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Abstract 

The notion of a cartogram is reviewed. Then, based on a presentation from the 1960’s, a 
direct and simple introduction is given to the design of a computer algorithm for the construction 
of contiguous value-by-area cartograms. As an example a table of latitude/longitude to rectangular 
plane coordinates is included for a cartogram of the United States, along with Tissot’s measures 
for this map projection. This is followed a short review of the subsequent history of the subject and 
includes citation of algorithms proposed by others. The most common use of cartograms is solely 
for the display and emphasis of a geographic distribution, as a contrast to the usual geographic 
map. A second use is in analysis, as a nomograph or problem solving device similar in use to 
Mercator's projection, or in the transform-solve-invert paradigm. Recent innovations by computer 
scientists modify the objective and suggest variation similar to Airy’s (1861) ‘balance of errors’ 
idea for map projections.  

 

Keywords: Anamorphoses, cartograms, map distortion, map projections, quasiconformal. 

 
 

 The first reference to the term “cartogram” that I have found is to Minard, as follows: “In 
1851 Minard published a series of maps called ’cartogrammes a foyer diagraphiques’ or maps 
with diagrams….” (Friis 1974: 133). The term is not listed in Robinson’s (1967) paper on 
Minard, nor in his book on the history of thematic cartography (Robinson 1982). He only briefly 
mentions the related choropleth maps by name, although he gives illustrations of several such 
maps from the mid 1800s. He also gives a map by Minard from 1850 in which deliberate 
distortion occurs in order to make room for the symbols on an illustration depicting flow (also see 
Robinson 1967: 101-102). For more detail see Palsky (1996: 112-134). The first entry in Wallis 
and Robinson’s (1987) survey of Cartographical Innovations is the term ‘cartogram’ but they do 
not give the derivation. Wright uses the term in his introduction to Paullin’s historical atlas of the 
United States (1932: xiv) and comments “A cartogram is a cartographic outline upon which are 
drawn statistical symbols that do not conform closely to the actual distribution of the phenomena 
represented”. He is of course referring to what is now called a statistical map. Kretschmer, et al. 
(1986, vol. 1, page 396), in their history of cartography under the heading ‘Kartogramm’ mean a 
choropleth or statistical map, but also refer to a ‘verzerrte’ (distorted) map by Wiechel from 1903. 
There is also a reference to a map of Germany from 1903 in which statistics are shown on a 
schematic map (see Mayet 1905). In this country The Washington Post on Sunday, November 3rd, 
1929, printed a map of the United States with state areas equal to population and taxation, 
accompanied by a proposal to the Congress to modify the allocation of tariffs (Figure 1). This 
map would now be called a contiguous cartogram and shows Grundy's home state of 
Pennsylvania 

 

_______________________Figure 1 about here___________________________ 

 

enlarged, as are the industrial states of Illinois, Michigan, New York, New Jersey, and Ohio. 

 The term ‘cartogram’ was used repeatedly by Funkhouser in his history of graphical 
methods (1937). But by cartogram he means what we now call choropleth maps. Raisz (1938), in 
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the first American cartography textbook General Cartography states that the term “cartogram is 
subject to many interpretations and definitions”. He continues “Some authors, especially in 
Europe, call every statistical map a cartogram, because it shows the pattern of distribution of a 
single element.”, in contradistinction to a topographic map which combines many elements. He 
then has a section, as follows (op. cit., page 257): 

“Value-Area Cartograms. In these cartograms a region, country, or continent is 
subdivided into small regions, each of which is represented by a rectangle. This 
rectangle is proportionate in area to the value which it represents in certain 
statistical distributions. The regions are grouped in approximately the same 
positions as they are on the map.” 

In this presentation, as in his earlier papers from 1934 and 1936, Raisz only refers to rectangular 
cartogrammatic diagrams. Raisz (1934: 292) also asserts that “…the statistical cartogram is not a 
map.” In his textbook Principles of Cartography (1962: 215) Raisz states that “A cartogram may 
be defined as a diagrammatic map.” This suggests that the term ‘cartogram’ is a contraction of 
the two words, given the flexibility of our languages in constructing such combinations. 

 Interestingly Funkhouser’s paper actually presents a map that now might be called an 
area cartogram. This is a map of the countries of Europe in which each country is represented by 
a square whose size is proportional to the area of the country, and with countries in their 
approximately correct position and adjacency (Figure 2). Could this be called an equal area map? 
Or is it an equal area cartogram? The map is dated 1870 and was used by the French educator 
Levasseur in one of his textbooks. Raisz (1934, 1936) also has such ‘equal-land-area’ rectangular 
cartograms of the United 

 

____________________Figure 2 about here____________________________ 

 

States, as well as some displaying other phenomena (Figure 3). Looking at these examples it is 
clear that one should distinguish between cartograms that rigorously maintain the correct 
adjacency table 

______________________Figure 3 about here______________________ 

 

(O'Sullivan and Unwin 2002: 40, 155) and those that do not. Diagrams such as those of Levasseur 
and Raisz have adjacency tables that have both too many and too few adjacencies. In those that 
do display the correct topological adjacency it is worth noting whether or not the maps are 
continuous, with continuous partial derivatives, or only piecewise continuous. 

 A discussion of ‘value-by-area’ cartograms can now be found in several contemporary 
cartographic textbooks, e.g., Dent (1999: 207-219), Slocum (1999: 181-184). In Canters’ recent 
book on map projections (Canters 2002: 157-167) they are included as ‘variable scale maps’. The 
French use the term ‘anamorphose’ (for a derivation of this term see Hankins 1999), in German 
speaking countries ‘verzerrte Karte’ is most prevalent, and the Soviets have used the word 
‘varivalent’ maps. These terms are a bit misleading since the scale on a geographic map is never a 
single constant, though the meaning here is clear.  

 I became interested in the subject in 1959 and my doctoral thesis on Map 
Transformations of Geographic Space (Tobler 1961) was devoted to this topic. There are now 
two generally accepted types of cartograms. One form stretches space according to some metric 
different from kilometers or miles, such as cost or time. These are not considered in this review, 
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although they constituted the bulk of the above-cited thesis. I also do not consider the piecewise 
continuous (non-contiguous) cartograms described by Olson (1976). The concern here is with the 
type that stretches space continuously according to some distribution on a portion of the earth’s 
surface. These are generally referred to as area (or areal) cartograms, or (following Raisz) as 
value-by-area maps. The single chapter of my dissertation that was devoted to this topic was 
published in the Geographical Review (Tobler 1963), but with a mathematical appendix that was 
not in the thesis. When I arrived at the University of Michigan in Ann Arbor I began to develop 
computer programs that could compute area cartograms. The easiest way for me to introduce this 
subject is to reproduce a lecture given in the 1960’s to Howard Fisher’s computer graphics group 
at Harvard University. The following is a transcription of the original overhead viewgraphs from 
that lecture. It remains a simple and clear definition of the problem and of one solution. 

 

The Harvard Presentation 

A value-by-area cartogram is a map projection that converts a measure of a non-negative 
distribution on the earth to an area on a map. Consider first a distribution h (u, v) on a plane 
(Figure 4):  

 

_________________Figure 4 goes EXACTLY here_______________________ 

 

Next consider an area on the map (Figure 5): 

 

________________Figure  5 goes EXACTLY here___________________ 

 

We want these to be the same. That is, the map image is to equal the original measure: image 
area on map equals original volume on surface, or ∆x ∆y = h ∆u ∆v. 

 As an aside, observe that in his treatise of 1772 J. H. Lambert defined an equal area map 
projection in exactly this fashion, setting spherical surface area equal to map surface area, of 
course with the cosine of the latitude included to account for a spherical earth. 

Now replace the ∆’s by d’s, i.e. dx dy  =  h du dv. This is for one unit area but it can be 
rewritten in integral form to cover the entire domain as 

∫ ∫ dx dy  =  ∫ ∫ h du dv 

To solve this system we can insert a transformation, i.e., divide both sides by dudv to get 
dxdy/dudv = h(u, v). This can be recognized as the introduction of the Jacobian determinant, as 
covered in beginning calculus courses. With this substitution the condition equation becomes 

J = ∂ (x, y)/∂ (u, v) =  h (u, v). 

Written out in full we have the equation 

∂x/∂u ∂y/∂v  -  ∂x/∂v ∂y/∂x = h (u, v).                  [1] 

To apply this mildly non-linear partial differential equation to a sphere it is only necessary to 
multiply by R2 cos φ on the right hand side of this equation, substituting longitude (λ) and latitude 
(φ) for the rectangular coordinates u and v. That a valid value-by-area preserving map can exist 
follows from the solution properties of this differential equation.  
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 Reverting now to the pictures on the plane, a small rectangle will have nodes identified 
by cartesian coordinates given in a counterclockwise order (Figure 6). The area, A, of such a 
rectangle is  

 

________________________Figure six goes about here_______________________ 

 

given by the determinant formula 

 

  X1   Y1       X2   Y2         X3   Y3       X4    Y4 

          2A =                     +                 +                 +                

  X2   Y2        X3  Y3         X4   Y4       X1    Y1 

 

It is now desired that this area be made equal to the “volume” h(u, v). This can be done by adding 
increments ∆x, ∆y to each of the coordinates on the map. The new area can be computed from a 
determinant formula as above but now using the displaced locations Xi + ∆Xi  , Yi + ∆Yi , i = 1, 
… , 4 (Figure 7). 

 

_______________________Figure 7 goes about here_________________________ 

 

Call the new area A' ("a prime"). Now use the condition equation to set the two areas 
equal to each other, A' = A. Recall that A' is, by design, numerically equal to h(u, v). The 
equation A' =  h  = A  involves eight unknowns, the ∆Xi and the ∆Yi , i = 1…4 for the rectangle 
(Figure 8). Now it makes  

 

_______________________Figure 8 goes about here_____________________ 

 

sense to invoke an isotropicity condition, to attempt to retain shapes as nearly as possible. So set 
all ∆Xi and ∆Yi equal to each other in magnitude, and simply call the resulting value ∆. That is, 
assume  

∆X2 = -∆X1     ∆Y2 = ∆Y1 

 ∆X3 = -∆X1      ∆Y3 = -∆Y1 

 ∆X4 =  ∆X1      ∆Y4 = -∆Y1 

and finally that ∆ = ∆X1 = ∆Y1 (Figure 9). This is also the condition that the transformation be, as  

 

_____________Figure 9 goes about here______________________________________ 

 

nearly as possible, conformal, that is, locally shape preserving, and minimizes the Dirichlet 
integral 
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∫ R (∂x2/∂u + ∂y2/∂v + ∂x2/∂v + ∂y2/∂u ) dudv, 

And this renders the transformation unique. Thus A' is just an enlarged (or shrunken) version of 
A, a similitude. Working out the details yields  

A' =  4∆2 + ∆ (X1 - X2  - X3  + X4 + Y1 +Y2 – Y3 - Y4) + A 

This quadratic equation is easily solved for the unknown ∆. Once this quantity is found the 
problem has been solved, but for only one piece of territory. The map area A' is now numerically 
equal to the numerical value of h(u, v) for that piece.  

Many different equal area map projections are possible, and the same holds for value-by-
area cartograms. There is one defining equation [eq. 1, above] to be satisfied but this is not 
sufficient to completely specify a map. Two conditions are generally required to determine a map 
projection, or the differential equation must be given boundary conditions. The choice of a 
transformed map that looks as nearly as possible like the original was made above and this 
minimizes the angular distortion, locally preserving shape as nearly as possible. Sen (1976) 
presents another possible condition. In his example, based on population for the United States, he 
retains the latitude lines as equally spaced horizontal parallel lines (a type of cylindrical 
projection?), but the example, while preserving the desired property, is hardly legible. It is also 
possible to formulate the problem in polar coordinates, as for azimuthal map projections. Three 
different versions of this possibility are given in Tobler (1961 & 1963, 1973 & 1974, and 1986).  

 If the regions with which one is dealing are irregular polygons, instead of rectangles, the 
procedure is exactly the same. One simply translates to the centroid of a polygon and then 
expands (or shrinks) by the proper amount to get the desired area size, getting a local similitude. 
In order to do this use the same reasoning as above, expanded to cover general polygons instead 
of rectangles. The result is that the scale change is the square root of (A'/A), from which ∆ is 
easily calculated (Figure 10). 

 

____________________________Figure 10 goes about here_______________________ 

 

When two rectangles, or two polygons, are attached to each other they will have nodes in 
common. Then the amounts of displacement calculated independently for a single node 
associated with more than one area will differ. Suppose one displacement is calculated to be ∆1 
and the other ∆2. Then take the (vector) average. But this means that neither will result in the 
desired displacement. In particular, in a set of connected rectangles, or polygons, this problem 
will occur at almost all nodes. And some nodes will be connected to more than two regions 
(Figure 11). Again, just average all of the displacements. After all of these displacements have 
been calculated apply them by adding the  

 

___________________Figure 11 goes about here____________________ 

 

increments to every node. Then repeat the process in a convergent iteration. Eventually all 
regions will converge to their proper, desired size. 

 There remains one final problem. The displacement at a node can be such that it requires 
that the node cross over the boundary of some region. This must be prevented. Equally seriously, 
displacing two nodes may result in the link between them crossing over some other node. And 
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this again must be prevented. Both of these situations are illustrated in the accompanying figure 
(Figure 12). 

 

_____________________Figure 12 Goes about here _____________________ 

 

 Under-relaxation - shrinking the displacements to some fraction, say 75%, of the desired 
values helps avoid, but does not prevent, the problem. The technique used in my computer 
programs to solve this difficulty was to look at all adjacent nodes, three at a time. This triple 
makes up a triangle. When a node of the resulting triangle is displaced to cross over the opposite 
edge of the triangle, as in Figure 13, then the problem (a node crossing over a line, or a line 
crossing over a node) has occurred. Turning a triangle inside out in this manner changes the 
algebraic sign of the triangular area, from positive to negative, and this makes detection of the 
difficulty very simple. When this happens the displacement 

 

____________________Figure 13 Goes about here_____________________ 

 

must be adjusted. Therefore, if a crossing is detected in the triangle, then the displacement is 
shrunken until it is no longer is a problem. Thus every node must be checked against every 
boundary link, and every link must be compared to every node. This can get quite tedious, 
consuming considerable computer time. This topological checking slows the algorithm down 
considerably. The next iteration computes a new set of displacements and the desired result is 
eventually achieved, in a convergent iteration. The topological check also prevents negative areas 
from occurring. Negative areas are not permitted, since by assumption, h(u, v) is non-negative.  

The “error”, the total discrepancy between the desired result and the result obtained, is 
measured by ∑ |A' – A| / ∑ A with A' normalized so that ∑ A' = ∑ A over all areas. The 
convergence of the algorithm then follows a typical monotonic exponential decay. My experience 
on an IBM 709 computer, with data given by latitude and longitude quadrilaterals and using one 
degree population data (a 25 by 58 lattice of 1450 cells) for the continental United States, was 
that the program required 25 seconds per iteration and required about 20 iterations. Today's 
computers would require about one second per iteration with this algorithm. Using the 48 
contiguous U. S. states as data-containing polygons takes considerably less time since there are 
fewer areas (only 48 cells) to be evaluated.  

 

The Computer Programs 

 The exact date of the Harvard presentation is not available, but Howard Fisher retired 
from his position as lab direction in 1967 so it must have been before that. Three computer 
versions then existed; one program treated data given by latitude/longitude quadrangles, another 
was for irregular polygons, and the third assumed that the geographical data are represented by a 
mathematical equation. The lattice version worked on the latitude/longitude grid (or any 
orthogonal lattice) and produced a table of x, y coordinates for each point of latitude and 
longitude. In other words the program produced tables of x = f (φ, λ), y = g (φ, λ). These are the 
two equations required to generate and define a map projection. An example is given in the table 
(Table 1). Using a standard map projection program it is possible to  

_____________________Table 1 goes about here_____________________ 
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plot coastlines, state boundaries, rivers, etc., by interpolation using these coordinates. Today most 
map projections are obtained directly from known equations, Robinson's projection being a 
notable exception requiring both a table lookup and an interpolation. And most map projections 
are not obtained by iteration; but Mollweide's projection is done in this manner to produce the 
table from which the projection is then calculated and interpolated. An advantage of presenting 
the cartogram as a table of geographic to rectangular coordinates is that this gives the final results 
of the iteration and that this table can be passed on for the use of others, or to plot additional 
detail. All that is required for others to reproduce the cartogram is a simple interpolation routine. 
The figures (14 and 15) show an example produced from the foregoing table at the University of 
Michigan using a plotter. 

 

_________________Figures 14 & 15 go about here, together_______________ 

 

The cartogram program was also tested by entering the spherical surface area for 
latitude/longitude quadrangles and, as expected, yielded an equal-area map projection for the 
United States similar to that by Albers. As far as I am aware no one else has tested their algorithm 
in this simple manner. All equal area maps are a special case of cartograms in which the surface 
area is the property to be preserved, as is easily seen from the equations. 

A separate program, again independent of any particular map projection, computed the 
linear and angular distortion of Tissot’s (1881) indicatrix by finite differences from this same 
coordinate file (Table 2). Tissot’s measure of area distortion (his S) on map projections had been 
shown (Tobler 1961)  

 

____________________Table 2 goes about here____________________ 

 

to be equal to the desired area on a cartogram. Just as an infinite number of equal area map 
projections are possible there are many possible value-by-area cartograms. The choice depends 
on the additional conditions invoked. My choice was to come as close as possible to the 
conventional map by minimizing angular distortion. The Tissot evaluation program provides an 
objective measure as to how well this target is achieved. 

The second cartogram program used state outlines, or general polygons instead of a grid, 
directly. Both programs allowed one to specify particular points to be fixed – not to be moved – 
so that, for example, some exterior boundaries could be held constant. Or points critical for 
recognition of landmarks could be retained. Both programs also had an option to produce an 
initial pseudo-cartogram (Tobler 1986a), treating the quantity to be preserved, h(u, v), as if it 
could be approximated by a separable function of the form h1(u) h2(v). To do this the program 
“integrated” the data in the u direction and then separately in the v direction. The effect is 
somewhat like using a rolling pin in two orthogonal directions to flatten a batch of bread dough. 
This could be used to compute a beginning configuration from which to initiate the iterations, 
saving computer time, but it also would affect the resulting appearance of the cartogram. A 
similar residual effect can be observed if a cartogram is begun with information given on any map 
projection of the area of interest. For example, the results are affected if plane coordinates from 
the Plate Carée (rectangular) projection, the sinusoidal projection, or that of Carl Mollweide, is 
used as the initial configuration from which to compute a cartogram of the world, or any part 
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thereof. Using Tissot's results, integrated over the entire map, one can distinguish between, and 
rank, these alternative cartogram configurations.  

Another trick is to begin with a simplified set of polygon outlines, iterate to convergence, 
and then restart with more detailed polygons. [This process can be automated, and also works for 
data in gridded form, going from low to high resolution]. Furthermore, since substantive 
information given by political units (polygons) often varies dramatically from one polygon to the 
next it also makes sense to use pycnophylactic reallocation, which does not change the total data 
within any polygon but redistributes it to obtain a smoother arrangement. Thus there is less 
drastic fluctuation from polygon to polygon. If using finite differences (Tobler 1979b) for this 
smooth reallocation, the individual polygons are partitioned into small quadrangular cells and the 
computer version for a regular lattice is used. The plane coordinates of the cell vertices are then 
retained for subsequent plotting. If finite elements with triangles (Rase 2001b) are used to 
implement the smoothing reallocation within the polygons then a computer program version for 
irregular areas, perhaps specialized for triangles, can be used. 

In addition to the Harvard lecture the same algorithm was also presented to a conference 
on political districting (Tobler 1972) and at a conference on computer cartography applied to 
medical problems (Tobler 1979a). A description of how to proceed when the geographical 
arrangement of phenomena is described by an approximating mathematical equation was also 
given in the 1961 thesis, in the 1963 paper, in the 1974 program documentation, and in the 1979a 
paper. An equation in two variables can depict a geographical distribution with a high degree of 
accuracy, or, in a simpler version, can be used to just describe an overall trend; either 
representation is appropriate for the construction of a cartogram. In the case of an approximating 
trend the exact value-by-area property may not be obtained, since only the trend is represented by 
the map, and the cartogram does not retain correct area values as desired; it only approximates 
these. The approximation depends on the fit of the trend to the data. When such a descriptive 
equation is available it may no longer be necessary to use an iterative procedure; the cartogram 
might be computed directly, depending on the complexity of the equation. For simple examples 
and a related idea see Monmonier (1977).  

Additional programs at that time could produce a hexagonal grid to cover a region and to 
produce an inverse transformation from the latitude/longitude grid and the tables of x, y 
coordinates. The resulting tables are then for φ = f –1 (x, y) and λ = g –1 (x, y). This allows the 
inverse transformation of the hexagonal grid to lie, in warped form, over the original image, in an 
attempt to replicate Christaller’s central place theory in a domain of variable population (Figure 
16). Only one of the  

 

_____________Figure 16 goes about here_________________________ 

 

competing computer algorithms (see below) is known to allow complete inversion of a cartogram. 

The several FORTRAN programs for cartograms mentioned above were distributed by 
me in a 110 page Cartographic Laboratory Report (No. 3, 1974) from the Geography Department 
at the University of Michigan. Several of these programs were later (circa 1978) implemented on 
a Tektronix 4054 in the Geography Department at the Santa Barbara campus of the University of 
California. 

An interactive version of the polygon program version, using a Tektronix display 
terminal, was prepared in 1970 by Stephen Guptill and myself, and presented at a computer 
conference (Tobler 1984). This program allowed the topological checking to be performed 
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visually, thus avoiding the need for the tedious trianglar inside-outside computation by computer. 
The discrepancy in each polygon was displayed on an interactive computer screen and was 
indicated by scaled plus or minus symbols at the polygon centroids. The proposed change at each 
iteration could also be superimposed on the previous result, or on the original configuration, 
shown as a set of dashed lines. Using an interactive cursor, the cartographer could zoom in on a 
location on the map to move and improve offending, or inelegant, node displacements. No 
numerical calculations are required by the cartographer. The computer costs (and time) were then 
reduced 100-fold since the topological checking could be disengaged. This was followed by 
further iterations, and interaction, to improve the fit to the desired areal distribution. An example 
is shown in the figure (Figure 17) for a portion of a map of South America. Williams (1978)  

 

___________________Figure 17 goes about here______________________ 

 

and Torguson (1990) also developed interactive cartogram programs. 

 

From Ruston to the Internet 

 In the following paragraphs several additional computer cartogram programs are briefly 
described or mentioned. The details for each program can be found in the citations. The intent 
here is only to give a short review of this literature. 

In 1971 G. Ruston published a computer program that was based on a physical analogy. 
One may imagine that a thin sheet of rubber is covered with an uneven distribution of inked dots 
representing a distribution of interest. The objective is to stretch the rubber as much as necessary 
until the dots are evenly distributed on the sheet. This simple description is an approximate 
representation of the mathematical statement used for his computer program. If the dots represent 
the distribution of, say, population, the resulting cartogram is such that map areas are proportional 
to the population. When the rubber sheet is relaxed to its original pre-stretched form, hexagons 
previously drawn on the stretched surface can represent market areas. The implication is again to 
use the cartogram as a test of the Christaller theory of the distribution of cities in a landscape. 
Uniqueness would seem to me to depend on boundary conditions, since the cartogram process 
involves solving a partial differential equation. 

In 1975 A. Sen published a theorem about cartograms. In effect he asserted that the least 
distorted cartogram has the minimal total external boundary length of all possible areal 
cartograms. Interestingly, this had been empirically discovered by Skoda and Robertson in 1972 
while constructing a physical cartogram of Canada using small ball bearings to represent the unit 
quantity. Similar manual methods were reported by Hunter & Young (1968) and by Eastman, 
Nelson & Shields (1981). 

Kadman and Shlomi, in 1978, introduced the idea that a map could be expanded locally 
to give emphasis to a particular area. This was based on rather ad hoc notions of the importance 
of an area and not on the matching to a particular distribution. Lichtner (1983) introduced similar 
concepts as did Monmonier (1977). Snyder’s (1987) “Magnifying Glass” map projection uses a 
similar idea. Hägerstrand (1957) already did this of course, but he based his map distortion on an 
anticipated distribution, and distance decay, of the location of migrants from a city in Sweden. 
This resulted in an azimuthal projection with enlargement at the center of interest. More recent 
versions of the concept appear in Rase (1997, 2001a), Sarkar and Brown (1994), and in Yang, 
Snyder, and Tobler (2000). An Internet firm (Idelix.com) now supports an interactive version of 
this technique with variable moving morphing windows. 
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In 1983 Appel, et al, of IBM patented a cartogram program that worked somewhat like a 
cellular automaton. Areas were represented as cells of a lattice and ‘grew’ by changing state 
(color) depending on the need for enlargement or contraction. 

A decade after my several computer programs were distributed Dougenik, Chrisman, and 
Niemeyer of Howard Fisher’s Harvard Computer Graphics Laboratory published (1985) an 
algorithm that differed from the one that I had developed in only a small, but important, respect. 
In my algorithm the displacements to all nodes in one iteration were applied, simultaneously, only 
after they had all been computed, and adjusted, for all polygons. That was at the end of one 
complete pass through the program. Another iteration of the same procedure then followed until 
the stopping criterion was satisfied. Instead of this the Harvard group, after computing 'forces' for 
only one polygon applied them immediately to all nodes of all of the polygons. But these 
displacements, discounted by a spatially decreasing function away from the centroid of the 
polygon in question, were applied to all of the nodes of all polygons simultaneously. Thus the 
objective was approximately satisfied for only one polygon, but all polygons were affected by the 
'forces' and modified. They then moved on to the next polygon and repeated the procedure. 
Iterations were still required, with a stopping rule. The result is a continuous transformation of a 
continuous transformation, and that of course is continuous. As a consequence they avoided most 
of the necessity for a tedious topological constraint and virtually all of the topological problems 
were avoided. Depending on the complexity of the polygon shapes occasional overlapping might 
still occur, but only infrequently. Thus there is an improvement in speed, but not necessarily in 
accuracy. Almost all subsequently developed computer programs stem from this 1985 
publication, which included pseudo-code. 

 In 1988 Tikunov of the Soviet Union presented a brief review of the history of 
cartograms and described several manual, mechanical, and electrical methods of production for 
these types of maps, along with a sketch of a computer method. This paper also included many 
references to the considerable Russian literature. A new mathematical algorithm, using Stoke’s 
Theorem and line integrals, was also presented in 1993 by the Soviet authors Gusein and 
Tikunov. Another version, with emphasis on medical statistics, formed the basis for two Ph.D. 
dissertations at the University of California at Berkeley (Selvin et al. 1988, also described in 
Merrill et al. 1991, and Merrill 1998, with an extensive bibliography). In these medically oriented 
papers the important emphasis is on the analytical use of a cartogram as a new geometric space in 
which to do statistical testing, in spite of the fact that distances are not invariant under this 
transformation. The objective hence is not visual display but analysis. An earlier health related 
paper, using a manual procedure and with a similar objective is by Levinson & Haddon (1965). 
Merrill (1998) provides other early examples. 

 D. Dorling, in 1991, developed a novel approach. Using only centroids of areas he 
converted each polygonal area into a small bubble - a two dimensional circle. These bubbles are 
then allowed to expand, or contract, to attain the appropriate areal extent. At the same time they 
attempt to remain in contact with their actual neighbors. Dorling also colored the resulting circles 
depending on some additional attribute. His later (Dorling 1996) work contains a rather detailed 
history of the subject and gives numerous examples of alternative types and, as of the 1996 date, 
includes the most comprehensive bibliography on the subject of area cartograms, along with two 
programs to compute cartograms. One of these programs was for polygons converted to a raster, 
and included an inverse procedure. The other program was for his bubble algorithm. This is most 
popular in the United Kingdom, perhaps because the complete computer program was published 
there, and now also seems to be available on the internet. Recall that the UK statistical agencies at 
that time provided only centroids, and no boundary data, for small areas. He also (1995) 
published an atlas of social conditions making extensive and effective use of the display 
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capabilities of his procedure. Dorling did not present any equal area maps using this algorithm, 
with spherical land area (km2) as the property to be preserved, except as initial configurations. 

Adrian Herzog of the Geography Department of the University of Zürich has also 
prepared a program for interactive use on the internet 
(http://www.statistik.zh.ch/map/mapresso.htm). Two further implementations for use in 
conjunction with a GIS from ESRI have also been reported (Jackel 1997, Du 1999). An 
innovative undergraduate thesis has also been presented [by Brandon (1978) done under the 
supervision of Eric Teicholz at Harvard, and another from the United Kingdom by] Inglis (2001), 
and there is a master’s thesis by  Torguson (1990). Some literature exists in German (Elsasser 
1970, Kretschmar 2000, Rase 2001a), and from France too (Cauvin and Schneider 1989). A 
recent search on Google located 2,170 entries under ‘cartogram’ on the Internet, including 
analytical applications in medicine (mostly epidemiology), uses for display in geography, and, 
most interestingly, a [very] large number of exercises for grade school children. Also included on 
the Internet are animations, made possible by the iterative nature of the algorithms (an example: 
http://www.bbr.uni.edu/cartograms). 

 

Recognition Difficulties 

It has been suggested that cartograms are difficult to use, although Griffin (1980, 1983) 
does not find this to be the case. Nevertheless Fotheringham, et al (2000, p. 26), in considering 
Dorling’s maps, state that cartograms  

“…can be hard to interpret without additional information to help the user locate towns and 
cities”.  

The difficulty here is that many people approach cartograms as just a clever, unusual, display 
graphic rather than as a map projection to be used as an analogue method of solving a problem, 
similar in purpose to Mercator’s projection. Mercator’s map is not designed for visualization, and 
should not be used as such.  

 If the anamorphic cartograms are approached as map projections then it is easy to insert 
additional map detail. In the case of Dougenik et al’s, or Dorling’s, or other, versions simply 
knowing the latitudes and longitudes of the nodes or centroids allows one to draw in the 
geographic graticule, or to display any additional data given by geographic coordinates. And this 
can be done using a standard map projection program augmented by a subroutine to calculate a 
map projection given as a table of coordinates. Included here, in addition to the geographic 
graticule, could be roads, rivers, lakes, etc., which would enhance recognition. Dorling’s bubbles 
could be replaced by boundaries of larger administrative units, or other features. Thus the 'bubbly' 
effect need not be retained. One could then even leave off of the map the administrative or 
political units that were used in the construction of the cartogram. And one could replace these by 
superimposing an alternate set of boundaries or other information (for example, disease 
incidence, poverty rates, roads, or shaded topography). This requires a bit of simple interpolation 
from the known point locations. It is also possible to lightly smooth the latitude and longitude 
graticule obtained to avoid inopportune kinks introduced by some algorithms. 

 It has recently been proposed that “brushing” techniques, borrowed from statistical 
graphics, can be used to overcome the problem of difficult geographical recognition on areal 
cartograms. In this procedure a normal map is presented alongside of the cartogram and by 
pointing at a location on one of the two maps the comparable position on the other map is 
highlighted. Several implementation of this procedure can be found on the Internet. In this 
context a point-wise inverse mapping is available. Of course the brushing technique only works 
on an interactive screen. To my knowledge the efficacy of this method has not been studied. 
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 As observed above, it is also possible to use Tissot’s results to calculate the angular and 
linear distortion of the map. The areal distortion, Tissot’s S, has been shown to be equal to the 
distribution being presented. Tissot’s indicatrix (Robinson 1951, Laskowski 1989) is useful in 
comparing two cartograms obtained from the same data using alternative algorithms. If they both 
preserve the value-by-area property then the measure of angular distortion (Tissot's ω) is 
important. The sum, or integral, of the indicatrix properties over the entire map can be used to 
provide an overall, i.e. global, measure of the distortion. A similar result holds true of cartograms 
that stretch space using time or cost distance rather than areal exaggeration. Sen (1976) also 
presents some possible alternative measures of distortion.  

 It is now also apparent that one can calculate a cartogram to fit on a globe - a mapping of 
the sphere onto itself - but this has as yet not been done. It is not necessary to invoke a plane map 
at all. Examples might be to represent surface temperature or annual precipitation, constructing 
the globe gores in the usual fashion. From such a representational globe any conventional equal 
area map projection (Eckert, Mollweide, sinusoidal, Lambert, etc.) can be used to represent the 
information as a proper (but different, depending on the initial projection) areal anamorphose on a 
flat map. Satellite image globes have to some extent supplemented political globes and 
anamorphic globes might someday also be constructed. 

 

Extending the Concept 

Computer scientists, including Edelsbrunner & Waupotisch (1995), have also studied the 
problem. In general they conceive of area cartograms as having a graphical display function - 
yielding insight into some problem - rather than as an analytical tool, and not a graphical 
nomograph for the solving of a specific problem. A recent implementation is from Texas, again in 
a thesis (Kocmoud 1997, also Kocmoud & House 1998). This interesting algorithm attempts to 
maintain shape in addition to proceeding to correct areal sizes. The shape preservation alternates 
with area adjustment in each iteration, neither being completely satisfied. Somewhat similar, but 
very considerably faster, programs and algorithms have recently been developed by researchers at 
the Martin-Luther University in Halle; (Panse 2001) and the AT&T Shannon Research 
Laboratory (Keim, North, and Panse 2002; Keim, North, Panse, and Schneidewind 2002). These 
papers also review and display copies of existing alternative cartogram algorithms.  

It is important to recognize that these computer engineers have employed a different 
objective. Instead of an areal cartogram, senu strictu, they attempt to “balance” the value-by-area 
concept with shape preservation. That is, they allow departure from the objective of exactly 
fitting the areal distribution of concern to better conserve shapes. They introduce two finite 
measures of departure from the objective. One applies to area, the other to shape. Contrast this 
with my objective of faithfully preserving the areal distribution and doing this in a manner that 
then tries to best preserve shape, without giving up the precise value-by-area property so 
necessary for the theoretical objective. This engineering approach is reminiscent of the 
Astronomer Royal George Airy’s (1861) projection by a “balance of errors”. Airy, recognizing 
that a geographic map could not be equal area and conformal at the same time, chose to give up 
an exact fit to either of these important properties and instead used a least squares approach to 
find a compromise map projection. Aims comparable to those of Airy have been invoked for 
conventional map projections, with slightly different mathematical objective functions, by Jordan 
(1875), Kavraisky (1934), and others, and are described by Frolov (1961), Biernacki (1965), 
Mescheryakov (1965), and Canters (2002). Tissot’s areal distortion (S) on a value-by-area 
cartogram (also equal to his a*b, the product of the indicatrix axes) has been shown to be equal to 
h(φ, λ), the areal density of concern, therefore a new criterion, comparable to that of Airy, can be 
formulated as a balancing of the value-by-area property with the property of conformality (local 
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shape preservation). Then in order to use the least squares criterion, as did Airy, for this new 
objective we need to minimize the following double integral,  

    ∫ ∫  { [ab - h (φ, λ)]2 + [a - b]2 } cos φ ∂φ ∂λ 

taken over the region of concern. Some variants of this integral are also possible - differential 
weighting of the criteria is an example. In the case of plane maps one substitutes u, v for the 
latitude and longitude and drops the cosine term. Observe that this is a global, not a local criterion 
which instead would be used to minimize the maximum of the proposed function at all locations. 
The first squared term measures the departure from the value-by-area property. The second term 
measures the departure from conformality, or local shape preservation. The ratio of the minimum 
linear stretching to the maximum stretching (b / a), or the logarithm thereof, could also be used to 
measure departure from conformality, as is done in the closely related field of quasiconformal 
mapping (Teichmüller 1937, Gehring 1988). The recently invented computer algorithms use 
finite measures of the fit to the phenomenon of concern and to the preservation of shape. This is 
done by an alternating iteration until some combined criterion is satisfied. They then present very 
speedy, and recognizable, anamorphoses on which additional information may be displayed. 
Presumably, by varying the weight given angular or areal distortion, a range of solutions could be 
obtained. It would be of interest to see whether new compromise (more conventional) map 
projections of the world, or parts thereof, can be created using these algorithms, simultaneously 
minimizing areal and shape distortion when given information defined by polygons. A map of the 
contiguous United States using county areas defined by finite polygon coordinates, for example, 
or spherical quadrilaterals, might approximate, or balance, both Albers' equal area conic 
projection and Lambert's conformal conic projection for this region. Interpolation could then 
produce a table of map projection coordinates for general use. 

 Along with Tissot’s measure of areal distortion for evaluating a map projection it is now 
possible to add a measure of the departure from density preservation, in addition to the 
conventional measures of linear and angular distortion. My initial objective was to have no 
departure from density preservation, combined with minimal departure from conformality The 
newly introduced versions have departures from both criteria in a ‘balanced’ fashion. Now the 
two independent measures of departure can be shown on the anamorphoses using Tissot’s 
indicatrix or by choropleths or isolines. As long as the cartograms are used only for visual display 
it is clear that some departure from density preservation and from conformality can be tolerated 
since MacKay (1954, 1958) has shown that visual estimates of area and conformality are not 
terribly accurate. 

 

Still Needed 

 As stressed in the foregoing materials, the general factors in evaluating an algorithm must 
be to 1) show correct value-by-area, 2) preserve shape to the extent possible, and 3) be efficient, 
in that order. For the last item the computational complexity of a cartogram would appear to be 
the same as that of any map projection. I am not aware of any results in this direction but would 
expect to find this to be polynomial in nature. The enhanced possibility of producing the inverse 
transformation also seems useful for theoretical purposes, using the important transform-solve-
invert paradigm (Eves 1980: 215-228). This is similar to the use of a conformal Zhukovskii 
transformation in order to study the aerodynamics of airfoils (Ivanov and Trubetskov 1994: 70-
73), and should also be useful in the medical use of cartograms. Sen (1976) also raises the 
question of uniqueness. In the case of ‘balanced’ cartograms what metrics should be used for the 
tradeoff? 
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As a final remark, none of the several algorithms presented to date are capable of 
replicating Raisz’s ‘rectangular statistical cartogram’. This seems to be because the exact, correct, 
topology is difficult or impossible to maintain. The adjacency graph of the original unit outlines 
does not agree with that of the ‘rectangular’ representation. This can probably be proven to be 
impossible, along topological lines similar to Euler's Königsberg bridge problem. Raisz actually 
forces his entire map (Figure 3) to fit into a rectangle, sometimes with an appended square for 
New England or Florida. In the last thirty five years several atlases have featured world 
cartograms with all countries as squares or rectangles, in their approximately correct position and 
size according to some property, usually population or per capita income, etc. (See Dent, op. cit. 
for citations). The countries are then colored according to some additional attribute. The 'square-
like' countries are not generally forced into an overall rectangle. The similarity is to Levasseur's 
map of Europe (Figure 2). To my knowledge all of these are still produced by hand, perhaps 
assisted by a calculator for the arithmetic. An interactive computer program should be convenient 
for constructing this type of map. For the evaluation a useful critical measure might be based on 
the distance of the true adjacency matrix from that as represented on the cartogram, but I am not 
aware of any such proposals. Only at the intersections of political boundaries, whose latitude and 
longitude are known, could anything like Tissot's indicatrix be calculated or could the entire 
spherical graticule be interpolated to illustrate the warping of the usual map. But perhaps other 
possibilities exist for measures for the measuring of the similarity of two cartograms, along the 
lines given in Sen (1976) or Tobler (1986b). 

 The computer construction of cartograms has progressed rapidly in the last several years. 
I expect that, with the increased speed and storage capabilities of future computers, the next 
thirty-five years will lead to further changes in this field. [As an illustration of this an 
unpublished manuscript by two physicists (Gastner and Newman 2003) came to my attention, as 
the present paper was undergoing proofing. In this manuscript they use the diffusion equation in 
the Fourier domain and with variable resolution. This can be considered a mathematical version 
of Gillihan’s (1927) smoothing procedure, to compute a value-by-area cartogram]. 
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Table 1 
  Map projection coordinates for a cartogram of the United States  
 
     LATITUDE  24 N  29 N  34 N  39 N  44 N  49 N 
  LONGITUDE        
     125 W X  0.901 0.512 0.258 0.916 1.469 0.705 
 Y 0.520 1.295 6.529 17.856 23.559 28.786 
     120 W X 2.572 1.744 1.428 3.050 3.350 3.772 
 Y 0.272 1.151 7.256 16.240 22.415 29.166 
     115 W X 5.364 5.634 5.422 4.351 4.779 5.505 
 Y 0.384 1.203 7.656 14.756 22.841 27.355 
     110 W X 6.457 6.526 6.196 5.171 6.072 6.231 
 Y 0.519 1.643 9.624 15.592 23.570 27.464 
     105 W X 7.124 7.118 6.897 6.082 6.783 7.151 
 Y 0.526 1.908 10.340 16.850 23.989 27.529 
     100 W X 8.375 8.474 8.035 7.875 8.102 7.985 
 Y 0.177 1.526 9.030 17.452 23.991 27.597 
      95 W X 12.221 13.372 10.826 10.653 9.944 10.867 
 Y 0.205 1.873 9.683 17.012 24.102 28.341 
      90 W X 16.575 16.741 17.082 14.738 15.994 17.012 
 Y 0.481 1.492 8.323 16.218 25.606 28.773 
      85 W X 23.867 24.124 23.866 24.013 24.001 24.279 
 Y 0.325 1.401 6.476 14.864 26.785 28.610 
      80 W X 33.333 33.993 32.520 32.508 33.131 32.813 
 Y 0.618 2.031 4.538 13.440 26.556 28.511 
      75 W X 41.886 42.043 43.210 40.877 39.962 39.961 
 Y 2.195 2.971 4.184 8.479 26.184 28.638 
      70 W X 46.932 46.854 47.618 48.131 48.249 47.535 
 Y 2.085 2.958 5.590 10.501 26.452 29.172 
      65 W X 48.652 48.117 48.811 49.469 49.630 49.291 
 Y 1.311 2.718 6.350 13.588 25.608 28.695 
      Values in degrees 
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                Table 2 
Tissot's measures of map projection distortion 
        For a Cartogram of the USA 
Lat  Lon       a          b          k         h      2ω 
 29 -120 0.99697 0.38274 0.38725 0.99522 52.8709 
 29 -115 1.27582 0.29539 0.33808 1.26517 77.2165 
 29 -110 1.20178 0.21477 0.26406 1.19192 88.3369 
 29 -105 1.06845 0.23102 0.23704 1.06713 80.2467 
 29 -100 1.01472 0.36120 0.36165 1.01456 56.7153 
 29  -95 1.17550 0.86628 0.92103 1.13310 17.4216 
 29  -90 1.75168 1.11213 1.63623 1.27593 25.8085 
 29  -85 1.96759 1.36739 1.96237 1.37486 20.7360 
 29  -80 1.82679 1.50669 1.82620 1.50741 11.0206 
 29  -75 2.02536 1.71991 1.72856 2.01798  9.3559 
 29  -70 1.87223 1.10027 1.10735 1.86805 30.1049 
 34 -120 1.56400 0.44755 0.55812 1.52804 67.4246 
 34 -115 1.52253 0.25186 0.26751 1.51986 91.4696 
 34 -110 1.41802 0.31432 0.40560 1.39466 79.1535 
 34 -105 1.38388 0.32354 0.39587 1.36495 76.7817 
 34 -100 1.49628 0.44266 0.44323 1.49611 65.8309 
 34  -95 1.46455 0.80596 0.84110 1.44466 33.7238 
 34  -90 1.86459 1.47860 1.63220 1.73172 13.2598 
 34  -85 2.26480 1.92408 2.16948 2.03094  9.3309 
 34  -80 2.52269 1.79407 2.17508 2.20265 19.4347 
 34  -75 2.41680 1.66779 1.91753 2.22385 21.1328 
 34  -70 2.21083 0.96037 1.20576 2.08715 46.4467 
 39 -120 1.53085 0.64259 0.68012 1.51454 48.2452 
 39 -115 0.98584 0.62055 0.68503 0.94218 26.2880 
 39 -110 1.43964 0.21640 0.39408 1.40147 95.2331 
 39 -105 1.49638 0.23560 0.24867 1.49426 93.4289 
 39 -100 0.95349 0.49528 0.51386 0.94360 36.8755 
 39  -95 1.59407 1.09007 1.16768 1.53812 21.6453 
 39  -90 1.90122 1.25518 1.72668 1.48616 23.6209 
 39  -85 2.08889 1.27772 2.04533 1.34635 27.8847 
 39  -80 2.52611 1.10685 2.50652 1.15052 45.9913 
 39  -75 1.94916 0.55709 1.94746 0.56301 67.4824 
 39  -70 0.94526 0.53746 0.77273 0.76503 31.9279 
 44 -120 1.01444 0.55491 0.91442 0.70771 34.0527 
 44 -115 0.74517 0.64821 0.66829 0.72722  7.9806 
 44 -110 1.04047 0.16828 0.53028 0.91087 92.3680 
 44 -105 1.33361 0.22041 0.92894 0.98191 91.5060 
 44 -100 0.89847 0.85648 0.86942 0.88595  2.7421 
 44  -95 1.65079 0.58353 1.46564 0.95787 57.0667 
 44  -90 1.49627 0.78560 1.49614 0.78584 36.2918 
 44  -85 2.39956 0.61478 2.39948 0.61510 72.6117 
 44  -80 2.50103 0.39753 2.50058 0.40034 93.0551 
 44  -75 1.79856 0.18823 1.79253 0.23894108.2926 
 44  -70 0.84720 0.35218 0.84512 0.35715 48.7523 
Tissot's 'a' measures the maximum linear stretch, 'b' is the minimum linear stretch,  'h' and 'k' are the 
 linear stretch along the meridians and parallels, '2ω' is the maximum angular distortion. The areal  
distortion (Tissot's S) is the product of 'a' times 'b' and is, by design, proportional to the population.  
Other properties can be computed from these basic entities. 
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Figure Captions: 
 
Figure 1: 
"Joseph R. Grundy, Pennsylvania manufacturer, suggested in the Senate lobby committee that the present equal 
power of States in voting on tariff bills is unfair because of differences in voting strength. Here's a map of the United 
States showing the size of each State on the basis of population and Federal Taxes". From the Washington Post 
November 3, 1929. 
Figure 2: 
Levasseur's cartogram of Europe showing countries in their correct size. (After Funkhouser) 
Figure 3: 
Two of Raisz's (1934) rectangular cartograms. The top diagram is a statistical cartogram showing the land surface 
(km2) by Census divisions - an equal area map. Below this is a "Rectangular statistical cartogram with rectangles 
representing geographical divisions of the Census and states proportionate in size to their population". Comparing 
the differential position of the Appalachian Mountains and the Mississippi River on the two diagrams dramatically 
illustrates the differences. Additional cartograms in Raisz's paper include representations of "National Wealth",  
"Value Added by Manufacture", "Farm Products", "Mine & Quarry Products", "Crude Oil", "Sand & gravel", and 
"Natural Gas", all scaled in 1920 dollars. From Raisz, E., 1934, “The Rectangular Statistical Cartogram”, 
Geographical Review, 24(2): 293. Used by permission of the American Geographical Society..  
Figure 4:  
A representation of the to-be-preserved density shown in a perspective diagram. 
Figure 5: 
The density converted to a plane area. 
Figure 6: 
A square with vertex identification. Counterclockwise numbering is indicated. 
Figure 7: 
Possible vertex displacements, with no constraints. 
Figure 8: 
Notation for the displacement of one vertex 
Figure 9: 
Uniform displacement of all vertices, yielding a similarity transformation. 
Figure 10: 
A polygon and displacements to yield a similarity transformation by expansion from the centroid. 
Figure 11: 
Illustrating conflicting displacements. One node may need to be displaced to two (or more) different positions. The 
resolution of this conflict is described in the text..  
Figure 12: 
Illustrating a vertex crossing a line, and a line crossing a vertex. Both are violations of the topology. 
Figure 13: 
Adjusting the topology by checking the algebraic sign of the area of a triangle. 
Figure 14: 
The latitude-longitude graticule for a cartogram of the United States. Computed by the author. 
Figure 15: 
The United States drawn according to the projection graticule of figure 14. Computed by the author. 
Figure 16:  
Illustrating the transform-solve-invert paradigm in an analytical use of a cartogram. The bottom two diagrams are 
intended to be superimposed on the top two. At the top right is a population cartogram of the United States. Below 
this is a uniform set of hexagons. Using the inverse transformation the hexagons are converted to cover the United 
States approximately partitioning this area into zones of equal population. Tissot's results are valid in both 
directions, consequently the inverse hexagons approximate his indicatrix. After Tobler (1973). Used by permission 
of the New York Academy of Sciences. 
Figure 17: 
One frame from an interactive cartogram program. The different lines represent stages of the iteration. The cursor 
placement (plus sign) at a node indicates a location for potential change by the cartographer. Positive and negative 
symbols indicate areas that are too large or too small relative to the desired objective. Computed by the author. 
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