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Description

A QEMU Solution for Software Development
QEMU is the right solution for emulating embedded platforms.

Runs fast,
Supports several targets: ARM, ST40 (a.k.a. SH4), . . .

QEMU user-mode
executes one target Linux application on a host Linux system.

PRoot
controls the execution of Linux processes.

Both combined
a lightweight emulation environment for Linux applications.
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QEMUlating complex embedded Linux applications

A wide range of use cases
At STMicroelectronics, we use PRoot+QEMU user-mode to:

build Linux packages for an embedded target;
run test-suites and validations;
and develop Rich Internet Applications (WebKit,
FlashPlayer’s VM).
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QEMU system-mode vs user-mode
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Overcoming QEMU user-mode limitations with PRoot

QEMU

host kernel
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Figure: PRoot + QEMU user-mode

Defining two requirements for PRoot
R2: New target processes are kept under QEMU.
R1: Target processes are confined within the target rootfs.
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The ptrace system call

ptrace

ptrace makes it possible for a process to control other pro-
cesses. It has several applications:
debuggers: GDB, Strace, Ltrace, . . .
kernel features: User-Mode Linux, Goanna FS, PRoot, . . .
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QEMU user-mode control flow

QEMU:

host kernel: kernel operation

host syscall

time

target syscall (emulated program)

Figure: QEMU user-mode control flow
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PRoot + QEMU user-mode control flow

QEMU:
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host kernel:

translation
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Figure: PRoot + QEMU user-mode control flow

open "/lib/ld-linux.so.2"
-> open "${target_rootfs}/lib/ld-2.7.so"

exec "/bin/ls"
-> exec "qemu-arm", "/bin/ls"
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PRoot + QEMU user-mode vs QEMU system-mode

Table: PRoot + QEMU user-mode vs QEMU system-mode speed-up

Build step Perl v5.10.0 Coreutils v6.12
archive extraction 3.6× faster 2.7× faster
configuration 2.0× faster 4.0× faster
build 2.9× faster 3.5× faster
validation 4.1× faster 3.6× faster

Annex A
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Typical example

You just have to specify the QEMU and the target rootfs:

$ proot -Q qemu-arm ./armedslack-12.2

From that point every process is QEMUlated:

$ file ‘which file‘
/usr/bin/file: ELF 32-bit LSB executable, ARM [...]

The build and validation of a target package is straight forward,
no need for cross-compilation support:

$ tar -xf perl-5.10.0.tar.gz; cd perl-5.10.0
$ ./Configure -de
$ make -j 4
$ make -j 4 test
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Conclusion

PRoot + QEMU user-mode: an extended user-mode;
no setup, no configuration, no administrative privilege;
and compatible with any version of QEMU.

PRoot soon to be published
GPL v2+ license
http://proot.me

Any feedback and suggestion welcomed! Thanks!

http://proot.me


Annex A: Comparison with other tools

Back

Table: Testing SB2+QEMU user-mode vs PRoot+QEMU user-mode

Package SB2 v2.2 PRoot v0.5 system-mode
Perl v5.10.0 99.6% 99.6% 99.8%
GNU Coreutils v6.12 94.9% 97.3% 96.7%

We tested many tools, but only two survive the tests above.
We did not consider solutions with administrative privilege.
Both PRoot and SB2 have robust path canonicalization al-
gorithms.
PRoot and SB2 differ in many aspects (design, usage, . . . ).
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