

Philips

Intellectual Property & Standards

Direct Stream Digital
Interchange File Format

DSDIFF

Version 1.5

Direct Stream Digital Interchange File Format

Version 1.5 2 2004-04-27

Title: Direct Stream Digital Interchange File Format, DSDIFF
Version: 1.5
Date: 2004-04-27

DISCLAIMER
Whereas Philips has taken care to ensure that the information contained in this document is
accurate, this information is provided on an "as is" basis, without any warranty as to its
completeness or accuracy. Royal Philips Electronics shall not be liable in any manner
whatsoever for any damages, including direct, indirect or consequential, resulting from the
use of this document or reliance on the accuracy of its contents.
Supply of this document does not confer any license under any intellectual property right of
Royal Philips Electronics to use any of those rights in any apparatus, system or any
components, subassemblies or software for such apparatus or system.

For any further explanation of the contents of this document, or in case of any perceived inconsistency
or ambiguity of interpretation, please consult:

 Philips Intellectual Property & Standards
 System Standards and Technology Optical Storage and DRM / Super Audio CD
 Building SFF-8
 P.O. Box 80002
 5600 JB Eindhoven
 The Netherlands

 Fax.: +31 40 27 32641

or send an E-mail to:

 info.superaudiocd@philips.com

© Royal Philips Electronics N.V. 2004

All rights reserved. Reproduction in whole or in part is prohibited without the written consent of the
copyright owner.

Direct Stream Digital Interchange File Format Contents

Version 1.5 3 2004-04-27

Contents

1 Introduction 5
1.1 PURPOSE AND SCOPE 5
1.2 DEFINITIONS, ACRONYMS AND ABBREVIATIONS 5
1.3 REFERENCES 6
1.4 DOCUMENT HISTORY 7

2 General description 8
2.1 PERSPECTIVE 8
2.2 DATA TYPES, CONSTANTS AND NOTATIONS 8
2.3 FILE STRUCTURE 9
2.4 HANDLING OF UNRECOGNIZED CHUNKS 11

3 Form DSD Chunk 12
3.1 FORMAT VERSION CHUNK 13
3.2 PROPERTY CHUNK 14
3.2.1 Sample Rate Chunk 15
3.2.2 Channels Chunk 15
3.2.3 Compression Type Chunk 16
3.2.4 Absolute Start Time Chunk 16
3.2.5 Loudspeaker Configuration Chunk 17
3.3 DSD SOUND DATA CHUNK 18
3.4 DST SOUND DATA CHUNK 19
3.4.1 DST Frame Information Chunk 20
3.4.2 DST Frame Data Chunk 21
3.4.3 DST Frame CRC Chunk 21
3.5 DST SOUND INDEX CHUNK 22
3.6 COMMENTS CHUNK 23
3.7 EDITED MASTER INFORMATION CHUNK 25
3.7.1 Edited Master ID Chunk 25
3.7.2 Marker Chunk 26
3.7.3 Artist Chunk 30
3.7.4 Title Chunk 30
3.8 MANUFACTURER SPECIFIC CHUNK 31

Direct Stream Digital Interchange File Format Contents

Version 1.5 4 2004-04-27

4 Edited Master 32
4.1 INTRODUCTION 32
4.2 REQUIRED CHUNKS IN AN EDITED MASTER 32
4.3 RESTRICTIONS ON AN EDITED MASTER 33
4.4 RECOMMENDATIONS FOR A N EDITED MASTER 34
4.5 INTERPRETATION OF THE MARKERS 34
4.6 IDENTIFICATION OF AN EDITED MASTER 34

Direct Stream Digital Interchange File Format Introduction

Version 1.5 5 2004-04-27

1 Introduction

1.1 PURPOSE AND SCOPE

Creating a Super Audio CD [ScarletBook] follows similar steps as conventional CD
production – recording, editing, sound mastering and authoring. But Super Audio CD is
using DSD or DST sound formats instead of PCM. To allow interchange of these sound
formats between systems, a new file format has been defined. This document describes the
definition of the DSDIFF file format. This file format is intended for storage of DSD or
DST material.

1.2 DEFINITIONS, ACRONYMS AND ABBREVIATIONS

AIFF Audio Interchange File Format
ASCII American Standard Code for Information Interchange
CD Compact Disc
Channel Byte 8 consecutive DSD samples of 1 channel,

the most significant bit is the oldest bit of the sequence
Clustered Frame N Interleaved Channel Bytes,

where N is the number of audio channels in the file
CRC Cyclic Redundancy Check
Silence Pattern A digitally generated DSD pattern with the following

properties:
• all Channel Bytes have the same value
• each Channel Byte contains 4 bits equal to zero and 4 bits

equal to one
DSD Direct Stream Digital
DSDIFF Direct Stream Digital Interchange File Format
DSD File DSDIFF file containing DSD audio
DST Direct Stream Transfer

Format for lossless encoded DSD audio
DST File DSDIFF file containing DST encoded audio
DST Frame 1/75 second of DST encoded audio

The time corresponds to the Super Audio CD Frame time
Actual length in bytes is variable

Fs Sampling frequency for CD, being 44100Hz
IFF Interchange File Format
Mod modulo operator: a mod b gives the remainder that

results when a is divided by b
PCM Pulse Code Modulation
Super Audio CD Frame 1/75 second of audio (is equal to CD frame length)

At 64×fs a frame covers 37632 DSD samples per channel

Direct Stream Digital Interchange File Format Introduction

Version 1.5 6 2004-04-27

1.3 REFERENCES

[EA-IFF 85] Standard for Interchange Format Files
 Electronics Arts, Jerry Morrison
 January 14, 1985

[AIFF] Audio Interchange File Format
 Apple Computer, Inc
 Version 1.3, January 4, 1989

[ScarletBook] Super Audio CD Standard (Part 2)
 Sony/Philips
 Version 1.3, July 2002

[ITU] Multi-channel stereophonic sound system

recommendation : ITU-R BS.775-1 07/1994
 International Telecommunication Union

Direct Stream Digital Interchange File Format Introduction

Version 1.5 7 2004-04-27

1.4 DOCUMENT HISTORY

Date Version Most important updates
2000-02-14 1.0 Initial document
2000-09-05 1.3 Adaptations for Super Audio CD standard 1.1
2002-06-06 1.4 Added:

§ Chunk overview of a Form DSD Chunk
§ Undefined channel set-up value for Loudspeaker

Configuration
§ CRC polynomial for checksum on DST frames
§ Revision information in File History
§ Definition of TrackFlags in accordance with Super

Audio CD standard 1.2
§ Requirements for Edited Master data

Changed:
§ Description of Edited Master Information Chunk

(formerly referred to as Disc Information Chunk)
§ Definition of programs and tracks in Marker Chunk
§ ProgramStart marker replaces Disc Start marker

Removed:
§ Chunk recommendation (former Appendix A),

requirements are covered by definition of an Edited
master

§ Description of usage of times codes (former
appendix B), marker example illustrates the usage

§ Definition of Disc End marker, which is not needed
for the definition of programs

2002-11-28 1.4 / document
revision 1

Added:
§ The term "Post-roll" has been defined to denote the

data between the last TrackStop and the end of the
data

Changed:
§ It has been clarified that Comments, Artist and Title

chunks are recommended (not required) in an Edited
Master

Removed:
§ Recommendations for usage of File History -

revision comment (from section 3.6)
§ Recommendation for the marker offset value (from

section 3.7.2)
2003-03-11 1.4 / document

revision 2
Changed:

§ The restrictions on audio contents for unavailable
channels (channels for which a TrackFlag has been
set) have been changed according to a modification
to Super Audio CD standard version 1.3

2004-04-27 1.5 Added:
§ Manufacturer Specific Chunk.

Direct Stream Digital Interchange File Format General description

Version 1.5 8 2004-04-27

2 General description

2.1 PERSPECTIVE

In defining a new file format for DSD production tools it is useful to reuse as much as
possible of the standard file formats that the audio industry uses today.

A commonly used file format for PCM is the Audio Interchange File Format, [AIFF],
which conforms to the Electronics Arts Interchange File Format, [EA-IFF 85]. It enables
storage of uncompressed or compressed sampled sound.

DSD requires a specific file format, since

- DSD is a one bit signal at a high data rate.
- a specific lossless compression technique called DST encoding is used for DSD

signals.
- the maximum file size must be larger than 2 gigabyte (limit in AIFF).

Therefore the DSD interchange file format has been defined which conforms, as much as
possible, to the principles of AIFF and EA -IFF 85 (with the exception that only one
FORM chunk is allowed). This makes it possible to re-use large quantities of source code
and libraries available today.

2.2 DATA TYPES, CONSTANTS AND NOTATIONS

In this document structures are described in a C-like notation, using the definitions listed
below:

Definition Meaning
char 8 bit signed integer.
uchar 8 bit unsigned integer.
text byte char with value within the ASCII range of 0x20 through 0x7E.
ushort 16 bit unsigned integer.
ulong 32 bit unsigned integer.
double ulong 64 bit unsigned integer.
ID 32 bit, a concatenation of four printable ASCII characters in the range

' ' (space, 0x20) through '~'(0x7E). Space (0x20) cannot precede
printing characters; trailing spaces are allowed. Control characters are
forbidden. The ID is case sensitive. Therefore ID's can be compared
using a simple 32-bit equality check.

pad byte char with value 0, used for making chunks an even length.
Struct Set of variables forming one entity.

All data is stored in Big Endian format, this means that the most significant byte of e.g. a
ushort or ulong is stored first.

Decimal values are referred to as a string of digits, for example 123, 0, 100 are all decimal
numbers. Hexadecimal values are preceded by 0x, e.g. 0x0A12, 0x1, 0x64.

In addition, a small part of the Backus Naur Format notation is used. The definitions of this
notation used in this document are:

Direct Stream Digital Interchange File Format General description

Version 1.5 9 2004-04-27

<> = known definition
[a|b] = choice between a or b
+ = 1 or more occurrences

Furthermore all defined variable names are written in italic.

2.3 FILE STRUCTURE

The EA -IFF 85 (see [EA-IFF 85]) defines an overall structure for storing data in files.
This document recaps those portions of EA -IFF 85 that are germane to DSDIFF.

A file is built up from a number of chunks of data. Chunks are the building blocks of DSD
files. A chunk consists of some header information followed by data:

Header info

Data bytes

ckID

ckDataSize

'ckData[]'

Figure 1: logical representation of a chunk

A chunk can be represented using the C-like language in the following way:

typedef struct {
 ID ckID; // chunkid
 double ulong ckDataSize; // chunk data size, in bytes
 uchar ckData[]; // data
} Chunk;

ckID describes the format of the chunk's data portion. An application can determine how to
interpret the chunk data by examining ckID.

ckDataSize is the size of the data portion of the chunk, in bytes. It does not include the 12
bytes used by ckID and ckDataSize.

ckData[] is the data stored in the chunk. The format of this data is determined by ckID. If
the data is an odd number of bytes in length, a pad byte must be added at the end. The pad
byte is not included in ckDataSize.

Note that the ckDataSize is not 4 bytes in length, as in EA -IFF 85, but 8 bytes. This makes
it possible to create chunks larger than 2 GigaByte (up to 264 bytes).

The chunks of DSDIFF are grouped together in a container chunk. EA -IFF 85 defines a
number of container chunks. For DSDIFF, an adapted FORM container chunk, called Form
DSD Chunk, is used.

Direct Stream Digital Interchange File Format General description

Version 1.5 10 2004-04-27

A Form DSD Chunk has the following format:

typedef struct {
 ID ckID; // 'FRM8'
 double ulong ckDataSize; // FORM's data size, in bytes
 ID formType; // 'DSD '
 Chunk frm8Chunks[];
} FormDSDChunk;

The FORM chunk of formType 'DSD ' is called a Form DSD Chunk .

ckID is always 'FRM8'. This indicates that this is a Form DSD Chunk. Note that this FORM
chunk is slightly different from EA IFF 85 (the ckDataSize is not a long but a double
ulong). Using the Form DSD Chunk makes it possible to identify that all local chunks have
a ckDataSize of 8 bytes in length.

ckDataSize contains the size of the data portion of the 'FRM8' chunk. Note that the data
portion consists of two parts, formType and frm8Chunks[] .

formType describes the contents of in the 'FRM8' chunk. For DSDIFF files, formType is
always 'DSD '. This indicates that the chunks within the FORM pertain to sampled sound
according to this DSDIFF standard.

frm8Chunks[] are the chunks within the Form DSD Chunk. These chunks are called local
chunks since their own ckID 's are local to (i.e. specific for) the Form DSD chunk. A Form
DSD Chunk together with its local chunks make up a DSDIFF file.

Figure 2 is an example of a simple DSDIFF file. It consists of a single Form DSD Chunk
that contains 3 local chunks, a Format Version Chunk, a Property Chunk and a Sound Data
Chunk.

'FRM8'
....

'FVER'
....

'PROP'
.....

'DSD '
....

Form DSD Chunk

Format Version Chunk

Property Chunk

Sound Data Chunk

Optional Chunks

Figure 2: example of a simple DSDIFF file.

Direct Stream Digital Interchange File Format General description

Version 1.5 11 2004-04-27

The official name for this file format is Direct Stream Digital Interchange File Format.
Applications that need to present the name of this format to a user can abbreviate it to
DSDIFF.
For an operating system that uses filename extensions, such as Windows or UNIX, it is
recommended that DSDIFF file names have a ".DFF" extension.

2.4 HANDLING OF UNRECOGNIZED CHUNKS

When an application encounters a local chunk that is not recognised it must discard (skip) it
while reading the Form DSD chunk. If an application copies the Form DSD Chunk without
edits, it is nicer, but not necessary, to copy unrecognised chunks too. But if an application
modifies the data in any way, then it must discard all unrecognised chunks: the writing
application cannot guarantee that the unrecognised data is still consistent with the modified
data.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 12 2004-04-27

3 Form DSD Chunk

The Form DSD Chunk is the container chunk that contains all the other (local) chunks.
The format for the data within a Form DSD Chunk is shown below:

typedef struct {
 ID ckID; // 'FRM8'
 double ulong ckDataSize; // FORM's data size, in bytes
 ID formType; // 'DSD '
 Chunk frm8Chunks[]; // local chunks
} FormDSDChunk;

The ckID is always 'FRM8'.

The ckDataSize is the summation of the sizes of the local chunks plus the size of formType.
This is equal to the total file size in bytes minus the length of ckID and ckDataSize . It is
always an even number because all chunks cover an even number of bytes.

The formType is always 'DSD '.

frm8Chunks[] are the local chunks. The order of the local chunks is chosen in such a way
that streaming of a DSDIFF file is possible. At the definition of each local chunk it is
indicated which chunk order should be maintained.
The local chunks are:
• Format Version Chunk (FVER)
• Property Chunk (PROP)
• DSD Sound Data Chunk (DSD)
• DST Sound Data Chunk (DST)
• DST Sound Index Chunk (DSTI)
• Comments Chunk (COMT)
• Edited Master Information Chunk (DIIN)
• Manufacturer Specific Chunk (MANF)

The Format Version Chunk and the Property Chunk are required in a Form DSD Chunk.
The first local chunk must be the Format Version Chunk. One of the DSD or DST Sound
Data Chunks is required. The Property Chunk must appear before DSD or DST Sound Data
Chunk. All applications that use Form DSD Chunk must be able to read the required
chunks and may (selectively) ignore the optional chunks.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 13 2004-04-27

* Either DSD or DST
must exist

FRM8
Required

DSTI
Optional

MANF
Optional

DSD
Required*

FVER
Required

COMT
Optional

FS
Required

CHNL
Required

CMPR
Required

ABSS
Optional

LSCO
Optional

PROP
Required

EMID
Optional

MARK
Optional

DIAR
Optional

DITI
Optional

FRTE
Required

DSTF
Optional

DSTC
Optional

DIIN
Optional

DST
Required*

Figure 3: the Chunk Tree of a Form DSD chunk.

The Form DSD Chunk is required. It may appear only once in the file.

3.1 FORMAT VERSION CHUNK

The Format Version Chunk contains a field indicating the format specification version for
the DSDIFF file. The format for the data within a Format Version Chunk is shown below:

typedef struct {
 ID ckID; // 'FVER'
 double ulong ckDataSize; // 4
 ulong version; // 0x01050000 version 1.5.0.0 DSDIFF
} FormatVersionChunk;

ckID is always 'FVER'.

ckDataSize is the size of the data portion of the chunk, in bytes. It does not include the 12
bytes used by ckID and ckDataSize. For this chunk, ckDataSize is 4.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 14 2004-04-27

version indicates the version id. It consists of 4 bytes and defines the version number of the
file format (version 'byte1'.'byte2'.'byte3'.'byte4' ; from most significant byte to least
significant byte).
The first byte (most significant byte) defines the "main version number".
The second byte defines the "addition version number", indicating additions to the
description with respect to previous versions of this document. The possible changes are
additional definitions and/or chunks.
The last two bytes of version are reserved for future use and are set to zero.
A DSDIFF reader with the same "main version number" can still read information but will
not recognise additional chunk(s) that are defined in a later version of this document
(backwards compatible).

The version number of this description is 1.5.0.0.

The Format Version Chunk can be used to check which chunks of the file are supported.

The Format Version Chunk is required and must be the first chunk in the Form DSD
Chunk. It may appear only once in the Form DSD Chunk.

3.2 PROPERTY CHUNK

The Property Chunk is a container chunk, which consists of "local property chunks". These
"local property chunks" define fundamental parameters of the defined property type.
The format for the data within a Property Chunk is shown below:

typedef struct {
 ID ckID; // 'PROP'
 double ulong ckDataSize;
 ID propType; // 'SND '
 Chunk propChunks[]; // local chunks
} PropertyChunk;

ckID is always 'PROP'. It indicates that this is the property container chunk (of type
propType).

ckDataSize is the summation of the sizes of all local property chunks plus the size of
propType. It does not include the 12 bytes used by ckID and ckDataSize.

propType defines the type to which the "local property chunks" belong. Defined types are:

propType Meaning
'SND ' Sound properties

Other types are reserved for future use and may be defined in future versions.
The Property Chunk must precede the Sound Data Chunk.

propChunks[] are local property chunks. There is no order imposed on these local chunks.
The local chunks are :
• Sample Rate Chunk
• Channels Chunk
• Compression Type Chunk
• Absolute Start Time Chunk
• Loudspeaker Configuration Chunk

The Property Chunk is required and must precede the Sound Data Chunk. It may appear
only once in the Form DSD Chunk.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 15 2004-04-27

3.2.1 Sample Rate Chunk

The Sample Rate Chunk defines the sample rate at which the sound data has been sampled.

typedef struct {
 ID ckID; // 'FS '
 double ulong ckDataSize; // 4
 ulong sampleRate; // sample rate in [Hz]
} SampleRateChunk;

ckID is always 'FS '.

ckDataSize is the size of the data portion of the chunk, in bytes. It does not include the 12
bytes used by ckID and ckDataSize. For this chunk, ckDataSize is 4.

sampleRate indicates how many samples fit in one second. Because DSD signals are 1 bit
wide this number gives the total number of bits in one second per channel.

The Sample Rate Chunk is required and may appear only once in the Property Chunk.

3.2.2 Channels Chunk

The Channels Chunk defines the total number of channels and the channel ID's used in the
Sound Data Chunk. The order of the channel ID's also determines the order of the sound
data in the file.

typedef struct {
 ID ckID; // 'CHNL'
 double ulong ckDataSize;
 ushort numChannels; // number of audio channels
 ID chID[]; // channels ID's
} ChannelsChunk;

ckID is always 'CHNL'.

ckDataSize is the size of the data portion of the chunk, in bytes. It does not include the 12
bytes used by ckID and ckDataSize.

numChannels contains the number of audio channels in the file. A value of 1 means one
channel, 2 means two channels, etc.. Any number, greater than zero, of audio channels may
be represented.

chID[] defines the channel ID for each of the numChannels channels. The order in which
they are stored in the array is the order in which they are stored in the Sound Data Chunk.
There are a number of predefined channel ID's:
 'SLFT' : stereo left
 'SRGT' : stereo right
 'MLFT' : multi-channel left
 'MRGT' : multi-channel right
 'LS ' : multi-channel left surround
 'RS ' : multi-channel right surround
 'C ' : multi-channel center
 'LFE ' : multi-channel low frequency enhancement
 ['C000' .. 'C999']: context specific channel contents

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 16 2004-04-27

To prevent misinterpretations the following restrictions apply :
• If the file contains 2 channels with channel ID's 'SLFT' and 'SRGT' the order must be:

'SLFT', 'SRGT'.
• If the file contains 5 channels with channel ID's 'MLFT' and 'MRGT' and 'C ' and

'LS ' and 'RS ' the order must be:
'MLFT', 'MRGT', 'C ', 'LS ', 'RS '.

• If the file contains 6 channels with channel ID's 'MLFT' and 'MRGT' and 'C ' and
'LFE ' and 'LS ' and 'RS ' the order must be:
'MLFT', 'MRGT', 'C ', 'LFE ', 'LS ', 'RS '.

The Channels Chunk is required and may appear only once in the Property Chunk.

3.2.3 Compression Type Chunk

The Compression Type Chunk defines the compression/decompression algorithm which is
used for compressing sound data.

typedef struct {
 ID ckID; // 'CMPR'
 double ulong CkDataSize;
 ID compressionType; // compression ID code
 uchar Count // length of the compression name
 text byte compressionName[]; // human readable type name
} CompressionTypeChunk;

ckID is always 'CMPR'.

ckDataSize is the size of the data portion of the chunk, in bytes. It does not include the 12
bytes used by ckID and ckDataSize.

compressionType is used by applications to identify the compression algorithm, if any, used
on the sound data.

count the length in bytes of compressionName[].

compressionName[] can be used by applications to display a message when the needed
decompression routine is not available.
Already defined compression types and names:

compressionType compressionName Meaning
'DSD ' "not compressed" Uncompressed, plain DSD audio data
'DST ' "DST Encoded" DST Encoded audio data

Other types may be defined in later versions.

The Compression Type Chunk is required and may appear only once in the Property
Chunk.

3.2.4 Absolute Start Time Chunk

The Absolute Start Time Chunk defines the point on the time axis at which the sound data
starts. The resolution for the Absolute Start Time is determined by the sampleRate which is
defined in the Sample Rate Chunk.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 17 2004-04-27

typedef struct {
 ID ckID; // 'ABSS'
 double ulong ckDataSize;
 ushort hours; // hours
 uchar minutes; // minutes
 uchar seconds; // seconds
 ulong samples; // samples
} AbsoluteStartTimeChunk;

ckID is always 'ABSS'.

ckDataSize is the size of the data portion of the chunk, in bytes. It does not include the 12
bytes used by ckID and ckDataSize.

hours defines the hours on the time axis. This value is within the range [0..23].

minutes defines the minutes on the time axis. This value is within the range [0..59].

seconds defines the seconds on the time axis. This value is within the range [0..59].

samples defines the samples on the time axis. This value is within the range
[0..(sa mpleRate-1)]. sampleRate is defined in the Sample Rate Chunk.

If there is no Absolute Start Time Chunk, the start time is 00:00:00:00 [hh:mm:ss:samples].

The Absolute Start Time Chunk is optional but if used it may appear only once in the
Property Chunk.

3.2.5 Loudspeaker Configuration Chunk

The Loudspeaker Configuration Chunk defines the set-up of the loudspeakers.

typedef struct {
 ID ckID; // 'LSCO'
 double ulong ckDataSize; // 2
 ushort lsConfig; // loudspeaker configuration
} LoudspeakerConfigurationChunk;

ckID is always 'LSCO'.

ckDataSize is the size of the data portion of the chunk, in bytes, which is always 2.

The loudspeaker configuration is defined as:

lsConfig Meaning
0 2-channel stereo set-up
1..2 Reserved for future use
3 5-channel set-up according to ITU-R BS.775-1 [ITU]
4 6-channel set-up, 5-channel set-up according to ITU-R BS.775-1 [ITU], plus

additional Low Frequency Enhancement (LFE) loudspeaker. Also known as
"5.1 configuration"

5..65534 Reserved for future use
65535 Undefined channel set-up.

The Loudspeaker Configuration Chunk is optional but if used it may appear only once in
the Property Chunk.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 18 2004-04-27

3.3 DSD SOUND DATA CHUNK

The DSD Sound Data Chunk contains the non-compressed sound data. The format for the
data within a DSD Sound Data Chunk is shown below:

typedef struct {
 ID ckID; // 'DSD '
 double ulong ckDataSize;
 uchar DSDsoundData[]; // (interleaved) DSD data
} DSDSoundDataChunk;

ckID is the same ID used as compressionType in the Compression Type Chunk in the
Property Chunk.

ckDataSize is the size of the data portion of the chunk in bytes. It does not include the 12
bytes used by ckID and ckDataSize. DSDsoundData[] contains the data that make up the
sound.

DSDsoundData[] contains the data that make up the sound. If DSDsoundData[] contains
an odd number of bytes, a pad byte is added at the end (but not used for playback).

DSD material consists of a sampled signal, where each sample is just one bit. Eight bits
(samples) of a channel are clustered together in a Channel Byte (most significant bit is the
oldest bit in time). For sound that consists of more than one channel, channel bytes are
interleaved in the order as identified in the Channels Chunk (3.2.2). See also section 5.6 of
[ScarletBook]. A set of interleaved channel bytes is called a Clustered Frame. This is
illustrated below for the 2-channel case:

Channel
Byte

Clustered Frame

CH1 CH2 CH1

Figure 4: example of a DSD cluster Frame

Note that this implicates that the total number of bits for a channel in a Sound Data Chunk
is a multiple of 8 bits. Furthermore there is a restriction that all clustered frames are
numChannels bytes in length preserving the total number of bits per channel is equal for all
channels.

Either the DSD or DST Sound Data (described below) chunk is required and may appear
only once in the Form DSD Chunk. The chunk must be placed after the Property Chunk.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 19 2004-04-27

3.4 DST SOUND DATA CHUNK

The DST Sound Data Chunk contains the DST compressed sampled sound data. The DST
Sound Data Chunk contains frames of DST encoded DSD data and the (optional) CRC over
the original DSD data. The format for the data within a DST Sound Data Chunk is shown
below:

typedef struct {
 ID ckID; // 'DST '
 double ulong ckDataSize;
 Chunk DstChunks[]; // container
} DSTSoundDataChunk;

ckID is the same ID used as compressionType in the Compression Type Chunk in the
Property Chunk.

ckDataSize is the size of the data portion of the chunk in bytes. It does not include the 12
bytes used by ckID and ckDataSize.

DstChunks[] contain the local chunks.
The local chunks are:
• DST Frame Information Chunk
• DST Frame Data Chunk
• DST Frame CRC Chunk

The DST Frame Data Chunks must be stored in their natural, chronological order.

When the DST Frame CRC Chunks exist, the number o f DST Frame Data Chunks must be
the same as the number of DST Frame CRC Chunks. The DST Frame Data Chunks and the
DST Frame CRC Chunks will be interleaved, starting with the DST Frame Data Chunk.
The CRC, stored in a DST Frame CRC Chunk, must be calculated over the original (non-
compressed) DSD data corresponding to the audio of the preceding DST Frame Data
Chunk.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 20 2004-04-27

DST Frame Information
Chunk

DST Frame Data Chunk (1)

DST Frame CRC Chunk (1)

DST Frame Data Chunk (2)

DST Frame CRC Chunk (2)

DST Sound Data Chunk

DST Frame Information
Chunk

DST Frame Data Chunk (1)

DST Frame Data Chunk (2)

DST Frame Data Chunk (3)

DST Sound Data Chunk

DST Frame Data Chunk (3)

DST Frame CRC Chunk (3)

Figure 5: two possible examples of the DST Sound Data Chunks,
one with interleaved CRC data and one without.

Either the DSD or DST Sound Data Chunk is required and may appear only once in the
Form DSD Chunk. The chunk must be placed after the Property Chunk

3.4.1 DST Frame Information Chunk

The DST Frame Information Chunk contains the actual number of DST frames and the
number of DST frames per second (DST frame rate). The format for the data within a DST
Frame Information Chunk is shown below:

typedef struct {
 ID ckID; // 'FRTE'
 double ulong ckDataSize;
 ulong numFrames; // number of DST frames.

 ushort frameRate; // DST frame rate per second
} DSTFrameInformationChunk;

ckID is always 'FRTE'.

ckDataSize is the size of the data portion of the chunk in bytes. It does not include the 12
bytes used by ckID and ckDataSize.

numFrames is the number of DST frames (the number of chunks) in the file.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 21 2004-04-27

frameRate is the actual DST frame rate per second. The only valid value is 75.
The DST Frame Information Chunk is required if a DST Sound Data Chunk is used. The
DST Frame Information Chunk must be the first chunk within the DST Sound Data Chunk.
It may appear only once in a DST Sound Data Chunk.

3.4.2 DST Frame Data Chunk

The DST Frame Data Chunk contains the compressed sound data. The format for the data
within a DST Frame Data Chunk is shown below:

typedef struct {
 ID ckID; // 'DSTF'
 double ulong ckDataSize;
 uchar DSTsoundData[]; // The DST data for one frame
} DSTFrameDataChunk;

ckID is always 'DSTF'.

ckDataSize is the size of the data portion of the chunk in bytes. It does not include the 12
bytes used by ckID and ckDataSize. DSTsoundData[] contains the data that make up the
sound. If the DSTsoundData[] contains an odd number of bytes, a pad byte must be added
at the end of the data to preserve an even length for this chunk. This pad byte is not
included in ckDataSize and is not used for playback.

DSTsoundData[] contains the data that make up the sound. DST material consists of
compressed DSD data (See [ScarletBook]).

The DST Frame Data Chunk is optional, and may appear more than once in the DST Sound
Data Chunk.

3.4.3 DST Frame CRC Chunk

The DST Frame Data Chunk always precedes its corresponding DST Frame CRC Chunk.
The format for the CRC data within a DST Frame CRC Chunk is shown below:

typedef struct {
 ID ckID; // 'DSTC'
 double ulong ckDataSize;
 uchar crcData[]; // the value of the CRC
} DSTFrameCrcChunk;

ckID is always 'DSTC'.

ckDataSize is the size of the data portion of the chunk in bytes. It does not include the 12
bytes used by ckID and ckDataSize. If the crcData[] contains an odd number of bytes, a
pad byte is added at the end of the data to preserve an even length for this chunk. This pad
byte is not included in ckDataSize.

crcData[] contains the data that make up the CRC value over the original (interleaved)
DSD data of the preceding DST Frame Data Chunk.

The specification of the CRC Algorithm :
A four-byte CRC is computed over the DSDsoundData[], per frame.
The First Byte of the crcData contains bit 31 till 23, ... etc.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 22 2004-04-27

The DSD data, consisting of interleaved channel bytes, is considered as a
sequence/stream I(x) of single bit fields:
- starting with the most significant bit of the first byte, referred to as bit number

(numChannels * sampleRate / frameRate) - 1
- ending with the least significant bit of the last byte, referred to as b0.
The CRC, consisting of bits c31 through c0, is defined as:

1)(

)(

:

)(mod2long))(()(

43132

0

 1-

0

31

32

+++=

=

⋅==

∑

∑

=

=

xxxxG

xbxI

where

xGxIxxcxCRC

snumChannel*)FrameRate/sampleRate(i

i
i

i

i
i

Note :
 x = 2
 mod2long = long division modulo 2, modulo 2 means no "borrowing"

The algorithm to calculate the CRC for each frame is :
1. Append 32 zero bits to the least significant side of the bitstream I(x).
2. Divide G(x) into x32 I(x) by long division modulo 2.
3. The remainder, a polynomial of degree 31 or less, is the CRC.

The DST Frame CRC Chunk is optional and if used exactly one chunk must be placed after
each DST Frame Data Chunk.

3.5 DST SOUND INDEX CHUNK

The DST Sound Index Chunk contains indexes to the DST Frame Data Chunks. The format
for the data within a DST Sound Index Chunk is shown below:

typedef struct {
 ID ckID; // 'DSTI'
 double ulong ckDataSize;
 DSTFrameIndex indexData[]; // array of index structs
} DSTSoundIndexChunk;

ckID is always 'DSTI'.

ckDataSize is the size of the data portion of the DST Sound Index Chunk in bytes. It does
not include the 12 bytes used by ckID and ckDataSize. If the indexData[] contains an odd
number of bytes, a pad byte is added at the end to preserve an even length for this chunk.
This pad byte is not included in ckDataSize.

indexData[] contains the file positions of the DST Frame Data Chunks and their lengths. It
is an array of DSTFrameIndex structs.

typedef struct {

 double ulong offset; // offset in the file [in bytes] of the sound in the DST Sound Data Chunk
 ulong length; // length of the sound in bytes
} DSTFrameIndex;

The DST Sound Index Chunk is recommended, and may appear only when the compression
type is 'DST '. Only one DST Sound Index Chunk is allowed in a Form DSD Chunk.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 23 2004-04-27

3.6 COMMENTS CHUNK

The Comments Chunk is used to store comments in DSDIFF. The format for the data
within a Comments Chunk is shown below:

typedef struct {
 ID ckID; // 'COMT'
 double ulong ckDataSize;
 ushort numComments; // number of comments

 Comment comments[]; // the concatenated comments
} CommentsChunk;

ckID is always 'COMT'.

ckDataSize is the size of the data portion of the chunk, in bytes. It does not include the 12
bytes used by ckID and ckDataSize.

numComments contains the number of comments in the Comments Chunk.

comments[] are the comments themselves. Each Co mment consists of an even number of
bytes, so no pad bytes are needed within the comment chunks.

The format for describing each of the comments is shown below:

typedef struct{
 ushort timeStampYear; // creation year
 uchar TimeStampMonth; // creation month
 uchar timeStampDay; // creation day
 uchar timeStampHour; // creation hour
 uchar timeStampMinutes; // creation minutes
 ushort cmtType; // comment type
 ushort cmtRef; // comment reference
 ulong count; // string length
 text byte commentText[]; // text
} Comment;

timeStampYear indicates the year of the comment creation. Values are in the range
[0..65535].

timeStampMonth indicates the month of the comment creation. Values are in the range
[0..12].

timeStampDay indicates the day of the comment creation. Values are in the range [0..31].

timeStampHour indicates the hour of the comment creation. Values are in the range [0..23].

timeStampMinutes indicates the minutes of the comment creation. Values are in the range
[0..59].

Applications and or machines without a real time clock must use a time stamp according to
yyyy-00-00 00:00, where yyyy is in the range of [0000-1999]. This will allow 2000
comments to be created. The numbering of the comment should start at 0000. Each next
comment should increase the year number by one.

cmtType indicates the comment type. The following types are defined:

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 24 2004-04-27

cmtType Meaning
0 General (album) Comment
1 Channel Comment
2 Sound Source
3 File History
4..65535 Reserved

cmtRef is the comment reference and indicates to which the comment refers.

If the comment type is General Comment the comment reference must be 0.

If the comment type is Channel Comment, the comment reference defines the channel
number to which the comment belongs.

cmtRef Meaning
0 all channels
1 first channel in the file
2 second channel in the file
.. ..
numChannels last channel of the file

The value of cmtRef is limited to [0...numChannels].

If the comment type is Sound Source the comment reference is defined as:

cmtRef Meaning
0 DSD recording
1 Analogue recording
2 PCM recording
3.. 65535 Reserved

The Sound Source indicates the original storage format used during the live recording.

If the sound type is PCM recording then it is recommended to describe (textually) the bit
length and the sample frequency in the commentText[] .

If the comment type is File History the comment reference can be one of:

cmtRef Meaning
0 General Remark
1 Name of the operator
2 Name or type of the creating machine
3 Time zone information
4 Revision of the file
5..65535 Reserved for future use

The format for File History-Place or Zone is
 "(GMT ±hh:mm)", if desired followed by a textual description. A space (0x20) is used
after GMT. When the File History-Place or Zone is omitted the indicating time is
Greenwich Mean Time "(GMT +00:00)".

The format for File History-Revision is "(N)", where N is the revision number starting with
1 for the first revision.

count is the length of the commentText[] that makes up the comment.

commentText[] is the description of the Comment. This text must be padded with a byte at
the end, if needed, to make it an even number of bytes long. This pad byte, if present, is not
included in count.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 25 2004-04-27

Remarks:
• The history of the file content can be tracked from the timestamp of each comment.
• When a time stamp with a timeStampYear earlier than 2000 occurs, the order of the

comments in the file designates the sequence of changes described by the comments.
• File history is useful for inquiry if a problem has occurred.
• Comments describing the same action are linked together by means of equal time

stamps.

The Comment Chunk is optional but if used it may appear only once in the Form DSD
Chunk.

3.7 EDITED MASTER INFORMATION CHUNK

The Edited Master Information Chunk is a container chunk for storing edited master
information. The format for the data within an Edited Master Information Chunk is shown
below:

typedef struct {
 ID ckID; // 'DIIN'
 double ulong ckDataSize;
 Chunk EmChunks[]; // container
} EditedMasterInformationChunk;

ckID is always 'DIIN'.

ckDataSize is the size of the data portion of the chunk, in bytes. It does not include the 12
bytes used by ckID and ckDataSize. It is the total length of the local chunks.

EmChunks[] contain local chunks.
The local chunks are:
• Edited Master ID Chunk
• Marker Chunk
• Artist Chunk
• Title Chunk

The Edited Master Information Chunk is optional but if used it may appear only once in the
Form DSD Chunk.

3.7.1 Edited Master ID Chunk

The Edited Master ID Chunk stores an identifier.
The format for the data within Edited Master ID Chunk is shown below:

typedef struct {
 ID ckID; // 'EMID'
 double ulong ckDataSize;
 text byte emid[]; // unique sequence of bytes
} EditedMasterIDChunk;

ckID is always 'EMID'.

ckDataSize is the size of the data portion of the chunk, in bytes. It does not include the 12
bytes used by ckID and ckDataSize.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 26 2004-04-27

emid[] contains the identifier. The length and contents of the Edited Master identifier are
not specified, they are application specific . It is recommended that the emid[] is unique for
each Edited Master file. Therefore it is recommended to use date, time, machine name,
serial number, and so on, for an emid[] .

The Edited Master ID Chunk is optional but if used it may appear only once in the Edited
Master Information Chunk.

3.7.2 Marker Chunk

The Marker Chunk defines a marker within the sound data. It defines a type of marker, the
position within the sound data and a description. The format for the data within a Marker
Chunk is shown below:

typedef struct {
 ID ckID; // 'MARK'
 double ulong ckDataSize;
 ushort hours; // marker position in hours

 uchar minutes; // marker position in minutes
 uchar seconds; // marker position in seconds
 ulong samples; // marker position in samples
 Long offset; // marker offset in samples

 ushort markType; // type of marker

 ushort markChannel; // channel reference

 ushort TrackFlags; // special purpose flags

 ulong count; // string length

 Text byte markerText[]; // description
} MarkerChunk;

ckID is always 'MARK'.

ckDataSize is the size of the data portion of the chunk, in bytes. It does not include the 12
bytes used by ckID and ckDataSize.

hours defines the hours on the time axis. This value is within the range [0..23].

minutes defines the minutes on the time axis. This value is within the range [0 ..59].

seconds defines the seconds on the time axis. This value is within the range [0..59].

samples defines the samples on the time axis. This value is within the range
[0 .. (sampleRate-1)]. The sampleRate is defined in the Sample Rate Chunk.

offset defines the offset of the marker in samples in range of [-231,231-1] with respect to
marker time. The offset can be used for modifying a marker position, without changing the
original position.

The position of the marker is determined by hours, minutes, seconds and samples plus
offset.

Marker times must be regarded as absolute times.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 27 2004-04-27

Tr
ac

kS
ta

rt

T
ra

ck
S

to
p

[hh:mm:ss
samples;offset]

P
ro

gr
am

S
ta

rt

10:0:1
0;0

b
0 .

b
2
8
2
2
3
9
9

b
6
0
1
1
7
1
1
9
9

. ..

10:0:3
0;-150528

10:3:33
0;0

b
2
8
2
2
4
0
0

. .

b
8
3
1
6
6
7
2

.

Bit number
per channel

b
6
0
1
1
7
1
2
0
0

*: Absolute Start Time, defining start time of the sound data;
 offset definition is not applicable for Absolute Start Time

.

b
8
3
1
6
6
7
1

.

10:0:0
0; - *

Figure 6: relation between (marker) times and samples in DSDIFF files.

markType defines the type of marker. Currently the following types have been defined:
markType Name Meaning
0 TrackStart Entry point for a Track start
1 TrackStop Entry point for ending a Track
2 ProgramStart Start point of 2-channel or multi-channel area
3 Obsolete
4 Index Entry point of an Index
5..65535 Reserved for future use

TrackStop of the last Track is also called ProgramEnd.

markChannel defines the channel to which this marker belongs.

markChannel Meaning
0 All channels
1 First channel in the file
2 Second channel in the file
.. ..
numChannels Last channel of the file

The value of markChannel is limited to [0...numChannels].

TrackFlags define a series of flags to be used with a marker. The behaviour of the
TrackFlags is determined by the number and order of the channels defined in the file. Bit 0
is the least significant bit of TrackFlags.

Restrictions on the TrackFlags:

• TrackFlags is only meaningful when markType is zero (TrackStart); if markType
is not zero TrackFlags must be zero

• TrackFlags is only meaningful when markChannel is zero (All channels)

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 28 2004-04-27

• If a TrackFlag is set, the corresponding channel(s) must contain a Silence
Pattern [ScarletBook] during the whole Track, with two exceptions:
1. it is not required to have a Silence Pattern at the start of the Track only if

the channel is available (i.e. the same TrackFlag is not set) within the
previous Track

2. it is not required to have a Silence Pattern at the end of the Track only if
the channel is available (i.e. the same TrackFlag is not set) within the next
Track

Flags have been defined for files
• with numChannels = 2 using the channel ID's :

'SLFT', 'SRGT'. or
• with numChannels = 5 using the channel ID's :

'MLFT', 'MRGT', 'C ', 'LS ', 'RS '. or
• with numChannels = 6 using the channel ID's :

'MLFT', 'MRGT', 'C ', 'LFE ', 'LS ', 'RS '

Currently the following flags have been defined

TrackFlag Name Meaning
Bit 0 TMF4_Mute Indicates whether the 4th channel of this Track is muted
Bit 1 TMF1_Mute Indicates whether the 1st and 2nd channel of this Track are muted
Bit 2 TMF2_Mute Indicates whether:

a) numChannels = 5, the 4th and 5th channel of this Track are muted
b) numChannels = 6, the 5th and 6th channel of this Track are muted

Bit 3 TMF3_Mute Indicates whether the 3rd channel of this Track is muted
Bit 4..7 Reserved
Bit 8..10 Extra_Use Indicates whether the 4th channel is used for an LFE loudspeaker
Bit11..15 Reserved for future expansion

Restrictions on the TMFn_Mute flags (n=1..4):
• Value one indicates muting, value zero indicates no-muting.
• 1st and 2nd channel are always available (TMF1_Mute is equal to zero)
• For numChannels = 2, TMF1_Mute, TMF2_Mute, TMF3_Mute and TMF4_Mute

must be set to zero.
• For numChannels = 5, TMF4_Mute must be set to zero.
• For numChannels = 5, minimal one of TMF1_Mute, TMF2_Mute, TMF3_Mute

must be set to zero.
• For numChannels = 5 or 6, minimal three channels are available.
• For numChannels = 6, minimal one of TMF1_Mute, TMF2_Mute, TMF3_Mute,

TMF4_Mute must be set to zero.
• For numChannels = 6 and TMF4_Mute is equal to zero, minimal four channels are

available.
Restrictions on the Extra_Use Flags:

• For numChannels = 5, the three bit values must be zero, no LFE loudspeaker
available.

• For numChannel = 6, the three bit values must be zero (Implicit usage of the LFE
loudspeaker).

Note: The previously defined LFE_mute flag is still compatible, because the LFE channel
is the 4th channel of a 5.1 multi-channel file.

count is the length of the markerText that makes up the description of the marker.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 29 2004-04-27

markerText[] is the description of the marker. This text must be padded with a byte at the
end, if needed, to make it an even number of bytes long. This pad byte, if present, is not
included in count.

Creating Tracks from Markers.
A Track is defined as a [TrackStart,<TrackStart|TrackStop >].
The last Track of the file is ended by means of a TrackStop marker.
Time between Tracks is denoted as Pause.
Time between ProgramStart and the first TrackStart is denoted as Pause[1] . An Index
Marker belongs to the Track when the timestamp of the Index lies between the timestamps
of the start and the end of the Track .

Time between the last TrackStop and the end of the data is denoted as Post-roll.

Definition Meaning
Pause[1] Starts from ProgramStart and ends at the first occurrence of TrackStart.

Pause[1] is optional, recommended length is 2 seconds.
Pause[2..N] Starts from a TrackStop and ends at the following TrackStart

Pause[2..N] is optional.
Track Starts from a TrackStart and ends at the first following :

[TrackStop | TrackStart]
Program [<Track>|<Pause><Track>]+

Starts Always with a ProgramStart Marker
Post-roll Starts from last TrackStop and ends at the end of the data

Tr
ac

kS
ta

rt

Track 1

Tr
ac

kS
to

p

Track 2

Tr
ac

kS
ta

rt

Tr
ac

kS
ta

rt

Track 1

T
ra

ck
S

to
p

Track 2

P
ro

gr
am

S
ta

rt

Pause[1]

Samples
Program

Samples
Program

P
ro

gr
am

S
ta

rt
Tr

ac
kS

ta
rt

T
ra

ck
S

to
p

Pause[2]

Example With
Pause[1]

Example
Without

 Pause[1]

End of data

Post-roll

Post-roll

End of data

Figure 7: examples of the conversion from DSDIFF markers to Tracks.

The Marker Chunk is optional and if used it may appear more than once in the Edited
Master Information Chunk.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 30 2004-04-27

3.7.3 Artist Chunk

The Artist Chunk defines the name of the Artist. The format for the data within an Artist
Chunk is shown below:

typedef struct {
 ID ckID; // 'DIAR'
 double ulong ckDataSize;
 ulong count; // string length

 text byte artistText[]; // description
} ArtistChunk;

ckID is always 'DIAR'.

ckDataSize is the size of the data portion of the chunk, in bytes. It does not include the 12
bytes used by ckID and ckDataSize.

count is the length of the artistText[] that makes up the name of the artist.

artistText[] is the name of the Artist. This text must be padded with a byte at the end, if
needed, to make it an even number of bytes long. This pad byte, if present, is not included
in count.

The Artist Chunk is optional, but if it exists it may appear only once in the Edited Master
Information Chunk.

3.7.4 Title Chunk

The Title Chunk defines the title of the project in the file. The format for the data within a
Title Chunk is shown below:

typedef struct {
 ID ckID; // 'DITI'
 double ulong ckDataSize;
 ulong count; // string length

 text byte titleText[]; // description
} TitleChunk;

ckID is always 'DITI'.

ckDataSize is the size of the data portion of the chunk, in bytes. It does not include the 12
bytes used by ckID and ckDataSize.

count is the length of the titleText[] that makes up the working title of the project.

titleText[] is the name of the project in the file. This text must be padded with a byte at the
end, if needed, to make it an even number of bytes long. This pad byte, if present, is not
included in count.

The Title Chunk is optional, but if it exists it may appear only once in Edited Master
Information Chunk.

Direct Stream Digital Interchange File Format Form DSD Chunk

Version 1.5 31 2004-04-27

3.8 MANUFACTURER SPECIFIC CHUNK

The Manufacturer Specific Chunk is a chunk for storing manufacturer specific information.
The form for the data within a Manufacturer Specific Chunk is shown below:

typedef struct {
 ID ckID; // 'MANF'
 double ulong ckDataSize;
 ID manID; // unique manufacturer ID [4 characters]

 uchar manData[]; // manufacturer specific data
} ManufacturerSpecificChunk;

ckID is always 'MANF'.

ckDataSize is the size of the data portion of the chunk, in bytes. It does not include the 12
bytes used by ckID and ckDataSize. It is the total length of manID and manData[].

manID contains the manufacturer identifier which must contain a unique ID.
A manufacturer who wants to use this chunk must request a unique manID from the
administrator of DSDIFF.

manData[] contains the manufacturer specific data. If manData[] contains an odd number
of bytes, a pad byte must be added at the end. The pad byte is not included in ckDataSize.

It is recommended to maintain the chunk structure within the manData[]- field of the
Manufacturer Specific Chunk according to the common chunk structure, as defined in 2.3
("File structure").

The Manufacturer Specific Chunk is optional, but if used it may appear only once in the
Form DSD Chunk and it must be placed behind the Sound Data Chunk. A chunk with an
unrecognized manID must be handled as defined in section 2.4 ("Handling of unrecognized
chunks").

Direct Stream Digital Interchange File Format Edited Master

Version 1.5 32 2004-04-27

4 Edited Master

4.1 INTRODUCTION

This chapter defines requirements for the data in an Edited Master.
An Edited Master is a classification of a DSDIFF file. It contains data which will be used
for creating a disc (image) [ScarletBook].
A disc can consist of 1 or 2 areas. The following combinations of areas on a disc are
allowed:
• 2-channel area
• 5-channel area
• 6-channel area
• 2-channel and 5-channel area
• 2-channel and 6-channel area

An Edited Master contains the data for one area, therefore a disc will be created from the
following combinations of Edited Masters:
• 2-channel Edited Master
• 5-channel Edited Master
• 6-channel Edited Master.
• 2-channel Edited Master and 5-channel Edited Master
• 2-channel Edited Master and 6-channel Edited Master

Because the content of an Edited Master is used for disc creation, the restrictions on Edited
Masters are derived from the disc specification [ScarletBook]. Furthermore identification of
Edited Master files is needed, especially to indicate that two Edited Masters are belonging
to one disc. An Edited Master can be either a DSD or DST file, because DSD and DST files
can be translated into each other.

4.2 REQUIRED CHUNKS IN AN EDITED MASTER

In an Edited Master the following chunks must be available:
• Form DSD Chunk

• Format Version Chunk
• Property Chunk

• Sample Rate Chunk
• Channels Chunk
• Compression Type Chunk
• Absolute Start Time Chunk
• Loudspeaker Configuration Chunk

• DSD Sound Data Chunk or DST Sound Data Chunk
• Edited Master Information Chunk

• Edited Master ID Chunk
• Marker Chunks

Direct Stream Digital Interchange File Format Edited Master

Version 1.5 33 2004-04-27

If the DST Sound Data Chunk is available then the following chunks must be available :
• DST Frame Information Chunk
• DST Frame Data Chunks

4.3 RESTRICTIONS ON AN EDITED MASTER

The following restrictions apply to an Edited Master :
• The DSD or DST sound data must have a sampleRate of 2822400 Hz.
• If the sound data is DST, the DST frameRate must be 75 Hz.
• The Absolute Start Time must have a value denoting a Super Audio CD Frame

boundary; the following condition must be met:
• samples mod 37632 = 0.

• The Marker Chunks are required and must represent a Program.
• All markers must be stored in the file in ascending order of time stamp.
• All markers must be placed at a Super Audio CD Frame boundary; the following

conditions must be met:
• samples mod 37632 = 0;
• offset mod 37632 = 0.

• The duration of each Track must be at least 1 second.
• The maximum number of Tracks in an Edited Master is 255.
• The duration of each Pause must be at least 0 Super Audio CD Frames .
• All Index markers must lay inside a Track.
• Not more than 254 Index Markers are allowed within one Track , resulting in 255

Indexes; the first Index within each Track corresponds to TrackStart .
• The maximum number of Index Markers within one Edited Master file depends on the

number of Tracks [ScarletBook]. The total number of Indexes (within a single Edited
Master) is limited to approximately 6000.

• All markers must have a unique time stamp, except for the ProgramStart Marker. The
ProgramStart Marker may coincide with the first TrackStart marker.

• The field markChannel must be zero for each marker (indicating that the marker
applies to all channels).

• The maximum duration of the sound between ProgramStart and ProgramEnd is
limited to 255:59:74 in minutes, seconds and Super Audio CD Frames . The total size
of the Program(s) on a Super Audio CD is bounded by the data capacity of the
intended disc.

Specific restrictions for a 2-channel Edited Master:
• lsConfig must have the value 0.
• numChannels must have the value 2.
• chID[] must have the values :

'SLFT','SRGT'.

Specific restrictions for a 5-channel Edited Master:
• lsConfig must have the value 3.
• numChannels must have the value 5.
• chID[] must have the values :

 'MLFT','MRGT','C ','LS ','RS '.

Specific restrictions for a 6-channel Edited Master:
• lsConfig must have the value 4.
• numChannels must have the value 6.
• chID[] must have the values :

'MLFT','MRGT','C ','LFE ','LS ','RS '.

Direct Stream Digital Interchange File Format Edited Master

Version 1.5 34 2004-04-27

LsConfig can be found in the Loudspeaker Configuration Chunk and numChannels, chID[]
can be found in the Channels Chunk.

4.4 RECOMMENDATIONS FOR AN EDITED MASTER

The following recommendations apply to an Edited Master:
• The Artist and Title chunks should be used to enhance the identification of Edited

Masters.
• The Comments chunk should be used to keep track of the history of the file contents.
• It is recommended that both Pause[1] and the Post-roll have a length of 2 seconds.

4.5 INTERPRETATION OF THE MARKERS

The rules to apply for interpretation of the markers:
• All DSD or DST sound data in the Edited Master before the marker ProgramStart is

not part of the area.
• The Post-roll, i.e. all DSD or DST sound data in the Edited Master behind the end of

the last TrackStop marker (ProgramEnd), is not part of the area.
• If one or more Index Markers exist within a Track , the TrackStart marker is also the

first Index Marker.

4.6 IDENTIFICATION OF AN EDITED MASTER

The following information is only used for identification of an Edited Master, but is not
placed on the disc:
• The Edited Master ID in the Edited Master ID Chunk, emid[].
• The name of the Artist in the Artist Chunk, artistText[] .
• The title in the Title Chunk, titleText[].
• Comments, especially the File History.

