ 0.12 m

• Energy invested in
liner Eliner =150 MJ
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Analysis of post-shocked stagnation region
determines required jet Mach number

• Shock jump conditions
  

! 

p2
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=1+
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2 #1)

• Shock frame Mach number:
  

! 

"2
"1

=
(# +1)M

2

(# $1)M 2
+ 2

  

! 

M = M1(1+ us /u1)

• Shock speed
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• At stagnation moment (u2 = 0) and taking γ = 5/3
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– Cubic Mach number dependence reflects strong density amplification by convergence

• M1=1 maximizes Φ(M1). Now set p2 = phot, getting for DT jets

! 

M j = 60,  for   n j =1.5 "10
19

 cm
#3

, u j =100  km/s
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Hot spot (target) decompression time tHS

! 

u = 0

– Suppose stagnation region were immoveable. Then u2 = 0

Then a pressure gradient develops behind shock front since

! 

r /R

! 

r /R

! 

us

! 

p

phot (0)

! 

p2(r = rs)

phot (0)
=
"[M1(r = rs)]

"[M1 =1] M1>>1
# $ # # # 

20

9M1
3

– This means that flow cannot be immovable.
Instead, the pressure becomes nearly isobaric
such that p(t) ~ p2 (t) and  u2(t) > 0

! 

u2 > 0

Hot
target
  phot

! 

us

Caution: this time is an
underestimate

! 

phot = p2 ~ "2u2
2

 #

! 

u2 ~ cs,hot
"hot
"2

~ 52  km/s

Hot
target
  phot

! 

p

phot (0)

! 

tHS ~ R /u2 = 98  ns

! 

u2 = 0

– Expansion is detonation-like
Cool, dense
liner p2, ρ2
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Re-evaluate decompression problem using
a new isobaric model (work in progress)
• Integrate energy equation over volume behind outbound shock (0 < r < rs)
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! 

p(r,t) " p2(t) = post # shocked pressure• Isobaric approximation

 fusion & radiation power
densities

! 

dp2
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+

3"

rs
u2p2 = (" #1)

R
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Qs             (1)

• Integrate energy equation over volume of hot target (0 < r < R)

! 

dp2

dt
+

3"

R

dR

dt
p2 = (" #1)Qs            (2)

• Two equations involving four unknowns:                       The system is closed by
consideration of the shock jump relations (slide 10).

! 

p2, u2, R,  rs .

• Finally, mass conservation in the hot region gives the density and temperature:

! 

nhot (t)  = nhot (0) R(0) /R(t)[ ]
3

! 

Thot (t)  = p2 /2nhot

! 

Qs(nhot ,Thot)
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Target expansion speed rule

• If the hot target is still producing sufficient fusion power
such that:

! 

Qs > 0

• then the expansion speed of target radius is bounded

! 

R

rs

<
˙ R 

u2

<1

! 

R =  target radius

rs =  shock radius

u2 =  fluid velocity just behind shock   
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Can α-driven thermal wave “fireup” liner?

• Alphas escaping target at stagnation heat inner layer of liner

 Alpha continuity equation in liner region x > 0

 Alpha momentum equation with electron drag
! 

"n#

"t
+ n#

"v#

"x
+ v#

"n#

"x
= 0

! 

˙ v " (t) =
#v"

#t
+ v"

#v"

#x
= $v"% s    % s(x,t) = slowing down rate

• Assumed all alphas escaping compressed target  have birth
velocity vα0  normal to target/liner interface & no energy spread.

x = 0 is plane of separation
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Slowing down rate of fusion alpha particles

• We have a weakly coupled, non-degenerate liner, so the stopping
formula is based on liner response theory, valid when Γ = Zα/ND <1

! 

" s =# pe
me
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2
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1/2
8%ND
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G(v$ /vte)ln(,D /bmin) + H(v$ /vte)ln(2
1/2
v$ /vte)[ ]

• On low-velocity side of Bragg peak
! 

G(") = erf(") # (2" /$1/2)exp(#"2)  ,

! 

H(") = #
2"3exp(#"2)

3$1/2 ln(21/2")
+

"4

3+"4

! 

v" /vte <1,   (Te > 400  eV)

! 

" s #
C0ne

Te
3/2

ln$    C0 =1.597 %10
&9

 eV
3/2

& cm
3
/s

– Plasma heating causes alpha particle range increase

Peter & Meyer-ter-
Vehn (1991)
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Model for α-particle heat deposition

! 

0.002  ns < " s
#1

< 0.66  ns– Slowing down time                                      much shorter than
times characterizing changes in liner temperature

! 

tHS ~ 74 ns

! 

"v#

"x
$ %& s %

"v#

v#"t
– Alpha momentum equation simplifies

– Alpha continuity equation simplifies

! 

"#0tHS =
fesc fb

6mDT
($R),

! 

n"v" = #"0

 Alpha heat flux

! 

q" (x, t) = #"0(t) $ 1/2( )m"v"
2
(x,t)

 Alpha heat source

! 

" # q$ (x, t) = %&$0(t) #m$v$ (x,t)' s(x, t)
! 

fb =
"v

DT
(#R)

2mDT u2

= fuel  burnup fraction

! 

O ~ 1/ t
HS
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Dynamics of α-driven thermal wave

– Two coupled PDE’s for vα and T

! 

"v#

"u
t

$ %
C0 ln&

T
3/2

! 

" = t / tHS ,   U = u /u0,

! 

V = v" /v"0,    Z = T
5/2

/H0

– Recast in non-dimensional variables (eV-cgs)

! 

3k
"T

"t u
# $%0m%C0 ln&

v%

T
3/2

    u = ndx

0

x

'

! 

H0 =
5C0 ln"

18mDT

E#0

v#0
fesc fb($R)

! 

"V

"U #

= $Z
$3/5

"Z

"#
U

=V

! 

V (U = 0)"1,  for  # > 0

Z(# = 0)" 0,  for  U > 0

! 

u0 = v"0H0
3/5
/C0 ln#

! 

3.5  MeV
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Single ODE describes thermal wave

– Convert PDE’s to ODE by means of transformed variables:

! 

W = Z /U
5/3

    " = # /U
5/3

– Non-dimensional ODE

! 

dV

d"
=

3

5"W 3/5

dW

d"
=V

! 

d
2
W

d" 2
#

3

5"W 3/5
= 0

! 

" # ("0,$)   BCs :W ("0) = 0,   % W ($) =1

– Motion of the heat front

! 

(W = T = 0)  is  UF = (" /#0)
3/5

– Numerical shooting scheme finds that

! 

"0 = 8.0209
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α-driven thermal wave profiles

– Maximum Liner temperature

! 

T /Tmax

! 

0.25

! 

0.5

! 

0.75

! 

" =1

! 

nliner x /u0

! 

Tmax =
5C0 ln"

18mDT v#0
fesc fb($R)%#0
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' 
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2 /5

~ ($R)4 /5

! 

Tmax =1806  eV

– Maximum penetration depth
! 

"0
#3/5

= 0.2867

! 

xF (" =1) =
v#0Tmax

3/2

nlinerC0$0
3/5

= 45.4  µm

! 

" = t / tHS ,    tHS ~ 100  ns

! 

fb = 0.0175, fesc = 0.965
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Conclusion and future work needs

• The B-K-M ignition criteria tells us that a nominally-sized compressed
magnetized target will have a pressure of ~ 100 Mbar.

• High M ~ 60 DT jets are needed to implode plasma liner to these high
pressures. Possibly “macroparticle” jets instead of gas/plasma jets can
achieve the needed high Mach numbers needed for PJMIF.

• Hot spot disassembly time is key issue. Need to complete the target
decompression problem using the isobaric expansion model presented here.
We plan to use the Hyades 1-D hydro code for future verification.

• We formulated a new analytical model for alpha-driven thermal wave, and
discovered that the DT plasma liner does not easily “fireup” or burn, because
of the low ρR: this presents itself as a very challenging problem.

• Plasma jets may have special advantages when used to compress B-fields to
> 50 MG. Jets can potentially manipulate or collimate low-beta “magnetized
winds”.


