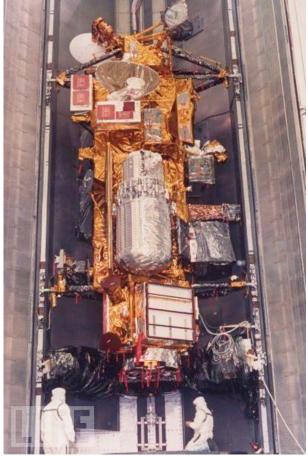
National Aeronautics and Space Administration

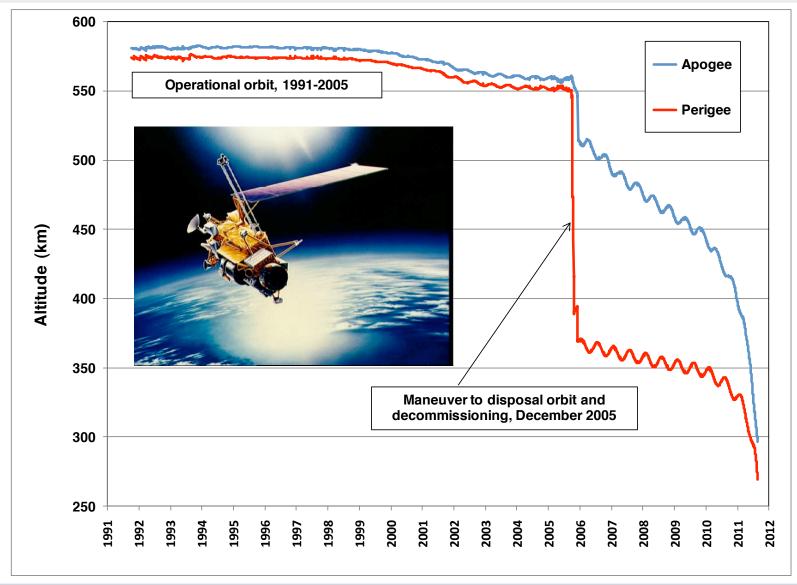
Re-entry and Risk Assessment for the NASA Upper Atmosphere Research Satellite (UARS)

NASA Orbital Debris Program Office Lyndon B. Johnson Space Center

Upper Atmosphere Research Satellite


- Launched: 12 September 1991 inside STS-48
- Deployed: 15 September 1991
- International Designator: 1991-063B
- U.S. Satellite Number: 21701
- Dry mass: 5668 kg
- Initial Operational Orbit: 575 km by 580 km, 57 deg inclination

2


Residual orbital lifetime reduced by ~ 20 years

Recent Orbital History of UARS

U.S. Reentry Predictions

- The official source of reentry predictions for uncontrolled space objects is USSTRATCOM's Joint Space Operations Center (JSpOC).
- Normal procedure is for TIP (Tracking and Impact Prediction) messages to be prepared and released to the public (via the Space-Track.org website) at the following intervals:
 - T 4 days, T 3 days, T 2 days, T 1 day, T 12 hours, T 6 hours, and T 2 hours
- TIP messages provide the best estimates of reentry time and location but have large uncertainties. Even at T – 2 hours, the uncertainty of reentry time is on average +/- 25 minutes for nearly circular orbits. This equates to +/- 12,000 km on the Earth.
- A final, post-reentry assessment message is normally issued within a few hours of reentry.

IADC Monitoring of UARS Reentry

- During 1996-1997 the Inter-Agency Space Debris Coordination Committee (IADC) developed a reentry risk object data communications network for the exchange of tracking data and reentry predictions in the event of the imminent reentry of a hazardous satellite.
- The main server for the network is located at ESOC in Darmstadt, Germany.
 - Internet access is double-password protected and limited to one representative of each IADC member agency.
- Exercises of the communications network are normally conducted annually.
 - First exercise in 1998; latest (12th) exercise in April 2010.
 - Targets of opportunity (natural orbital decays) are selected by consensus.
 - Results of the exercises are not released to the public in real-time or post-reentry.
- At the recommendation of NASA, the IADC has accepted UARS as the subject of the 2011 IADC Reentry Risk Object Exercise.

UARS does NOT meet the IADC definition of a risk object.

NASA Reentry Risk Capability



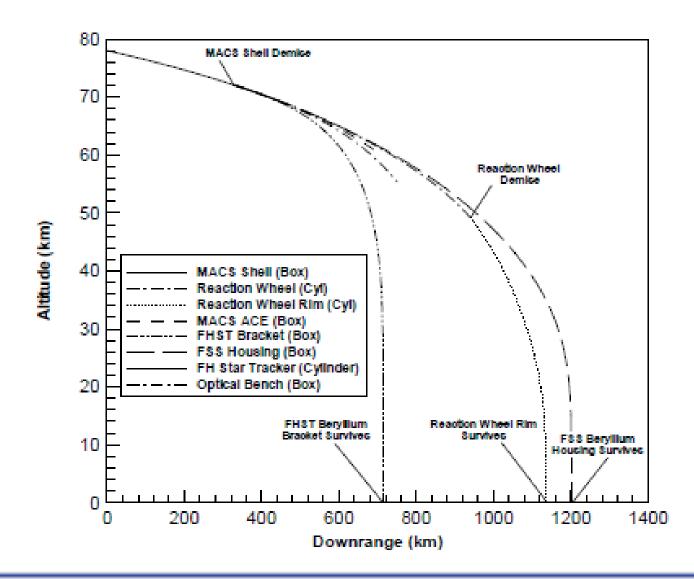
- NASA's highest fidelity software program for reentering satellites is called ORSAT: Object Reentry Survival Analysis Tool. The program:
 - Assesses spacecraft, launch vehicle stage, and other man-made space object component survivability during atmospheric entry from sub-orbital, orbital, and deep space trajectories.
 - Assesses human casualty risk associated with uncontrolled reentries.
 - Characterizes surviving debris footprints associated with controlled reentries for the purpose of avoiding inhabited regions and the Antarctic permanent ice pack.
- ORSAT has supported many NASA, DoD, and other domestic and foreign programs during the past two decades.

The principal outputs of ORSAT are component demise altitude <u>or</u> location, surviving mass, and kinetic energy of impact.

Basic Components of UARS

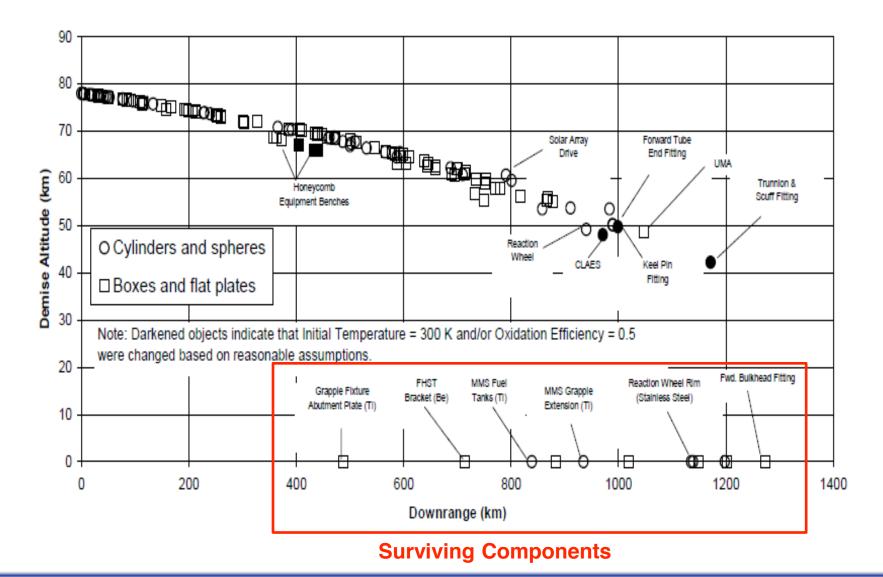
UARS Casualty Risk Assessment

• NASA conducted a detailed reentry risk assessment for UARS in 2002.


- Number of potentially hazardous objects expected to survive: 26
- Total mass of objects expected to survive: 532 kg
- Estimated human casualty risk (updated to 2011): ~ 1 in 3200

Object Description	Material	Qty.	Туре	Initial	Impacting	Impacting	Impacting	Downrange	Debris casualty	Impacting cross section	Mass/CS area	Impacting ballistic
				mass (kg)	mass (kg)	vel. (m/s)	K. E. (kJ)	(km)	area (m²)	area (m²)	(kg/m ²)	coeff. (kg/m ²)
HGA gimbal & reten.	Titanium	1	Cyl.	98.81	27.03	43.91	26.07	1197.56	1.32	0.301	89.80	119.58
Fwd bulkhead fitting	Titanium	4	Box	24.91	24.91	79.07	77.88	1274.16	0.66	0.0463	538.60	379.30
SSPP gimbal	Titanium	1	Cyl.	60.65	60.65	58.10	102.36	1138.72	1.36	0.322	188.47	207.80
SSPP structure	Al 2024-T8	1	Box	158.30	158.30	44.02	153.38	1019.70	2.44	0.928	170.59	120.13
MMS fuel tanks	Titanium	4	Sphere	5.17	5.17	25.55	1.69	838.55	0.94	0.138	37.48	40.74
MMS MPS batteries	SSteel 304L	3	Box	45.78	45.78	64.57	95.43	1149.34	0.91	0.126	362.97	255.61
Reaction wheel rims	SSteel 304L	4	Cyl.	2.04	2.01	107.26	11.54	1134.95	0.43	0.0028	710.02	678.79
FSS housing	Beryllium	1	Box	3.13	3.13	78.02	9.53	1201.73	0.46	0.0060	524.74	369.54
FHST bracket	Beryllium	2	Box	1.09	1.09	18.26	0.18	713.20	0.63	0.0368	29.60	20.85
G. F. abutment plate	Titanium	2	Flat pl.	2.30	2.30	14.28	0.23	486.58	1.22	0.255	9.02	12.76
G. F. base plate	Titanium	2	Flat pl.	5.51	5.51	35.80	3.53	883.43	0.83	0.098	56.35	79.70
G. F. extension	Titanium	1	Cyl.	3.39	0.64	21.40	0.15	934.93	0.56	0.0215	29.95	28.59
TOTALS		26		607.92	532.38			•	22.38	3.49		

Note: Totals account for quantity while the value listed in the table accounts for only one object.


Example ORSAT Output: Partial Survival of Modular Attitude Control Subsystem (MACS)

Downrange Spread of Surviving Debris

Summary

- No NASA or USG human casualty reentry risk limits existed when UARS was designed, built, and launched.
- NASA, the USG, and some foreign space agencies now seek to limit human casualty risks from reentering space objects to less than 1 in 10,000.
- UARS is a moderate-sized space object. Uncontrolled reentries of objects more massive than UARS are not frequent, but neither are they unusual.
 - Combined Dragon mockup and Falcon 9 second stage reentry in June 2010 was more massive.
- Since the beginning of the space age, there has been no confirmed report of an injury resulting from reentering space objects.
- NASA, DoD, and the IADC will be monitoring the decay and reentry of UARS carefully.