
Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

PRoot: a Step Forward for QEMU
User-Mode

Cédric Vincent Yves Janin

Compilation Expertise Center (CEC)
STMicroelectronics, Grenoble, France

1st International QEMU Users Forum (QUF’11)
March 18th 2011



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

Description

A QEMU Solution for Software Development
QEMU is the right solution for emulating embedded platforms.

Runs fast,
Supports several targets: ARM, ST40 (a.k.a. SH4), . . .

QEMU user-mode
executes one target Linux application on a host Linux system.

PRoot
controls the execution of Linux processes.

Both combined
a lightweight emulation environment for Linux applications.



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

Description

A QEMU Solution for Software Development
QEMU is the right solution for emulating embedded platforms.

Runs fast,
Supports several targets: ARM, ST40 (a.k.a. SH4), . . .

QEMU user-mode
executes one target Linux application on a host Linux system.

PRoot
controls the execution of Linux processes.

Both combined
a lightweight emulation environment for Linux applications.



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

Description

A QEMU Solution for Software Development
QEMU is the right solution for emulating embedded platforms.

Runs fast,
Supports several targets: ARM, ST40 (a.k.a. SH4), . . .

QEMU user-mode
executes one target Linux application on a host Linux system.

PRoot
controls the execution of Linux processes.

Both combined
a lightweight emulation environment for Linux applications.



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

Description

A QEMU Solution for Software Development
QEMU is the right solution for emulating embedded platforms.

Runs fast,
Supports several targets: ARM, ST40 (a.k.a. SH4), . . .

QEMU user-mode
executes one target Linux application on a host Linux system.

PRoot
controls the execution of Linux processes.

Both combined
a lightweight emulation environment for Linux applications.



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

QEMUlating complex embedded Linux applications

A wide range of use cases
At STMicroelectronics, we use PRoot+QEMU user-mode to:

build Linux packages for an embedded target;
run test-suites and validations;
and develop Rich Internet Applications (WebKit,
FlashPlayer’s VM).



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

QEMU system-mode vs user-mode

. . .

QEMU

host kernel

process 1 process N

target kernel

Figure: QEMU system-mode

QEMU

host kernel

process 1

Figure: QEMU user-mode



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

QEMU system-mode vs user-mode

. . .

QEMU

host kernel

process 1 process N

target kernel

Figure: QEMU system-mode

QEMU

host kernel

process 1

Figure: QEMU user-mode



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

Overcoming QEMU user-mode limitations with PRoot

QEMU

host kernel

process 1

PRoot

. . .
QEMU

process N

Figure: PRoot + QEMU user-mode

Defining two requirements for PRoot
R2: New target processes are kept under QEMU.
R1: Target processes are confined within the target rootfs.



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

Overcoming QEMU user-mode limitations with PRoot

QEMU

host kernel

process 1

PRoot

. . .
QEMU

process N

Figure: PRoot + QEMU user-mode

Defining two requirements for PRoot
R2: New target processes are kept under QEMU.

R1: Target processes are confined within the target rootfs.



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

Overcoming QEMU user-mode limitations with PRoot

QEMU

host kernel

process 1

PRoot

. . .
QEMU

process N

Figure: PRoot + QEMU user-mode

Defining two requirements for PRoot
R2: New target processes are kept under QEMU.
R1: Target processes are confined within the target rootfs.



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

The ptrace system call

ptrace

ptrace makes it possible for a process to control other pro-
cesses. It has several applications:
debuggers: GDB, Strace, Ltrace, . . .
kernel features: User-Mode Linux, Goanna FS, PRoot, . . .



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

QEMU user-mode control flow

QEMU:

host kernel: kernel operation

host syscall

time

target syscall (emulated program)

Figure: QEMU user-mode control flow



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

PRoot + QEMU user-mode control flow

QEMU:

PRoot:

host kernel:

translation

kernel operation

host syscall

time

target syscall (emulated program)

Figure: PRoot + QEMU user-mode control flow

open "/lib/ld-linux.so.2"
-> open "${target_rootfs}/lib/ld-2.7.so"

exec "/bin/ls"
-> exec "qemu-arm", "/bin/ls"



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

PRoot + QEMU user-mode control flow

QEMU:

PRoot:

host kernel:

translation

kernel operation

host syscall

time

target syscall (emulated program)

Figure: PRoot + QEMU user-mode control flow

open "/lib/ld-linux.so.2"
-> open "${target_rootfs}/lib/ld-2.7.so"

exec "/bin/ls"
-> exec "qemu-arm", "/bin/ls"



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

PRoot + QEMU user-mode control flow

QEMU:

PRoot:

host kernel:

translation

kernel operation

host syscall

time

target syscall (emulated program)

Figure: PRoot + QEMU user-mode control flow

open "/lib/ld-linux.so.2"
-> open "${target_rootfs}/lib/ld-2.7.so"

exec "/bin/ls"
-> exec "qemu-arm", "/bin/ls"



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

PRoot + QEMU user-mode vs QEMU system-mode

Table: PRoot + QEMU user-mode vs QEMU system-mode speed-up

Build step Perl v5.10.0 Coreutils v6.12
archive extraction 3.6× faster 2.7× faster
configuration 2.0× faster 4.0× faster
build 2.9× faster 3.5× faster
validation 4.1× faster 3.6× faster

Annex A



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

Typical example

You just have to specify the QEMU and the target rootfs:

$ proot -Q qemu-arm ./armedslack-12.2

From that point every process is QEMUlated:

$ file ‘which file‘
/usr/bin/file: ELF 32-bit LSB executable, ARM [...]

The build and validation of a target package is straight forward,
no need for cross-compilation support:

$ tar -xf perl-5.10.0.tar.gz; cd perl-5.10.0
$ ./Configure -de
$ make -j 4
$ make -j 4 test



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

Typical example

You just have to specify the QEMU and the target rootfs:

$ proot -Q qemu-arm ./armedslack-12.2

From that point every process is QEMUlated:

$ file ‘which file‘
/usr/bin/file: ELF 32-bit LSB executable, ARM [...]

The build and validation of a target package is straight forward,
no need for cross-compilation support:

$ tar -xf perl-5.10.0.tar.gz; cd perl-5.10.0
$ ./Configure -de
$ make -j 4
$ make -j 4 test



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

Typical example

You just have to specify the QEMU and the target rootfs:

$ proot -Q qemu-arm ./armedslack-12.2

From that point every process is QEMUlated:

$ file ‘which file‘
/usr/bin/file: ELF 32-bit LSB executable, ARM [...]

The build and validation of a target package is straight forward,
no need for cross-compilation support:

$ tar -xf perl-5.10.0.tar.gz; cd perl-5.10.0
$ ./Configure -de
$ make -j 4
$ make -j 4 test



Enhancing QEMU in user-mode PRoot: Execution control and Pseudo-Root FS in user-mode Conclusion

Conclusion

PRoot + QEMU user-mode: an extended user-mode;
no setup, no configuration, no administrative privilege;
and compatible with any version of QEMU.

PRoot soon to be published
GPL v2+ license
http://proot.me

Any feedback and suggestion welcomed! Thanks!

http://proot.me


Annex A: Comparison with other tools

Back

Table: Testing SB2+QEMU user-mode vs PRoot+QEMU user-mode

Package SB2 v2.2 PRoot v0.5 system-mode
Perl v5.10.0 99.6% 99.6% 99.8%
GNU Coreutils v6.12 94.9% 97.3% 96.7%

We tested many tools, but only two survive the tests above.
We did not consider solutions with administrative privilege.
Both PRoot and SB2 have robust path canonicalization al-
gorithms.
PRoot and SB2 differ in many aspects (design, usage, . . . ).


	Enhancing QEMU in user-mode
	PRoot: Execution control and Pseudo-Root FS in user-mode
	Conclusion
	Appendix

