
projects modding & tweaking

66 elektor - 11/2008

Colourful Computer Light
Controlling the Living Colors lamp with USB
Jeroen Domburg

We live in a colourful
environment these days.
Everything is in colour:
TV, advertising billboards,
mobile phone displays and
LEDs. Philips added a further
dimension to all this with their
Ambilight, Wake-up Light and
Living Colors lamp. We will
work with the latter in this M&T article. The wireless remote control offers interesting possibilities
once the protocol has been cracked...

In the February 2008 issue the editors
disassembled a Living Colors lamp
from Philips. In this article we will
once again do something with this
lamp. One of the disadvantages of the
lamp is that it can only be controlled
with the supplied remote control. Nice
enough perhaps, if all you want to do
is use it as a glorified table lamp. But
controlling it with a PC offers many
other possibilities. Turn the room red

when you’ve received mail, let the col-
our of the wall follow the movie you’re
watching, illuminate the room when
it’s time to get up, you mention it!

Lively colours
For those who missed the article men-
tioned earlier: a Living Colors lamp is
an appliance made by Philips that with
a few bright, coloured LEDs can illumi-

nate a room in just about any conceiv-
able colour. In this way you can create
or enhance a particular mood. The Liv-
ing Colors lamp comprises the lamp it-
self and a remote control. The two are
linked via a CC2500, a little IC from
Texas Instruments, which can send
data over a 2.4 GHz radio link.
To be able to control the lamp we will
first have to figure out how the data
is sent. Measuring this without open-

In the remote control we find two printed circuit
boards that are interconnected with a ribbon cable.

This is how we reverse engineer the protocol. It may
not look like it, but apart from the wires the remote
control is still completely intact.

The all-important CC2500 chip. They don’t come any
bigger than this, unfortunately...

6711/2008 - elektor

ing the device is difficult. Firstly, be-
cause the CC2500 has several methods
available for sending the data (MSK,
FSK, OOK, with or without data whit-
ening, Manchester-encoded, etc.) so
it is a lousy job trying to dig out the
transmitted data from the actual ra-
dio signal transmitted. Secondly, the
author, in contrast to the RF people at
the editorial offices, does not have SHF
measuring equipment at his disposal,
something that’s crucial with this ap-
proach. We will therefore have to de-
code the information using some other
method...

Eavesdropping
Taking a look at the datasheet for the
CC2500, we read that the chip gets its
data from the host-processor via a 4-
wire serial connection, with the option
of two more wires for status informa-
tion. If we eavesdrop on the traffic on
this 4-wire bus we should be able to
learn a whole lot more about what is
being transmitted.
Although there are two CC2500s,
namely one in the remote control and
one in the lamp itself, we decided to
listen only to the one in the remote
control. The reason for this is less phil-
osophical than you may think: it proved
to be impossible to open the lamp
without damaging it, but it turned out
that opening the remote control was a
lot easier. The remote control consists
of two printed circuit boards. The PCB
for the touch sensitive ‘push buttons’
plus the controller for these, a QT1106
is connected with a ribbon cable to the
smaller main PCB that contains the
MSP430 processor and the CC2500.
Tapping into the bus is rather difficult,
but with the aid of thin wire and some
instant glue it was eventually possible
to make a mechanically strong tap.
Because interpreting the protocol us-
ing only and oscilloscope is rather tedi-

ous, we use an AVR with hardware SPI
support for the actual ‘sniffing’. This
AVR then sends the eavesdropped sig-
nal via a serial port to the PC where
the actual decoding can begin.
When we push a few buttons on the
remote control, it is immediately clear
that the protocol is more complicat-
ed than we had initially anticipat-
ed. When the remote control is first
turned on, The CC2500 is initialised
with data regarding the frequency, the
type of modulation and the data rate.
The actual communication is based on
packets. A packet is loaded into the
CC2500 and transmitted by the chip
in RF form. Reception is done in the
same way. The CC2500 is set to re-
ceive mode and as soon as a packed
has been received a particular pin

goes high and the packet can be read
by the microcontroller.

Data format
The packets consist of a number of
fields. The first thing that emerges is
that both the remote control and the
lamp have a, probably unique, ad-
dress. Therefore, the packets for set-
ting the colour, for example, start with
the address of the lamp followed by
the command.
The commands correspond with the
buttons on the remote control. There
is, among others, a command to turn
the lamp on, to turn it off again, to set
the colour and to set the lamp in demo
mode.
The command is followed by a se-

D
IE

 A
T

TA
C

K

X
O

S
C

_Q
1

X
O

S
C

_Q
2

CC2500

D
G

U
A

R
D

DCOUPL

R
B

IA
S

IC2

SCLK

A
V

D
D

A
V

D
D

A
V

D
D

A
V

D
D

D
V

D
D

RF_P

RF_N

PA
D

1916

18 17

SO

CS

SI

12

13
20

99 11 14 15

10

1

7

2

8

4

5
ATmega88

XTAL1 XTAL2

AVCC

IC1

PD2

PD1

PC5

PB5

PB4

PB3

PB2

VCC

PC4 PB0

4

28 16

10 22

19

18

17

20

27 14

3

8 9

7

K1

+5V

GND

D–

D+

1

2

3

4

USB

R5

56
k

1%

C6

100n

C5

100n

X1

16MHz

X2

25MHz

C1

10µ

C2

100n

C4

22p

C3

22p

C9

27p

C8

27p

D1

R4

47
0

Ω

D2

1N4007

D1

2x

C7

100n

R1
68Ω

R2
68Ω

R3
2k2

S1

LEARN

070850 - 11

Figure 1. It can’t be much simpler than this: we do the control of the CC2500 with an ATmega88 via USB.

In comparison with the ATmega88 the latter is in-
deed quite ‘mega’.

The size does not make it impossible to solder.
A steady hand, a magnifier and thin wire
go a long way.

This is how the transmitter is mounted on the USB
PCB. The thing with black tape around it is a 25-
MHz SMD crystal.

projects modding & tweaking

68 elektor - 11/2008

quence number. This is a number that
increments by one after each com-
mand is sent. When the lamp sends a
response, this same sequence number
is sent back so that the remote control
can determine which response goes
with which command.
It gets more interesting after the se-
quence number byte. There now follow
three bytes with colour information.
The fact that colour information is be-
ing sent is somewhat remarkable, since
the average remote control only passes
on which button is being pushed. The
decision to store the selected colour
in the remote control makes sense. In
this way Philips ensures that if you use
the remote control with multiple lamps
they will all be set to the same colour.
For our purposes this is also very prac-
tical: it is, after all, much easier to sent
the desired colour than to emulate all
sorts of button pushing.
To send the colour, Philips decided to
use the HSV system. The Hue gives
the colour, the Saturation the intensi-
ty of that colour and Value the amount
of light the lamp has to generate. By
giving the appropriate command with
certain HSV-values the desired colour
can be set immediately. And because
the wireless connection operates at a
speed of 500 kbaud, this is relatively
quick as well.

Control
Okay, we have the protocol, we have
the initialisation data and we know
how we can set the colour of the lamp.
What are we now going to do with that
knowledge? The author decided that
an Ambilight-ish functionality would
be nice to do. The plan therefore, was
to build a device that could be con-
nected to the PC and control several
lamps.
For the control we can use existing
software: on the internet there is a
community of people who make their
own PC controlled Ambilight clones.
This has resulted in a few nice Linux
and Windows applications that are
very useful for this project. The most

gathered half of the required code.
The code to control the wireless chip
is all that remains. Because this chip
has a comprehensive datasheet and
we have a good example obtained by
eavesdropping on the data from the re-
mote control, this is not a big deal.

Hardware
Because we’ve solved a number of
requirements in software, the circuit
that remains is not tricky at all (Fig-
ure 1). On the left is the USB connec-
tion, which is connected with a few,
and according to the USB specification,
mandatory resistors to the AVR. The
CS2500 and the USB data lines require
a power supply voltage of 3.3 to 3.6 V.
This is obtained in a simple way from
the 5 V on the USB connector. Connect
two diodes in series with this 5 V and
the voltage drops to about 3.5 V.
On the right of the schematic is the
CC2500, in a configuration which is
nearly entirely a direct copy from the
datasheet. The loop between RP_P and
RP_N is the antenna. Although there
are quite specific requirements for this
antenna in the datasheet, a wire about
11 cm long and bent into the shape in-
dicated suffices in practice and works
well over a short distance.
The schematic looks quite simple, but
the assembly of the circuit is much
trickier than it looks. This is because
the CC2500 chip, which deals with the
necessary RF communication, is only
available in a QFN package. For those
that are not familiar with SMD pack-

common protocol used in this software
is the MoMoLight protocol, which is
actually nothing more than sending
the RGB values for three different light
sources directly to the serial port.
To be compatible with the software we
need a few things. Firstly we’ll have to
emulate a serial port over the USB bus
and secondly we’ll have to convert the
incoming RGB data to the HSV format
that’s expected by the lamps.
The first requirement is easily met
with one of several ready-made solu-
tions: a number of companies make
USB-to-RS232 converter ICs that can
be directly connected to the bus. For
this project however, we chose a differ-
ent approach. The heart of the circuit
consists of an ATmega88 which is con-
nected directly to the USB port. If we
look at the datasheet for this AVR we
will however not find any mention of
hardware to support USB. So how does
this work then?
The solution is to be found in a trick:
with some clever programming most
of the AVRs can be made to ‘mimic’
a low-speed USB device. There even
exist special libraries for this purpose
[1]. Several projects have been made
around these libraries: USB-program-
mers, bootloaders, display controller,
just name it. One of these projects is
called AVR-CDC and its purpose is to
implement a USB to serial converter in
software. That’s just what we need!
The software is licensed under the
GPL, which means that if you build a
device using it, you also have to supply
the source code. That is not a problem
for this project.
An RGB to HSV converter is also eas-
ily picked from the Internet. There are
multiple solutions on various websites,
but they are often based on floating
point, which means that the already
busy AVR has to do even more. After
an extensive search we fortunately
also found an integer version, which
costs far fewer clock ticks. This soft-
ware is released under the MIT license,
which, after a little searching, appears
to be compatible with the GPL. So after
a copy-paste operation we’ve already And the end result: the Living Colors lamps

6911/2008 - elektor

ages: the five pins on each side of this
tiny chip all fit between two pins of a
normal DIP package. As if that is not
bad enough, most of the 20 connec-
tions to the IC have to be actually con-
nected as well. How do we solve this
as hobbyist without access to an ex-
pensive SMD equipped workshop?
Of course, there are conversion PCBs
available, but they are generally quite
expensive and certainly the versions
for QFN are not readily available. The
author therefore chose for the ‘dead
bug’ method: the chip is glued upside
down with a drop of instant glue to a
small piece of prototyping board. The
connections are now made with thin
wire to the copper tracks of the proto-
typing board. This type of wire is sold
with the name Kynar- or wirewrap
wire, but a cheaper alternative is sal-
vaging an 80-way IDE cable; the indi-
vidual wires are about the same size.
Once the module with the CC2500 is
done, the remainder is not too much
trouble. That is because these are all
through-hole parts. In the end the dili-
gent effort results in a little PCB about
the size of a match box, with the USB
connector as its only connection.

Compatibility problems
All that is left to do is plugging in the
connector and testing of the assem-
bly. The first tests appear to go real-
ly well, but several colours look abso-
lutely nothing like those on the screen.
How can this be? A quick test with a
graphics program that can generate

HSV colours indicates that the HSV-
to-RGB conversion in the lamps does
not follow the official standard entirely.
Although the saturation and value are
correct, there is a certain non-linearity
in the hue curve. Fortunately this can
be fixed. After a few observations of
the differences in colour, a table can be
constructed which converts ‘real’ hue-
values to their equivalent Living Colors
hue values. The table is not really an
ideal solution, but if you notice the col-
our differences when watching a movie
you will have to ask yourself whether
that movie is really worth your time...
Because there is little chance that oth-
er lamps have the same addresses as
the lamp we used, there is a learning
routine in the AVR. This works as fol-
lows. First make sure that all lamps
that have to be controlled can be oper-
ated with one remote control. You can
‘add’ a lamp to a remote control by
holding the remote against the Philips
logo on the front and pushing the ‘1’-
button on the remote. Do this for all the
lamps and if all is well, all lamps will
now react to that remote control.
Once the remote control knows all the
lamps it is possible to transfer the ad-
dresses to the AVR: push button S1
and press the ‘0’ button on the remote
control until the LED on the PCB (D1)
turns off. What is happening? The re-
mote control attempts to turn off all the
lamps by sending each lamp the ‘off’
command. The AVR also listens on this
channel and stores every passing ad-
dress. These addresses are saved in
EEPROM. ‘Acquired’ addresses remain
in the AVR until replaced by other ones
after the learn-button is pressed again.
The addresses are also retained when
the power supply voltage is removed.

The last mile
How does all this work on the PC
side? As already mentioned, the AVR
presents itself as a serial port that un-
derstands the so-called MoMoLight
protocol. This means that any program
that supports this protocol can control
the Living Colors lamps. A few exam-

ples of these are, just like the firmware
for the Atmel, on the website of the
author [2] and on the project page at
www.elektor.com.
For programmers who would like to
write their own software: the MoMo-
Light protocol supports up to three
RGB light sources. To set the lamps to
the desired colour the emulated seri-
al port needs to be opened at a baud
rate of 4800, no parity and 8 data bits.
The RGB values for the lamps can now
be sent in nine bytes in the order of
R1,R2,R3,G1,G2,G3,B1,B2,B3.
A final remark: it has come to the au-
thor’s attention that the software USB
stack is not quite as compatible with
all computers as it should have been.
Should there be a problem with a par-
ticular PC, you can try to connect the
device via a USB2.0 hub to the PC. If
this is all to no avail then there is also
a serial version available on the au-
thor’s website.

(070850-I)

Web Links
[1]: www.obdev.at/products/avrusb/index.html

[2]: http://meuk.spritesserver.nl/projects/livcol

in use as an Ambilight clone.

About the author:
Jeroen Domburg is a student at the Sax-
ion Technical University in Enschede, the
Netherlands.

He is an enthusiastic hobbyist, with inter-
ests in microcontrollers, electronics and
computers.

In this column he showcases his personal
handiwork, modifications and other in-
teresting circuits, which do not necessar-
ily have to be useful. In most cases they
are not likely to win a beauty contest and
safety is generally taken with a pinch of
salt. But that doesn’t concern the author
at all. As long as the circuit does what it
was intended for then all is well. You have
been warned!

