
Nested Intervals Tree Encoding in SQL
Vadim Tropashko

Oracle Corp.

Abstract

Nested Intervals generalize Nested Sets. They
are immune to hierarchy reorganization problem.
They allow answering ancestor path hierarchical
queries algorithmically - without accessing the
stored hierarchy relation.

1 Introduction

There are several SQL techniques to query graph
structures, in general, and trees, in particular [2].
They can be classified into 2 major categories:
Hierarchical/recursive SQL extensions and Tree
encodings. This article focuses upon tree
encodings.

Tree encodings methods themselves can be split
into 2 groups: Materialized Path and Nested
Sets.

Materialized Path is nearly ubiquitous encoding,
where each tree node is labeled with the path
from the node to the root. UNIX global
filenames is well known showcase for this idea.
Materialized Path could be either represented as
character string of unique sibling identifiers
(concatenated with some separator), or
enveloped into user defined type [5].

Querying trees with Materialized Path technique
doesn’t appear especially elegant. It implies
either string matching like this

select e1.ename from emp e1, emp e2
where e2.path like e1.path || '%'
and e2.name = 'FORD'

or leveraging complex data types that are realm
of Object-Relational Databases. The alternative
tree encoding - Nested Sets [2] labels each node
with just a pair of integers. Ancestor-descendant
relationship is reflected by subset relation
between intervals of integers, which provides
very intuitive base for hierarchical queries.

Although Nested Sets are certainly appealing to
many database developers, they have 2
fundamental disadvantages:

1. The encoding is volatile. In a word, roughly
half of the tree nodes should be relabeled
whenever a new node were inserted.

2. Querying ranges is asymmetric from
performance perspective. It is easy to answer if a
point falls inside some interval, but it is hard to
index a set of intervals that contain a given point.
For nested sets this translates into a difficulty
answering queries about node’s ancestors.

[6] introduced Nested Intervals that generalize
Nested Sets. Since Nested Sets encoding with
integers admits only finite gaps for new node
insertions, it is natural to use dense domain such
as rational numbers. One particular encoding
schema with Dyadic rational numbers was
developed in the rest of the article, and was a
subject of further improvements in the follow up
articles. Dyadic rational encoding has many nice
theoretical properties, and essentially is a
numeric reflection of Materialized Path. It has,
however, one significant flaw from practical
perspective. Dyadic fractions utilize domain of
integer numbers rather uneconomically, so that
numeric overflow prevents tree scaling to any
significant size.

In general, Nested Intervals allow a certain
freedom choosing particular encoding schema.
[7] developed alternative encoding with Farey
fractions. The development continued in [8].

This article expands the perspective. It
demonstrates why both methods are natural
choices, and describes the mapping between
those tree encodings. It goes on exploring
different ways of establishing interval structure.
The major result is introducing Path Matrices
and exposing their properties.

Similar idea of leveraging Stern-Brocot tree is
briefly mentioned in [1]. The article, however,

SIGMOD Record, Vol. 34, No. 2, June 2005 47

contains just a hint, while pursuing some other
venue. [3] is, perhaps, the earliest reference in
the database literature referring to Continued
Fractions encoding. The manuscript is
unavailable to the author to draw detailed
comparison with his method.

2 Nested Intervals Queries

Nested Intervals encode each tree node with a
pair of numbers head and tail. Interval for a child
node is always contained within parent interval.
With this labeling transitive closure could be
queried like this

select e1.ename, e2.ename
from emp e1, emp e2
where e2.head >= e1.head
and e2.head < e1.tail

Next, the subtree of all the descendants of a node
could be found by just restricting the above view
with a single table predicate

select e2.ename from emp e1, emp e2
where e2.head >= e1.head
and e2.head < e1.tail
and e1.ename = ‘SCOTT’

The ancestor path can be queried symmetrically

select e1.ename from emp e1, emp e2
where e2.head >= e1.head
and e2.head < e1.tail
and e2.ename = ‘SCOTT’

There is a subtle problem with the last query,
however. Finding all the intervals that cover a
given point is difficult. Although there are
specialized indexing schemes like R-Tree, none
of them is as universally accepted as B-Tree.

Compare this to the descendants query, assuming
that the subtree of SCOTT’s subordinates is
small. The execution path in this case is very
efficient: first, e1 record is fetched by the unique
index, and then all the e2 records are fetched by
index range scan.

The details of Nested Intervals encoding are
developed in the next sections. The encoding is
algorithmic. Given a child node label, the parent
encoding can be calculated, not queried.
Therefore, the whole path to the root node can be
calculated. Hence, if we know tree node

encodings for all nodes on the path then, the
nodes themselves can be efficiently queried in
the database.

3 Interval Halving

The easiest way to nest intervals is splitting
parent interval into two halves. If we start with
the points 0 and 1 and continue on halving the
intervals iteratively then, what kind of numbers
on the interval boundaries would be produced?
Clearly, the ones whose denominator is power of
2, or simply dyadic fractions [4].

Fig.1. Dyadic Fractions at Conway tree.

When splitting the interval [head,tail] into
two, the point on the boundary is the average
(head+tail)/2. Alternatively, we could have
chosen the mediant:

 + head_numer tail_numer
 + head_denom tail_denom

 If we start with the points 0 and 1 and continue
on, then the Stern-Brocot tree of Farey fractions
would be produced.

Fig.2. Farey fractions at Stern-Brocot tree.

The bijection between Dyadic and Stern-Brocot
tree is defined by the following Minkowski
Question Mark function ?: [0,1]�[0,1] [9].

1
2
_

1
3
_

1
1
_

2
3
_

2
5
_ 1

4
_ 3

5
_ 3

4
_

1
2
_

1
4
_

1
1
_

3
4
_

3
8
_ 1

8
_ 5

8
_ 7

8
_

0
1
_

0
1
_

48 SIGMOD Record, Vol. 34, No. 2, June 2005

If x has binary expansion .00...011...

100...011...1..., where there are a zeros in
the first block, then b ones in the second, then c
zeros, and so on, then ?(x) is the (simple)
continued fraction

1

 + + a 1
1

 + b
1

 + c
1

so_on

Thus, for example, if x = 1/4, its two binary
expansions .0100000... and .00111111...
yield the two expressions

 =
1

 + + 1 1
1

 + 1
1
∞

1

 + + 2 1
1
∞

Therefore, ?(1/4)=1/3. Note that the node ¼
is positioned in the Dyadic tree on Fig.1 in the
same place where the node 1/3 is in Stern-Brocot
tree on Fig.2.

4 Nested Interval Structure

In previous section we developed two alternative
but isomorphic systems how to generate interval
boundary points. What intervals should we
consider? Clearly, including all possible intervals
into our system would be too much. In Farey
case (Fig.2), for example, the interval
[1/3,1/2] would have at least two parents:
[1/3,2/3] and [0/1,1/1].

What if we limit the scope to only those intervals
that correspond to the edges at Fig.1? If we
consider solid and dashed lines, then there still
would be too many intervals. Consider the
interval [1/3,2/5] (Fig.2). How many siblings
does it have? Well, no more than one:
[2/5,1/2]. Indeed, no other interval has
[1/3,1/2] as a parent.

If we consider solid lines only (with two
additional convenience intervals at the top), then

we’ll get a system of Nested Intervals shown at
Fig.3.

Fig.3. Simple Farey interval structure.

Dyadic Nested Interval structure is isomorphic to
Fig.3 - we omit the picture in order to save
space. The reason why we preferred Farey over
Dyadic case would become evident in the last
section. It would also become apparent why it’s
called “simple”.

The other possible way to introduce Nested
Interval structure is shown at Fig.4, this time
with dyadic encoding.

Fig.4. Monotonic dyadic interval structure.

Algorithms for navigating Dyadic Nested
Intervals are almost obvious:

1. Younger sibling [head,tail] encoding is:

�

�
��

�

�
��,

 + 2 head_numer 1
2 head_denom

 + 2 tail_numer 1
2 tail_denom

2. Older sibling [head,tail]:

 �
�
��

�

�
��,

 − head_numer 1
head_denom

 − tail_numer 1
tail_denom

1
2
_

1
3
_

1
1
_

2
3

2
5
_ 1

4
_ 3

5
_ 3

4
_ _

_

3
8

1
5
_ 4

7
_ 5

7
_ _ 3

7
_ 2

7
_ 5

8
_ 4

5
_

1
2
_

1
4
_

1
1
_

3
4
_

3
8
_ 1

8
_ 5

8
_ 7

8
_ _

3
16
_ 11

16
_ 15

16
_ 5

16
1
16
_ 9

16
_ 13

16
_ _ 7

16
_ _

0
1
_

0
1
_

SIGMOD Record, Vol. 34, No. 2, June 2005 49

(Be careful, however, when applying this rule to
the first child)

3. Parent of the first child:

 �
�
��

�

�
��,

head_numer
head_denom

 + tail_numer 1
tail_denom

Farey Intervals are little bit more sophisticated.

 5 The Path Matrix

Let’s study simple Farey interval structure
(Fig.3) in more detail. Consider the interval
[5/7,3/4]. It is the first child of [2/3,3/4].
Then, [2/3,3/4] is the second child of
[1/2,1/1]. Finally, [1/2,1/1] is the first
child of [0/1,1/1]. Therefore, the materialized
path encoding of [5/7,3/4] is 1.2.1.
However, we have 4 intervals, i.e. 4 nodes, while
materialized path has the length 3. How can that
be?

Could interval [0/1,1/1] be considered as
somebody’s else child too? Well, yes, and no.
The obvious parent candidate is [0/1,1/0].
Then, the interval [1/1,2/1] is the second
child of [0/1,1/0]! The amended materialized
path encoding for [5/7,3/4] is 1.1.2.1 and,
by the way, we also are able to find Farey
interval encodings for materialized paths
beginning with natural numbers other than 1.

Here is formal procedure converting Farey
encoding into materialized path. Start with Farey
interval written as 2x2 matrix:

�

�
��

�

�
��

3 5
4 7

Note that we switched the fractions. The purpose
is to keep the highest integer in the lower right
corner. Next, write

5 = 3 * �5/3� + 5 mod 3 = 3*1 + 2
7 = 4 * �7/4� + 7 mod 4 = 4*1 + 3

The integer division result (which is 1 - the same
in both cases) is the first element of the

materialized path encoding. We add the column
with the remainders to the left

Matrix on the left

�

�
��

�

�
��

2 3
3 4

corresponds to the interval [2/3,3/4] - the
parent of our original interval.

Continuing to the left we get

together with the sequence of integer division
results 1,1,2, and 1. We stop as soon as zero
in the top left corner appears.

Next, we can expand this number wall up. The
rule is the same but applied to rows instead of
columns. In our example, we write

7 = 5*�7/5� + 7 mod 5 = 5*1 + 2
4 = 3*�4/3� + 4 mod 3 = 3*1 + 1
3 = 2*�3/2� + 3 mod 2 = 2*1 + 1
1 = 1*�1/1� + 1 mod 1 = 1*1 + 0

Adding the row 0,1,1,2 at the top results in

Continuing this process, we get the following
number wall

Note, that all 2x2 sub-matrices at this wall have
determinant 1 or -1. This property enforces the
unique way of completing the wall to square
matrix

2 3 5
3 4 7

0 1 2 3 5
1 1 3 4 7

 0 1 1 2
0 1 2 3 5
1 1 3 4 7

 0 1
 0 1 1
 0 1 1 2
0 1 2 3 5
1 1 3 4 7

50 SIGMOD Record, Vol. 34, No. 2, June 2005

We refer to the number wall that we just have
built as the Path Matrix. It enjoys many nice
properties.

1. The numbers at the main antidiagonal are all
1s.

2. The sequence of numbers below the main
antidiagonal is materialized path. The path is
oriented from right to left.

3. Adjacent 2x2 sub-matrices can be multiplied
as shown on Fig.5

Fig.5. Multiplying adjacent matrices.

The matrix identity in the middle case on
Fig.5, for example, is

 = . �

�
��

�

�
��

1 2
1 3

�

�
��

�

�
��

0 1
1 1

�

�
��

�

�
��

2 3
3 4

Multiplying overlapping matrices, similar to
the last case

 = . �

�
��

�

�
��

0 1
1 1

�

�
��

�

�
��

0 1
1 2

�

�
��

�

�
��

1 2
1 3

works for matrices on the main antidiagonal
only.

Iterative application of matrix multiplication
property gives rise to the following matrix
decomposition

 = . . . �

�
��

�

�
��

0 1
1 1

�

�
��

�

�
��

0 1
1 2

�

�
��

�

�
��

0 1
1 1

�

�
��

�

�
��

0 1
1 1

�

�
��

�

�
��

3 5
4 7

Each of the matrices on the left side corresponds
to an elementary fragment of the materialized
path 1.1.2.1. Since these elementary matrices
all have determinant -1, their multiple would
always have determinant -1 or 1 - the property
that we noticed earlier.

The determinant property allows filling in the
numbers in the Path Matrix in the other
direction. Suppose we know materialized path
and want to calculate corresponding Farey
interval. One way is multiplying elementary
matrices, by leveraging the above matrix
decomposition identity. Alternatively, we can
start with partially filled in Path Matrix. By
properties 1 and 2 we have

1 0 1 0 1
0 1 0 1 1
1 0 1 1
0 1 2
1 1

We fill in empty positions as follows. Select 2x2
matrix that has 3 elements defined and the 4th
element empty

1 0 1 0 1
0 1 0 1 1
1 0 1 1
0 1 2
1 1

Fill in the empty position to satisfy the
determinant property. The sign of the
determinant is alternating. It is negative if the
matrix is positioned at even distance from main
antidiagonal, and positive otherwise. In our case,
the matrix is just one step away from the position
at the main antidiagonal. Therefore, the value x
at the empty position has to satisfy the equation

1 0 1 0 1
0 1 0 1 1
1 0 1 1 2
0 1 2 3 5
1 1 3 4 7

1 0 1 0 1
0 1 0 1 1
1 0 1 1 2
0 1 2 3 5
1 1 3 4 7

1 0 1 0 1
0 1 0 1 1
1 0 1 1 2
0 1 2 3 5
1 1 3 4 7

1 0 1 0 1
0 1 0 1 1
1 0 1 1 2
0 1 2 3 5
1 1 3 4 7

SIGMOD Record, Vol. 34, No. 2, June 2005 51

1*x - 1*2 = 1

hence, x=3, as expected.

After all the empty positions are filled, we can
grab 2x2 Farey interval matrix at the lower right
corner.

The final important property of the Path Matrix
is that matrix transposition corresponds to
materialized path inversion.

6 Continued Fractions

[8] suggests one more perspective into Farey
interval encoding. Materialized path 1.1.2.1
can be naturally written as the simple continued
fraction

1

 + 1
1

 + 1
1

 + 2
1

 + 1 x

which can be simplified into Moebius function

 + 4 3 x
 + 7 5 x

Here the familiar 2x2 matrix from our example
can be recognized.

Simple continued fractions have somewhat
irritating feature that increasing any
denominator, either increases the value of the
number, or decreases it, depending on the parity
of the position. Reversed (or additive) continued
fractions

1

 + − 1 1
1

 + − 1 1
1

 + − 2 1
1

 + − 1 1 x

are monotonic. The path matrix theory for the
additive continued fractions mimics the classic
case described in section 6. One of the
distinguished feature of additive continued
fractions is that all the matrices have negative
entries in the second column, and determinant
equal to 1. There is no alternation anymore:
interval encoding of the younger child always
precedes the older one. (In the simple continued
fractions case this was true for the odd levels,
and reversely true for the even ones). Finally,
additive continued fractions map into monotonic
Farey interval structure.

References

[1] D. Aioanei, A. Malinaru. General trees
persisted in relational databases.
http://www.codeproject.com/cs/database/persisti
ng_trees.asp?print=true

[2] J. Celko. Joe Celko's Trees and Hierarchies in
SQL for Smarties. Morgan Kaufmann.

[3] P. Ciaccia, D. Maio, and P. Tiberio. A
method for hierarchy processing in relational
systems. Information Systems, 14(2):93-105,
1989.

[4] J. Conway. On Numbers and Games. New
York: Academic Press, Inc.

[5] J. Roy. 2003. Using the Node Data Type to
Solve Problems with Hierarchies in DB2
Universal Database
http://www106.ibm.com/developerworks/db2/lib
rary/techarticle/0302roy/0302roy.html

[6] V. Tropashko. Trees in SQL: Nested Sets
and Materialized Path.
http://www.dbazine.com/tropashko4.shtml

[7] V. Tropashko. Nested Intervals with Farey
Fractions. http://arxiv.org/html/cs.DB/0401014

[8] V. Tropashko. Nested Intervals Tree
Encoding with Continued Fractions.
http://arxiv.org/pdf/cs.DB/0402051

[9] L. Vepstas. The Minkowski Question Mark
and the Modular Group SL(2,Z).
http://www.linas.org/math/chap-
minkowski/chap-minkowski.html

52 SIGMOD Record, Vol. 34, No. 2, June 2005

