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Abstract 

Nested Intervals generalize Nested Sets. They 
are immune to hierarchy reorganization problem. 
They allow answering ancestor path hierarchical 
queries algorithmically - without accessing the 
stored hierarchy relation.  

1 Introduction 

There are several SQL techniques to query graph 
structures, in general, and trees, in particular [2]. 
They can be classified into 2 major categories: 
Hierarchical/recursive SQL extensions and Tree 
encodings. This article focuses upon tree 
encodings.  

Tree encodings methods themselves can be split 
into 2 groups: Materialized Path and Nested 
Sets. 

Materialized Path is nearly ubiquitous encoding, 
where each tree node is labeled with the path 
from the node to the root. UNIX global 
filenames is well known showcase for this idea.  
Materialized Path could be either represented as 
character string of unique sibling identifiers 
(concatenated with some separator), or 
enveloped into user defined type [5]. 

Querying trees with Materialized Path technique 
doesn’t appear especially elegant. It implies 
either string matching like this 

select e1.ename from emp e1, emp e2 
where e2.path like e1.path || '%' 
and e2.name = 'FORD' 

or leveraging complex data types that are realm 
of Object-Relational Databases. The alternative 
tree encoding - Nested Sets [2] labels each node 
with just a pair of integers. Ancestor-descendant 
relationship is reflected by subset relation 
between intervals of integers, which provides 
very intuitive base for hierarchical queries.  

Although Nested Sets are certainly appealing to 
many database developers, they have 2 
fundamental disadvantages: 

1. The encoding is volatile. In a word, roughly 
half of the tree nodes should be relabeled 
whenever a new node were inserted. 

2. Querying ranges is asymmetric from 
performance perspective. It is easy to answer if a 
point falls inside some interval, but it is hard to 
index a set of intervals that contain a given point. 
For nested sets this translates into a difficulty 
answering queries about node’s ancestors.  

[6] introduced Nested Intervals that generalize 
Nested Sets. Since Nested Sets encoding with 
integers admits only finite gaps for new node 
insertions, it is natural to use dense domain such 
as rational numbers. One particular encoding 
schema with Dyadic rational numbers was 
developed in the rest of the article, and was a 
subject of further improvements in the follow up 
articles. Dyadic rational encoding has many nice 
theoretical properties, and essentially is a 
numeric reflection of Materialized Path. It has, 
however, one significant flaw from practical 
perspective. Dyadic fractions utilize domain of 
integer numbers rather uneconomically, so that 
numeric overflow prevents tree scaling to any 
significant size. 

In general, Nested Intervals allow a certain 
freedom choosing particular encoding schema. 
[7] developed alternative encoding with Farey 
fractions. The development continued in [8].  

This article expands the perspective. It 
demonstrates why both methods are natural 
choices, and describes the mapping between 
those tree encodings. It goes on exploring 
different ways of establishing interval structure. 
The major result is introducing Path Matrices 
and exposing their properties. 

Similar idea of leveraging Stern-Brocot tree is 
briefly mentioned in [1]. The article, however, 
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contains just a hint, while pursuing some other 
venue. [3] is, perhaps, the earliest reference in 
the database literature referring to Continued 
Fractions encoding. The manuscript is 
unavailable to the author to draw detailed 
comparison with his method.  

2 Nested Intervals Queries 

Nested Intervals encode each tree node with a 
pair of numbers head and tail. Interval for a child 
node is always contained within parent interval. 
With this labeling transitive closure could be 
queried like this 

select e1.ename, e2.ename  
from emp e1, emp e2 
where e2.head >= e1.head  
and e2.head < e1.tail 

Next, the subtree of all the descendants of a node 
could be found by just restricting the above view 
with a single table predicate  

select e2.ename from emp e1, emp e2 
where e2.head >= e1.head  
and e2.head < e1.tail 
and e1.ename = ‘SCOTT’  

The ancestor path can be queried symmetrically  

select e1.ename from emp e1, emp e2 
where e2.head >= e1.head  
and e2.head < e1.tail 
and e2.ename = ‘SCOTT’  

There is a subtle problem with the last query, 
however. Finding all the intervals that cover a 
given point is difficult. Although there are 
specialized indexing schemes like R-Tree, none 
of them is as universally accepted as B-Tree.  

Compare this to the descendants query, assuming 
that the subtree of SCOTT’s subordinates is 
small. The execution path in this case is very 
efficient: first, e1 record is fetched by the unique 
index, and then all the e2 records are fetched by 
index range scan. 

The details of Nested Intervals encoding are 
developed in the next sections. The encoding is 
algorithmic. Given a child node label, the parent 
encoding can be calculated, not queried. 
Therefore, the whole path to the root node can be 
calculated. Hence, if we know tree node 

encodings for all nodes on the path then, the 
nodes themselves can be efficiently queried in 
the database.  

3 Interval Halving 

The easiest way to nest intervals is splitting 
parent interval into two halves. If we start with 
the points 0 and 1 and continue on halving the 
intervals iteratively then, what kind of numbers 
on the interval boundaries would be produced? 
Clearly, the ones whose denominator is power of 
2, or simply dyadic fractions [4].  

 

Fig.1. Dyadic Fractions at Conway tree. 

When splitting the interval [head,tail] into 
two, the point on the boundary is the average 
(head+tail)/2. Alternatively, we could have 
chosen the mediant: 

 + head_numer tail_numer
 + head_denom tail_denom  

 If we start with the points 0 and 1 and continue 
on, then the Stern-Brocot tree of Farey fractions 
would be produced.  

 

Fig.2. Farey fractions at Stern-Brocot tree. 

The bijection between Dyadic and Stern-Brocot 
tree is defined by the following Minkowski 
Question Mark function ?: [0,1]�[0,1] [9]. 
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If x has binary expansion .00...011... 

100...011...1..., where there are a zeros in 
the first block, then b ones in the second, then c 
zeros, and so on, then ?(x) is the (simple) 
continued fraction 

1

 +  + a 1
1

 + b
1

 + c
1

so_on  

Thus, for example, if x = 1/4, its two binary 
expansions .0100000... and .00111111... 
yield the two expressions 

 = 
1

 +  + 1 1
1

 + 1
1
∞

1

 +  + 2 1
1
∞

 

Therefore, ?(1/4)=1/3. Note that the node ¼ 
is positioned in the Dyadic tree on Fig.1 in the 
same place where the node 1/3 is in Stern-Brocot 
tree on Fig.2.  

4 Nested Interval Structure 

In previous section we developed two alternative 
but isomorphic systems how to generate interval 
boundary points. What intervals should we 
consider? Clearly, including all possible intervals 
into our system would be too much. In Farey 
case (Fig.2), for example, the interval 
[1/3,1/2] would have at least two parents: 
[1/3,2/3] and [0/1,1/1].  

What if we limit the scope to only those intervals 
that correspond to the edges at Fig.1?  If we 
consider solid and dashed lines, then there still 
would be too many intervals. Consider the 
interval [1/3,2/5] (Fig.2). How many siblings 
does it have? Well, no more than one: 
[2/5,1/2]. Indeed, no other interval has 
[1/3,1/2] as a parent.   

If we consider solid lines only (with two 
additional convenience intervals at the top), then 

we’ll get a system of Nested Intervals shown at 
Fig.3. 

 

Fig.3. Simple Farey interval structure. 

Dyadic Nested Interval structure is isomorphic to 
Fig.3 - we omit the picture in order to save 
space. The reason why we preferred Farey over 
Dyadic case would become evident in the last 
section. It would also become apparent why it’s 
called “simple”. 

The other possible way to introduce Nested 
Interval structure is shown at Fig.4, this time 
with dyadic encoding. 

 

Fig.4. Monotonic dyadic interval structure. 

Algorithms for navigating Dyadic Nested 
Intervals are almost obvious: 

1. Younger sibling [head,tail]  encoding is: 
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 �
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(Be careful, however, when applying this rule to 
the first child) 

3. Parent of the first child: 

 �
�
��

�

�
��,

head_numer
head_denom

 + tail_numer 1
tail_denom  

Farey Intervals are little bit more sophisticated. 

 5 The Path Matrix 

Let’s study simple Farey interval structure 
(Fig.3) in more detail. Consider the interval 
[5/7,3/4]. It is the first child of [2/3,3/4]. 
Then, [2/3,3/4] is the second child of 
[1/2,1/1]. Finally, [1/2,1/1] is the first 
child of [0/1,1/1]. Therefore, the materialized 
path encoding of [5/7,3/4] is 1.2.1. 
However, we have 4 intervals, i.e. 4 nodes, while 
materialized path has the length 3. How can that 
be?  

Could interval [0/1,1/1] be considered as 
somebody’s else child too? Well, yes, and no. 
The obvious parent candidate is [0/1,1/0]. 
Then, the interval [1/1,2/1] is the second 
child of [0/1,1/0]! The amended materialized 
path encoding for [5/7,3/4] is 1.1.2.1 and, 
by the way, we also are able to find Farey 
interval encodings for materialized paths 
beginning with natural numbers other than 1.  

Here is formal procedure converting Farey 
encoding into materialized path. Start with Farey 
interval written as 2x2 matrix: 

�

�
��

�

�
��

3 5
4 7  

Note that we switched the fractions. The purpose 
is to keep the highest integer in the lower right 
corner. Next, write 

5 = 3 * �5/3� + 5 mod 3 = 3*1 + 2 
7 = 4 * �7/4� + 7 mod 4 = 4*1 + 3  

The integer division result (which is 1 - the same 
in both cases) is the first element of the 

materialized path encoding. We add the column 
with the remainders to the left 

 

Matrix on the left 

�

�
��

�

�
��

2 3
3 4  

corresponds to the interval [2/3,3/4] - the 
parent of our original interval.  

Continuing to the left we get  

 

together with the sequence of integer division 
results 1,1,2, and 1. We stop as soon as zero 
in the top left corner appears.  

Next, we can expand this number wall up. The 
rule is the same but applied to rows instead of 
columns. In our example, we write 

7 = 5*�7/5� + 7 mod 5 = 5*1 + 2  
4 = 3*�4/3� + 4 mod 3 = 3*1 + 1 
3 = 2*�3/2� + 3 mod 2 = 2*1 + 1  
1 = 1*�1/1� + 1 mod 1 = 1*1 + 0 

Adding the row 0,1,1,2 at the top results in 

 

 

Continuing this process, we get the following 
number wall 

 

 

 

Note, that all 2x2 sub-matrices at this wall have 
determinant 1 or -1. This property enforces the 
unique way of completing the wall to square 
matrix 

2  3  5 
3  4  7 

0  1  2  3  5 
1  1  3  4  7 

   0  1  1  2 
0  1  2  3  5 
1  1  3  4  7 

         0  1 
      0  1  1 
   0  1  1  2 
0  1  2  3  5 
1  1  3  4  7 
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We refer to the number wall that we just have 
built as the Path Matrix. It enjoys many nice 
properties. 

1. The numbers at the main antidiagonal are all 
1s. 

2. The sequence of numbers below the main 
antidiagonal is materialized path. The path is 
oriented from right to left. 

3. Adjacent 2x2 sub-matrices can be multiplied 
as shown on Fig.5  

 

Fig.5. Multiplying adjacent matrices. 

The matrix identity in the middle case on 
Fig.5, for example, is 

 =  . �

�
��

�

�
��

1 2
1 3

�

�
��

�

�
��

0 1
1 1

�

�
��

�

�
��

2 3
3 4

 

Multiplying overlapping matrices, similar to 
the last case 

 =  . �

�
��

�

�
��

0 1
1 1

�

�
��

�

�
��

0 1
1 2

�

�
��

�

�
��

1 2
1 3  

works for matrices on the main antidiagonal 
only. 

Iterative application of matrix multiplication 
property gives rise to the following matrix 
decomposition 

 =  .  .  . �

�
��

�

�
��

0 1
1 1

�

�
��

�

�
��

0 1
1 2

�

�
��

�

�
��

0 1
1 1

�

�
��

�

�
��

0 1
1 1

�

�
��

�

�
��

3 5
4 7

 

Each of the matrices on the left side corresponds 
to an elementary fragment of the materialized 
path 1.1.2.1. Since these elementary matrices 
all have determinant -1, their multiple would 
always have determinant -1 or 1 - the property 
that we noticed earlier. 

The determinant property allows filling in the 
numbers in the Path Matrix in the other 
direction. Suppose we know materialized path 
and want to calculate corresponding Farey 
interval. One way is multiplying elementary 
matrices, by leveraging the above matrix 
decomposition identity. Alternatively, we can 
start with partially filled in Path Matrix. By 
properties 1 and 2 we have 

1  0  1  0  1 
0  1  0  1  1 
1  0  1  1   
0  1  2   
1  1     

We fill in empty positions as follows. Select 2x2 
matrix that has 3 elements defined and the 4th 
element empty 

1  0  1  0  1 
0  1  0  1  1 
1  0  1  1   
0  1  2   
1  1     

Fill in the empty position to satisfy the 
determinant property. The sign of the 
determinant is alternating. It is negative if the 
matrix is positioned at even distance from main 
antidiagonal, and positive otherwise. In our case, 
the matrix is just one step away from the position 
at the main antidiagonal. Therefore, the value x 
at the empty position has to satisfy the equation  

1  0  1  0  1 
0  1  0  1  1 
1  0  1  1  2 
0  1  2  3  5 
1  1  3  4  7 

1  0  1  0  1 
0  1  0  1  1 
1  0  1  1  2 
0  1  2  3  5 
1  1  3  4  7 

1  0  1  0  1 
0  1  0  1  1 
1  0  1  1  2 
0  1  2  3  5 
1  1  3  4  7 

1  0  1  0  1 
0  1  0  1  1 
1  0  1  1  2 
0  1  2  3  5 
1  1  3  4  7 
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1*x - 1*2 = 1 

hence, x=3, as expected. 

After all the empty positions are filled, we can 
grab 2x2 Farey interval matrix at the lower right 
corner. 

The final important property of the Path Matrix 
is that matrix transposition corresponds to 
materialized path inversion. 

6 Continued Fractions 

[8] suggests one more perspective into Farey 
interval encoding. Materialized path 1.1.2.1 
can be naturally written as the simple continued 
fraction 

1

 + 1
1

 + 1
1

 + 2
1

 + 1 x  

which can be simplified into Moebius function 

 + 4 3 x
 + 7 5 x  

Here the familiar 2x2 matrix from our example 
can be recognized.  

Simple continued fractions have somewhat 
irritating feature that increasing any 
denominator, either increases the value of the 
number, or decreases it, depending on the parity 
of the position. Reversed (or additive) continued 
fractions 

 
1

 +  − 1 1
1

 +  − 1 1
1

 +  − 2 1
1

 +  − 1 1 x

 

are monotonic. The path matrix theory for the 
additive continued fractions mimics the classic 
case described in section 6. One of the 
distinguished feature of additive continued  
fractions is that all the matrices have negative 
entries in the second column, and determinant 
equal to 1. There is no alternation anymore: 
interval encoding of the younger child always 
precedes the older one. (In the simple continued 
fractions case this was true for the odd levels, 
and reversely true for the even ones). Finally, 
additive continued fractions map into monotonic 
Farey interval structure.  
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