
30/01/2011

1

AGACSE 2010

Thoughts from the front line:
Current issues in real-time graphics and

areas where Geometric Algebra can help

Chris Doran

Founder, Geomerics

chris.doran@geomerics.com

AGACSE 2010

AGACSE 2010

Introduction

• In 2005 I decided to take a break from academic

research and formed Geomerics

• Looking for a new challenge

• Looking for other ways to win people over to GA

AGACSE 2010

Geomerics Timeline

Jan 05 Jan 07Jan 06 Jan 08

ANGLE

first
meeting

PPARC /

RSE
Enterprise
Fellow

Geomerics

established

First

demos

Roadtrip

Radiosity proof

of concept

First

radiosity
demo

Development 1

DTI

Grant

New

CEO

GDC

2007

Product Development

Series A

funding

Management

team complete

New

offices

Team

complete

TSB

Grant

AGACSE 2010

What we do

• Enlighten is a revolutionary lighting

technology available for PC, Xbox 360

and PS3

• Enlighten is being used in games by EA

Dice (Battlefield), CCP, Funcom, all

pushing for the highest quality lighting

and graphics

30/01/2011

2

What we do

AGACSE 2010

All images here are re-lit in real

time at 30 fps, using Enlighten

AGACSE 2010

This talk

• Three areas which look interesting for future work

on GA

– Graphics

– Discrete exterior calculus

– Functional programming

• These are chosen not for their academic interest

• Areas where there is a real opportunity for GA to

make an impact on a wider stage

• Also throwing in 3 puzzles / hobbyist topics

AGACSE 2010

Graphics

• An enormous topic, covered in depth in this

conference

– Radiosity

– Global Illumination

– Photon mapping

– Ray tracing

– Shadowing

– Visibility

– Ambient Occlusion

– BRDF

– Pre-computed radiance transfer

The biggest problems?

• For games, the key problems are:

• Shadowing dynamic objects from direct lights

– Shadow maps …

• Soft shadows from area lights

– Convolution shadow maps …

• Dynamic object radiosity

– Dynamic ambient occlusion, screen-space techniques …

AGACSE 2010

30/01/2011

3

Shadows from Direct Lights

• A solved problem to some

extent:

• Create a shadow map for each

light source by rendering depth

information

• Use this to look up whether or

not a point is in shadow

• Gives rise to jaggies, aliasing

artifacts …

AGACSE 2010

Refinements

• Many ways to improve basic shadow maps

– Deform the geometry so that the shadow map better

reflects the camera orientation (paraboidal SMs)

– Introduce a ‘cascade’ of shadow maps to prevent horrible

blocky shadows from distant sources

• But basic problems remain:

– High quality results using shadow maps requires high

resolution maps

– These are slow and limit the number of direct light sources

that can be used in real time

– Not obvious how to filter

AGACSE 2010

What we would like!

• A solution based on rendering from light sources

that:

– Massaged the geometry in a useful way before rendering

– Stored more than just depth (a plane, point + line …)

– Ideally in a form that could be low resolution and

amenable to filtering

– Implemented as a simple screen-space step (potentially

where filtering came in)

• Remember:

– Will always trade off accuracy for speed

– A nicely blurred approximate answer often works well

AGACSE 2010

Soft Shadows

• Soft shadows are generated by area lights and are

everywhere

AGACSE 2010

30/01/2011

4

Soft Shadows

• This is a really hard problem!

• Can break into two aspects

– Area lights

– Full blown radiosity

• We have made good progress

with radiosity

• But accurate area lights are

unsolved for real-time

graphics

AGACSE 2010

Area Lights

• The ability for an artist to dynamically place area

lights with correct soft shadows would revolutionise

work flow

• Any GA tricks?

– Light sources as circles

– Fractional / approximate visibility

– Ability to blur simple shadows in an appropriate texture

(see eg convolutions shadow maps)

AGACSE 2010

Dynamic object radiosity

• In Enlighten we make a number of compromises:

• Radiosity is computed for static geometry

– Involves an off-line pre-compute

• Light sources can move and change in real time

• Dynamic objects are lit by the radiosity

– Appear to be rooted in their world

• But dynamic objects do not shadow the radiosity or

bleed colour

AGACSE 2010

Dynamic object radiosity

AGACSE 2010

30/01/2011

5

Dynamic Radiosity

• The big unsolved problem

• Need fast, approximate visibility updates

• Re-creation of form factors is less important

• Need to replace hierarchical data structures with

something more malleable

• Incorporation of surface reflection properties

• Possibly screen-space type approach (caution!)

• Volume based or surface based?

AGACSE 2010

Interlude 1

• Occasional frustrations with conformal GA

• Often want to drop back to affine or projective

framework

• Somehow this is never easy

• Elementary pieces of geometry turn into lengthy un-

inspired algebra

• Consider same basic triangle results:

AGACSE 2010

Simple Triangle

• Circumcenter (green) is easy

• Centroid (orange) is (after some work):

• Tricky, but at least it is transparently

symmetric

• Orthocentre (blue) is yet more difficult

• Anyone got a simple proof of the Euler

line?

AGACSE 2010

� ∧ � = ���1 × �2 + �2 × �3 + �3 × �1�

� ∧ � = � 〈��1�2�3〉2

Discrete exterior calculus

• Work of Desbrun, Marsden, Hirani and others

• An attempt to develop a formal discrete theory of

differential forms

– Every continuous concept has a discrete analog

• We MUST develop a GA version of this theory

– Otherwise the graphics community will be lost to exterior

geometry for good!

AGACSE 2010

30/01/2011

6

Objects in DEC

• Discrete versions of each of

– Differential forms

– wedge product

– Vector fields (and higher dimensions)

– exterior derivative

– Codifferential

– Hodge star

– Flat and sharp operators

– Contraction

– Lie derivative, Laplace – deRham operator, etc…

AGACSE 2010

Foundations of DEC

• All defined in such a way that the main theorems are

automatically true

• All very reminiscent of Hestenes and Sobczky’s

approach to the foundations of geometric calculus

• Chose your definitions carefully so that the key result

is transparent

AGACSE 2010

� ����� = � �� �∇� ⋅ ���

Concepts in DEC

• 1-forms are numbers attached to edges

• 2-forms are numbers attached to planes

• And so on. All seems utterly obvious.

• But no useful notion of direction – the 1-form has to

have the direction of the edge

• We need a notion of a vector field to discretise

Maxwell equations (or anything else useful)

• At this point a dual manifold is introduced, based on

either barycentric duals or centroids

AGACSE 2010

Dual Manifold

• The dual manifold is the first point where things go

awry

– Vector fields look un-natural

• The wedge product is quite horrific

• It takes pages to prove the main results of the

product

– They should be obvious by definition

• From then on it all feels like a struggle

AGACSE 2010

30/01/2011

7

Hasn’t this all been done?

• NO!

• Discrete exterior calculus is a recent development

and actively ongoing

• Despite its difficulties it is comfortably the most

complete and impressive theory we have

• With work, discrete analogs of most continuum

results can be found

• We have no equivalent discrete theory within GA

– This was not what Hestenes and Sobczyk were after

AGACSE 2010

Simple Example

• 2D vector derivative (aka the Cauchy-Riemann

equations)

• This is surprisingly hard to discretise

• Partly because the operator only propagates the part

of the boundary data consistent with analyticity

• Can start from the Cauchy integral formula

• But then lose the ability to extend to curved surfaces

• And this is a problem of real practical significance!

AGACSE 2010

∇� = 0

The right approach

• Some wild speculation:

– The idea of defining scalars at points, 1-forms on lines, 2-

forms on surfaces etc may not be the way to go

– Instead, should we be defining a complete GA at discrete

points?

– Then need an operator for connecting adjacent algebras

– This approach is more in the spirit of jet theory (see Olver:

Equivalence, Invariants and Symmetry)

– In jet theory differential equations are reduced to

algebraic equations at a point, plus contact relations

AGACSE 2010

What is required

• A discrete vector manifold theory

• Based on the geometric product in the obvious way

• With a discrete vector derivative, and a discrete

version of the fundamental theorem

• The applications for such a theory would be vast

– EMM, elasticity, re-meshing, numerical pdes …

• This is the problem I would be focussing all efforts

on!

AGACSE 2010

� ����� = � �� �∇� ⋅ ���

30/01/2011

8

Interlude 2

• The Morley triangle, formed from

angle tri-sectors

• Alain Connes has an algebraic proof

of the result at
www.alainconnes.org/docs/morley.pdf

• This proof involves

– Complex projective geometry

– Rotations from reflections

– Fixed points of twists

• A conformal GA version please!

AGACSE 2010

Functional Programming

• Recently become interested in the functional

programming language Haskell

• Will talk through its main features, and why it looks

perfect for GA

• Functional languages are currently generating

considerable interest:

– Haskell, ML, ocaml …

– Microsoft developing F#, and supporting Haskell

AGACSE 2010

Haskell is a functional language

• Key objects are functions that take in arguments and

return values (or functions)

• Mathematically this is simple, but far removed from

modern object-oriented programming

• Means we give up on mutable objects

– Never change a variable

– Always create a new variable, then let garbage collector

free up memory

• Focussing on functions gives compiler much better

chance of parallelising code

AGACSE 2010

Haskell is a ‘pure’ language

• Pure functions have no I/O side effects

• Un-used results can be discarded

• Compiler can use tricks like memoization

• Evaluations are thread-safe

– Good for parallelisation again

• Pure functional code can have various compiler

optimisations applied

• In practice, Haskell code is mostly pure with a small

amount of I/O

AGACSE 2010

30/01/2011

9

Haskell is strongly typed

• Haskell contains a powerful type system

• Everything has a type

– Functions map types to types, eg Int -> Int

• All code is checked for type integrity before

compilation

• A lot of bugs are caught this way!

• Ties in with the concept that GA multivectors can

remove ambiguity

– Are 4 numbers are quaterion, a projective vector …

– Tracking blades removes all ambiguity

AGACSE 2010

Haskell has recursive functions

• In functional programming traditional for .. from ..to

loops are replaced by other constructs

• Recursive functions are particularly useful

• Use of recursion can shrink code dramatically

• Driving recursive definitions of functions is a

powerful pattern matching framework

• Again, for mathematicians this is all natural!

AGACSE 2010

qsort [] = []

qsort (x:xs) = qsort (filter (< x) xs) ++ [x] ++ qsort (filter (>= x) xs)

Haskell is a higher-order language

• Functions can take functions as arguments

• Functions can return functions as results

• Under the hood, functions are curried

– Concept due to Haskell Curry

• All functions take in one parameter, and return a

function / parameter

• Great for mapping functions to lists, etc

AGACSE 2010

Haskell is ‘lazy’

• A defining property of Haskell is that function

evaluation is lazy

• Functions are only evaluated when the result is

needed elsewhere

– Avoids unnecessary computation

– Ensures programmes terminate where possible

– Encourages good programming style

– Allows for infinite lists

• Eg can define the ‘infinite’ list of all integers, and at a

later date ask for the 10th element

AGACSE 2010

30/01/2011

10

Haskell and GA

• This combination of properties makes Haskell

uniquely suitable for GA

• Define blade and multivector data types

• Says that a multivector is a list of blades

• Define a geometric product of blades, trivial to build

up everything else

• Write code that mirrors hand-written algebra

AGACSE 2010

type GaBlade = (Float, GaBasis)

type GaMulti = [GaBlade]

Laziness and GA

• Laziness is the key to Haskell’s suitability

• Lazy evaluation ensures that only terms of grade

zero are actually computed

• Can avoid vast amounts of hand optimisation this

way

• Haskell will never be as fast as hand optimised C++

or intrinsics

• But it is far easier to write and debug, and promised

much on multicore devices
AGACSE 2010

〈��〉0

One final problem

• A fun problem from Martin Gardner’s mathematical

recreations

• Given three kissing circles:

– Can always find two circles to kiss all three

• Inverse radii satisfy

• A neat problem in conformal GA!

AGACSE 2010

�2 + �2 + 2 + �2 = 1
2 � � + � + + ��2

Conclusions

• Many interesting open problems to explore with GA

• Opportunities to make a real difference in areas that

will get GA widely noticed

– Graphics, discrete theory, functional programming

• Plenty of drive from industry in setting the problem

space, if people are interested

• And please come and talk to me if you make serious

progress in any of these areas!

AGACSE 2010

30/01/2011

11

Contact Details

AGACSE 2010

Chris Doran

Geomerics Ltd

City House

Hills Road

Cambridge

chris.doran@geomerics.com

c.doran@mrao.cam.ac.uk

www.geomerics.com

