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Estimating Bohm’s quantum force using Bayesian statistics
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In this paper we develop an approximate methodolo´gy for estimating the multidimensional quantum
density associated with a statistical bundle of de Broglie–Bohm trajectories. The quantum density
is constructed as a discrete sum of nonequivalent Gaussian components. We incorporate the ideas of
Bayesian statistical analysis and an expectation-maximization procedure to compute an approximate
quantum force that drives the statistical ensemble quantum trajectories. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1604772#
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I. INTRODUCTION

The fundamental objective in statistical analysis perta
to the development of probabilistic models that can expl
and predict the observations of interesting physical p
cesses. The capacity to estimate the effectiveness of a s
tical model goes hand in hand with the ability to improve
explanatory and predictive powers. Problems related to
idea are encountered throughout the biological, physical,
social sciences. In some cases, it is possible to constru
model that incorporates prior knowledge and experience
terms of a few~or more often many!! adjustable parameters
The primary goal is then to find a particular set of parame
that best explains the observed data and can predict the l
outcome of new observations. The mathematical formal
which quantifies these notions is provided within the Ba
sian construction of statistical analysis.1 In the Bayesian ap-
proach, probabilities are treated subjectively as a degre
belief rather than a frequency of observation. Though t
distinction is somewhat controversial, Bayesian statistics
crucially important to probabilistic learning,2 decision mak-
ing theory, and statistical inference problems. In the quan
physics literature, Bayesian probabilities have recently b
addressed in connection with a diverse range of proble
including many-body potential energy surfaces,3,4 the control
of open quantum systems,5 quantum tomography,6 measure-
ment theory in quantum logic devices,7–10 and quantum
Monte Carlo simulations.11,12

In the present paper we develop an approximate m
odology for estimating the multidimensional quantum dis
bution function associated with a statistical ensemble of
Broglie–Bohm space-time trajectories. The scheme that
propose is built upon a parametrized Gaussian model for
quantum density. We explore the advantages and limitat
of this model and outline an iterative procedure based u
Bayesian probability theory for finding a set of Gauss
parameters that mimics the true density function. This fit
density is then used to compute an approximate quan
force, that drives the ensemble of trajectories. We show h
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this approach can be used to determine the ground-state
sity and energy of a multidimensional quantum-mechan
system.

The organization for the rest of this paper is as follow
In Sec. II we discuss quantum-mechanical paths and bri
review the key features of the de Broglie–Bohm interpre
tion of quantum mechanics. Section III introduces the m
ture model13,14 approximation and expectation-maximizatio
algorithm15 that are used to estimate the quantum density
Sec. IV we present some benchmark calculations, which
representative of our methodology. Finally, Sec. V co
cludes.

II. THEORETICAL BACKGROUND

A. Classical versus quantum paths

According to Newton’s second law, the physical motio
of a particle is characterized by a space-time pathr (t) that
satisfies the equations of motion

ṙ ~ t !5p~ t !/m, ~1!

ṗ~ t !52¹V@r ~ t !#, ~2!

wherem is the mass of the particle and2¹V(r ) is the force
associated with an externally applied potential energy fie
In principle, the positionr and momentump of a classical
particle can be determined with arbitrary precision, and i
well known that exactly specifying the initial conditionsr0

5r (0) and p05p(0) will completely determine the parti
cle’s trajectory for all time.

In quantum mechanics, however, the situation is qu
different. The precision with whichr andp can be simulta-
neously known is limited by Heisenberg’s uncertainty pr
ciple: DrDp>\/2. The dynamical properties of a particle a
embodied in a complex wave functionc(r ,t) that satisfies
the time-dependent Schro¨dinger equation

i\] tc~r ,t !52
\2

2m
¹2c~r ,t !1V~r !c~r ,t !. ~3!

Traditionally, the wave function is interpreted as a tim
dependent amplitude associated with the instantaneous p
ability of finding the particle in an infinitesimal volume o

h-
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spaced3r about the pointr . From this point of view, indi-
vidual physical particles are treated as statistical objects,
the notion that particles follow definite paths in space-time
apparently a meaningless concept in quantum mechanic

One way to rationalize this disparity among the classi
and quantum theories is due to the Feynman path inte
approach to quantum mechanics.16 According to Feynman’s
analysis, a pathr (t) connecting two points in space-time
associated with a complex phase factorf5exp(iScl /\) deter-
mined by the classical action

Scl@r ~ t !#5E
0

t

ds
1

2
mṙ22V~r ! ~4!

along the path. The probability amplitude with which a p
ticle makes a transition from an initial point (r0,0) to some
final point (r t ,t) is expressed as the sum of phase fact
over all possible paths connecting the two points. Fo
quantum-mechanical particle, no particular path is preferr
therefore we must consider an infinite number of paths
order to compute the transition probability. For macrosco
objects, however, the classical action is much larger tha\,
implying that the net contribution of phase in the transiti
amplitude is due to the path that minimizes the class
action. Hence the most probable path for a macroscopic
ject will be a trajectory that also satisfies the classical eq
tions of motion. Feynman’s treatment is particularly enlig
ening because it allows us to discuss both classical
quantum-mechanical phenomena on an equal footing, tha
in terms of an ensemble of all possible paths that effectiv
reduces to the classical trajectory in the limit that\ is small.

B. de Broglie–Bohm interpretation

Another formulation of quantum mechanics in terms o
ensemble of paths is due to the work of de Broglie17–19 and
Bohm.20–23 In the de Broglie–Bohm interpretation of qua
tum mechanics one assumes that a quantum-mechanica
tem is physically composed of two parts: a waveanda point
particle. Mathematically, the wave is represented by a w
function c(r ,t) that satisfies Eq.~3! and is associated with
the probability densityr(r ,t)5uc(r ,t)u2 for finding the par-
ticle when its exact position is unknown. Regardless
whether or not it can be observed, the particle always follo
a precisely defined trajectory. The wave function plays a
rect physical role in this by influencing the particle’s traje
tory through the introduction of a nonlocal ‘‘quantum pote
tial’’ that gives rise to all nonclassical behavior includin
zero-point energy, tunneling, and self-interference effects

To see this influence, we begin by writing the wave fun
tion in complex polar form

c~r ,t !5r~r ,t !1/2exp@ iS~r ,t !/\#, ~5!

where the densityr(r ,t) and phaseS(r ,t) ~quantum action!
are real functions dependent upon space and time. The
ticle is assumed to follow a definite trajectoryr (t) along
which its velocity

ṙ5v„r ~ t !,t…5¹S„r ~ t !,t…/m ~6!
Downloaded 13 Oct 2005 to 200.0.233.52. Redistribution subject to AIP
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is determined by the phase amplitude of the wave functi
For notational convenience we will drop the explicit depe
dence onr and t. Substituting Eqs.~5! and ~6! into Schröd-
inger’s equation and equating the real and imaginary com
nents, yields a pair of coupled partial differential equation

] tr52¹•~rv!, ~7!

] tS52~Q1V!2 1
2 mv2, ~8!

which are easily identified as the continuity equation an
generalized Hamilton–Jacobi equation, respectively. T
quantum potential termQ5Q(r ,t), given by

Q52
\2

4m F¹2r

r
2

1

2 S ¹r

r D 2G , ~9!

distinguishes Eq.~8! from a purely classical equation an
encapsulates the nonlocal influence ofc on the trajectory of
the particle. The quantum potential is often interpreted as
internal energy or ‘‘shape’’ energy associated with the cur
ture of the quantum density. We can explicitly includeQ into
the equations of motion for the particle by introducing
material time derivative

dt f 5] t f 1v•¹ f ~10!

such that the field equations of motion forr andS are given
by

dtr52r¹•v, ~11!

dtS5 1
12 mv22~Q1V!, ~12!

where the notationdt signifies the time rate of change in th
inertial reference frame of a particle moving along the t
jectory r (t) with velocity v„r (t),t…. It is evident from the
right-hand side of Eq.~12! that dtS represents a generalize
LagrangianL„r (t),t… for the quantum-mechanical system
Taking ¹L, we have the relations

v̇52¹~Q1V!/m, ~13!

ṙ5v5¹S/m, ~14!

which appear to be a quantum-mechanical analogue of N
ton’s equations that bears a quantum force termFQ52¹Q
supplementing the classical force. We make a special n
here to emphasize that the fieldsr, S, v, and all their deriva-
tives in Eqs.~11!–~14! are implicitly evaluated along the
path r5r (t), and this path is the trajectory of a physical
real point particle, at least within the de Broglie–Bohm pa
digm.

C. Quantum hydrodynamic trajectories

It is fairly obvious from Eqs.~11!–~14! that if the wave
function for a system were known, one would simply need
choose an initial position vectorr ~0! to completely specify
the state of the system for all time. While this feature of t
de Broglie–Bohm program is indeed a useful interpret
tool, we are still faced with the often formidable task
solving the time-dependent Schro¨dinger equation.

To remedy this situation, we begin by formally introdu
ing an ensemble of quantum trajectories
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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R~ t !5$r1~ t !,...,rn~ t !%, ~15!

which are distinguished from one another by their initial p
sitions at timet50. Just as one can construct a concept
ensemble of fictitious fluid particles to represent a class
fluid, we have established an analogous ensemble of p
ability fluid elements to sustain the quantum density, pha
and velocity field. The theoretical groundwork for the evo
tion of these ‘‘particles’’ has already been laid out. One n
table exception is that Eqs.~11! and ~12! are now to be
defined over a whole ensemble of quantum trajectories
simultaneously satisfy the set of differential equations giv
by

v̇i5¹L„r i~ t !,t…, ~16!

ṙ i5vi . ~17!

Given an initial wave functionc„r i(0),0… defined over
the ensemble of pointsR~0!, we can simultaneously solv
Eqs.~11! and~12! to reconstruct the wave function at a lat
time t according to the relation

c„r i~ t !,t…5c„r i~0!,0…expS 2
1

2 E0

t

¹•v„r i~s!,s…dsD
3expS i

\ E
0

t

L„r i~s!,s…dsD , ~18!

where the wave function is represented point-wise along
ensemble of pathsR(t). We emphasize that there is no a
proximation in Eq.~18!, and it is a formal solution to the
Schrödinger equation evaluated explicitly over a set of h
drodynamiclike quantum trajectories.

A few comments on the behavior of quantum trajector
are in order. First, the single-valuedness ofc(r ,t) requires
that quantum trajectories must not intersect one anothe
two trajectories were to cross, it would imply that the wa
function has two distinct values of phase at the same poin
space-time. Similarly, trajectories are not allowed to cr
through nodal regions of the wave function where the ph
is discontinuous and the probability of finding a particle
zero. This restriction is strictly upheld by the influence of t
quantum force, which is very intense around nodal surfa
Moreover, if the ensemble of trajectories are initially distri
uted according to the probability densityr~r ,0!, then the en-
semble will be representative ofr(r ,t) for all time. This is
simply a consequence of the statistical assumption onc(r ,t)
and is consistent with the continuity of quantum probabil
density. Finally, in the limit that\→0, the ensemble equa
tions of motion decouple, and the trajectories will evol
independently of one another according to Newton’s eq
tions.

In essence, the de Broglie–Bohm picture depicts
quantum-mechanical system in terms of an ensemble of
related particle trajectories. Though the true particle follo
a unique trajectory, it is inextricably coupled to an ensem
of alternate paths by the influence of the wave function a
ing through a quantum force.
Downloaded 13 Oct 2005 to 200.0.233.52. Redistribution subject to AIP
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D. Computational considerations

Numerical solutions of the time-dependent Schro¨dinger
equation are traditionally obtained by calculating the sho
time quantum propagator using fast Fourier transforms,24 fi-
nite basis sets, or discrete variable representations.25 Typi-
cally, the computational over-head associated with th
techniques scales exponentially with the dimensionality
the physical problem. Trajectory-based methodologies,
the other hand, offer tremendous numerical scaling adv
tages, especially for high dimensional systems wh
traditional techniques are not feasible. In particular,
de Broglie–Bohm interpretation of quantum mechan
has inspired a growing number of theoretical and compu
tional studies involving a wide range of problems such
reactive scattering dynamics,26,27 tunneling systems,28–31

mixed quantum/classical simulations,32–35 electronic trans-
itions,36–38photodissociation,39–42mixed quantum states,43,44

and quantum dissipation.45–47

The quantum trajectory method~QTM!, developed by
Wyatt and co-workers,26,28 incorporates the ideas of compu
tational fluid dynamics to solve the hydrodynamic field equ
tions over a discrete ensemble of quantum fluid eleme
Using finite element methods, the fluid particles are arran
into small neighborhoods over which a moving weight
least squares~MWLS! fitting procedure48 is used to locally
expand the hydrodynamic fieldsr ~more typically logr!, S,
andv in a simple polynomial basis. Once the fields and th
derivatives are known, the integrals in Eq.~18! along with
solutions to Eqs.~16! and ~17! are evaluated over a sho
time step. While this strategy scales almost linearly with
number of trajectories, its versatility in practice is hinder
by the fact that the ensemble of particles generally tend
become extremely disorganized for anharmonic syste
making it difficult, if not impossible, to fit the quantum hy
drodynamic fields. This becomes especially apparent aro
the nodes of the wave function, where the fitting errors w
often times cause the quantum trajectories to cross one
other leading to spurious numerical results. Ve
recently,49,50new methods in adaptive grids have been dev
oped to formulate a reconstruction of the wave function o
an ensemble of generalized hydrodynamic trajectories
avoids the problem with quantum nodes and provides a m
more stable framework for solving the hydrodynamic equ
tions of motion.

Another application of the de Broglie–Bohm theory i
cludes the development of semiclassical approximation s
egies for including quantum effects into otherwise classi
calculations. Garashchuk and Rassolov51,52 have recently
presented a semiclassical methodology based upon
Broglie–Bohm trajectories that is formally insensitive to tr
jectory crossings and also avoids explicitly solving the co
tinuity equation. In this approximate methodology, the qua
tum density is convoluted with a minimum uncertain
Gaussian wave packet and expanded in a linear combina
of Gaussian functions

r~x!' f ~x!5(
n

cn
2 exp@2an

2~x2Xn!#. ~19!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The Gaussian parameterss5$cn ,Xn ,an% in Eq. ~19! are de-
termined by minimizing the functional

F5E @r~x!2 f ~x!#2dx ~20!

using an iterative procedure which explicitly involves so
ing the set of equations]F/]sk50. The parametrized densit
leads to an approximate quantum potential~AQP! that is
used to propagate an ensemble of trajectories. Garash
and Rassolov have presented results for Eckart barrier
neling that improve upon the Herman–Kluck semiclassi
initial value representation~IVR! method53 and are shown to
agree quite well with exact quantum-mechanical results
similar idea has also been explored by Donoso a
Martens54–56 for propagating a correlated ensemble of qua
tum trajectories in phase space. Following Wigne
analysis,57 quantum effects are introduced into the equatio
of motion by including a series of nonclassical force term

q̇5p/m, ~21!

ṗ52V8~q!1 (
k51

` S \

2i D
2k ]q

2k11V~q!

~2k11!!

]p
2kr~q,p!

r~q,p!
, ~22!

that give the quantum corrections to Hamilton’s equations
increasing powers of\. These terms involve higher-orde
spatial and momentum derivatives of the potential ene
and probability distribution function, respectively. For sy
tems where the potential surface has a finite number of n
zero derivatives the series in Eq.~22! truncates. Donoso an
Martens have introduced a Gaussian ansatz to describe
instantaneous local structure ofr(q,p) about a trajectory.
The phase space ‘‘quantum force’’ is evaluated in terms
Gaussian parameters which are computed by taking l
moments of dynamical variables over the phase space
semble. In the following section we present an appro
based upon Bayesian statistical analysis for simulating
dynamics of a quantum-mechanical system by propaga
an ensemble of trajectories with nonclassical forces.

III. DENSITY ESTIMATION

A. Mixture model

Suppose that R5$r1 ,...,rN% is an ensemble o
de Broglie–Bohm fluid elements that statistically represe
a multidimensional quantum probability density. Such a d
tribution of data points can be generated from a Metrop
sampling procedure or perhaps from the output of a quan
Monte Carlo simulation.58,59 In order to propagate these pa
ticles in time we must evaluater and its derivatives for every
member in the ensemble. Instead of solving the hydro
namic field equations explicitly, we intend to extract th
information directly from the ensemble of trajectories.

We assume that the quantum density can be represe
by a mixture model13,14 determined by summing a finit
numberM of Gaussian components or ‘‘clusters.’’ The mi
ture model decomposition is expressed as a sum of j
probabilities
Downloaded 13 Oct 2005 to 200.0.233.52. Redistribution subject to AIP
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r~r !5(
m

M

p~r ,cm!, ~23!

where p(r ,cm) is the probability that a randomly chose
member ofR has the configurationr and is a variant of the
mth Gaussian cluster designated bycm . Each Gaussian clus
ter is parametrized by a weightp(cm), a mean position vec-
tor mm , and a vector of variancessm

2 . We can also replace
the variance vector with a full covariance matrixCm if nec-
essary.

By definition,60 each joint probability in Eq.~23! is re-
lated to a pair of conditional probabilities according to t
relation

p~r ,cm!5p~cm!p~r ucm!5r~r !p~cmur !, ~24!

where the forward conditional probabilityp(r ucm) refers to
the probability that a randomly chosen variant ofcm has the
configuration r . Conversely, the posterior probabilit
p(cmur ) refers to the probability that the configuration poi
r is a variant of the clustercm . In probability theory the
factorsr~r ! and p(cm) are marginal probabilities; howeve
we shall simply refer to them as the quantum density a
weight of themth Gaussian cluster, respectively. The expa
sion weights are strictly positive semidefinite and sum
unity. Substituting the first equality of Eq.~24! into Eq. ~23!
we have

r~r !5(
m

M

p~cm!p~r ucm!, ~25!

where we can specify the form ofp(r ucm) to reflect our
belief that r~r ! is a mixture of Gaussian components. W
explore this approximation with two different Gaussian clu
ter models.

The first model assumes that each cluster is comple
separable and takes the form of a product over
Nd-dimensional configuration space,

p~r ucm!5)
d

Nd A 1

2psm,d
2

e2~rd2mm,d!2/~2sm,d
2

!. ~26!

The second model explicitly takes into account nonsepara
correlations in configuration space and incorporates the
covariance matrix,

p~r ucm!5A iCm
21i

~2p!Nd
e2~r2mm!T

•Cm
21

•~r2mm!/2. ~27!

In comparison with the separable case, the fully covari
model can represent more complicated density structu
with fewer clusters; however, this is at the cost of grea
computational expense. For low dimensional systems i
advantageous to use the fully covariant model, but in h
dimensions it is much more efficient to use a larger num
of separable clusters. The principle at work here is relate
the idea of collective correspondence discussed by Hell61

regarding the cooperative effort of overlapping Gauss
wave packets to describe position-momentum correlation
phase space. It is also feasible to construct a mixture mo
that incorporates any combination of covariant and separ
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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degrees of freedom especially if there is reason to do
based on the symmetry of the physical problem.

B. Expectation maximization

Now that we have established a model to work with, t
trick is to determine the Gaussian parametersp(cm), mm ,
and Cm ~or sm). The mean position vector and covarian
matrix of the clusters are defined by the moments of
forward conditional probabilities

mm5E rp~r ucm!dr , ~28!

Cm5E ~r2mm!T~r2mm!p~r ucm!dr . ~29!

For the separable case, the variances are given by the
onal elementssm,i

2 5(Cm) i i . Rearranging Eq.~24! and sub-
stituting into Eqs.~28! and ~29!, we can write these param
eters as

mm5E r
r~r !p~cmur !

p~cm!
dr , ~30!

Cm5E ~r2mm!T~r2mm!
r~r !p~cmur !

p~cm!
dr , ~31!

which are easily approximated by a pair of Monte Ca
sums over the ensemble of de Broglie–Bohm particles,

mm'
1

Np~cm! (n

N

rnp~cmurn!, ~32!

Cm'
1

Np~cm! (n

N

~rn2mm!T~rn2mm!p~cmurn!. ~33!

A similar expression for the expansion weights in terms o
sum overR is given by

p~cm!'
1

N (
n

N

p~cmurn!. ~34!

The posterior termsp(cmurn) for each data point in Eqs
~32!–~34! are evaluated directly from the forward probabi
ties according to Bayes’ formula,

p~cmurn!5
p~cm!p~rnucm!

(mp~cm!p~rnucm!
. ~35!

In some sense, the ensemble of particles can be vie
as a data set that catalogs the results of many succe
measurements on an ensemble of identically prepared q
tum systems. Each member of the ensemble wields an e
amount of information describing the underlying probabil
distribution. The key to understanding how this informati
is distributed among the Gaussian clusters is contai
within Bayes’ formula. From a Bayesian viewpoint the n
merator in Eq.~35! essentially reduces to a measure of h
well the clustercm describes the fluid element with configu
rationrn . The sum in the denominator is a measure how w
the particle atrn is described by all of the clusters. The rat
of the two quantities then determines the fraction of expla
Downloaded 13 Oct 2005 to 200.0.233.52. Redistribution subject to AIP
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tory information that the particle gives to themth cluster.
Hence the cluster which best describesrn will have the larg-
est posterior probability for that point.

The circular structure in Eqs.~23!–~35! provides the
framework for an iterative procedure known as t
expectation-maximization~EM! algorithm13–15 that seeks to
find a set of parameters that gives the best estimate for
density of R. Computing the forward and posterior prob
abilities determines how well an arbitrarily parametriz
mixture model isexpectedto represent the ensemble. Eval
ating the sums in Eqs.~32!–~34! gives rise to a new set o
parameters that is said tomaximizethe log-likelihood,

L5 ln )
n

r~rn! ~36!

of the distribution. A likelihood is a probability measure r
ferring to the outcome of an event that is already known
have occurred. The log likelihood of the distribution is
measure of how well the overall density model describes
whole collection of data points. The EM algorithm work
very much like the variational principle, in that there is
likelihood equation defined over parameter space,

¹cm
L50, ~37!

such thatL is a maximum for models that are effective
describing the ensemble’s distribution. Furthermore, it can
shown that the update rules in Eqs.~32!–~34! move the clus-
ters through parameter space in the direction along¹cm

L,
that is, in the direction that improves the density estima
The cycle of estimating the expected distribution functi
and maximizing the log-likelihood is repeated iteratively u
til a satisfactory estimate of the density is achieved.

It is important to realize that finding the maximum like
lihood estimate of a distribution is not always a well-defin
problem. In fact, there are generally multiple roots to t
likelihood equation, and it is not necessarily guaranteed
there is a global maximum. While this is an important pro
lem, our main concern here is simply to find anacceptable
set of parameters that approximately represents the quan
density. However, one problem that we will need to addr
concerns the numberM of Gaussian clusters used in the de
sity estimate. For a Gaussian wave packet evolving in a p
bolic potential field the answer is simple, but in general
will never really know how many clusters to use. When
wave packet bifurcates at a potential barrier, it will ofte
develop complicated oscillations and nodal structures
are impossible to capture with Gaussians. Though there
statistical methods for ‘‘guessing’’ the number of comp
nents in a statistical data set, we do not incorporate th
here. Instead, we simply try to use a minimum number
Gaussian clusters that gives reasonable results.

The overall scheme of the mixture model approximati
and EM algorithm is as follows: First we generate the e
semble of probability fluid elements, usually a Gaussian d
sity packet, via some appropriate sampling technique.
EM algorithm is initialized by choosing a set of paramete
for a pre-set number of Gaussian clusters. Typically the
tial clusters are given a uniform weightp(cm)51/M . The
mean position vectors are randomly selected from the
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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main of the ensemble. The initial variances are chosen to
large enough to encompass the entire ensemble and the
terms (Cm) i , j are zero. We cycle through the expectatio
maximization routine until the parameters converge to
acceptable density estimate. Convergence can be evalu
in a number of ways by monitoring the cluster paramete
the conditional probabilities, the log-likelihood, or any com
bination thereof.

IV. COMPUTATIONAL RESULTS

A. Bivariate distribution with multiple nonseparable
Gaussian components

To illustrate some of the points in the previous sectio
we demonstrate the convergence of the EM algorithm us
a known probability distribution function. In Fig. 1 we hav
plotted the contours of a bivariate probability distributio
function r(x,y) consisting of four equally weighted non
separable Gaussian components. The solid lines reflec
half width contours of each component and their orientat
with respect to thex andy axes. The gray points correspon
to an ensembleR of 2000 variants ofr(x,y), which were
randomly generated using a Metropolis sampling algorith
Two of these data points, labeledr1 and r2 , have been
tagged for later discussion.

In Fig. 2 we show the evolution of 16 separable Gau
ian clusters over the course of the EM fitting algorithm. T
contour plots indicate the relative intensity of the fitted de
sity at various stages of the EM fit. The black dots and ov
correspond to themm’s and sm contours for the individual
Gaussian clusters. The initial random guess for the cluste
not illustrated. After one EM cycle, the clusters tend to a

FIG. 1. The contours reflect a multivariate probability distribution co
prised of four Gaussian components with nonzeroxy covariances. The solid
black lines represent the half widths of the Gaussian components. Th
semble of gray points are generated from the exact probability distribu
function via a Metropolis sampling procedure and are taken as the input
for the EM algorithm. The black squares labeledr 1 and r 2 are tagged data
points discussed later in Figs. 4 and 5.
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gregate near the mean ofR, and the estimated density doe
not reflect any details of the exact distribution. After abo
ten EM cycles, the clusters begin sorting out the structure
the density. By 100 EM cycles, the clusters have found
four Gaussian components of the distribution and are str
gling to recover the proper covariance in each compon
The separable clusters are hindered in this because they
no freedom to rotate in thexy plane and must work collec
tively to capture thexy correlations. At 400 cycles we ca
see that the separable clusters have performed fairly we
finding the positions and relative orientations of the dens
components; however, the estimated density is somew
distorted from the true distribution. The density estimate c
be improved by including more sampling points and mo
clusters, but this also increases the computational dema

Figure 3 illustrates the performance of the fully cova
ant model using four nonseparable clusters to describe
same data set. As expected, the fully covariant model p
forms much better than the separable case because the
probability distribution is rigorously a mixture of fou
equally weighted nonseparable Gaussian components. A
one EM cycle, the nonseparable clusters also collect nea
mean ofR; however, they immediately develop nonzero o
diagonal covariances. Between 10 and 20 EM cycles,
clusters locate the individual density components. By
cycles, the clusters have established have a stable config
tion, which very closely mimics the true probability distribu
tion.

Essentially, the EM algorithm performs a parallel sear
over the Gaussian parameter space and looks for reg
where the clusters will be most effective in describing t
data points. To help quantify the collective effort of the clu

n-
n
ta

FIG. 2. This figure illustrates the EM algorithm for the data pictured in F
1 using 16 separable Gaussian clusters. The contours reflect the app
mated probability density during the course of the EM fitting routine. T
black dots correspond to the average position of the Gaussian cluster
the solid black ellipses represents the Gaussian half width contours.
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ters, we examine the forward and posterior probabilities
the tagged data pointsr1 and r2 . First, notice in Fig. 2 that
there is never more than one or two Gaussian clusters
tered near the pointr1 . Figures 4~a! and 4~b!, respectively,
show how thep(r1ucm)’s andp(cmur1)’s evolve for the sepa-
rable cluster model. Both plots indicate that for the first
EM cycles there is really only one cluster which domina
the density estimate atr1 . The posteriors are particularl

FIG. 3. This figure illustrates the EM algorithm for the data pictured in F
1 using four nonseparable Gaussian clusters. Compared to the sep
case, the fully covariant model gives much more accurate results with
clusters and fewer EM cycles.

FIG. 4. Plot~a! shows 16 separable forward probabilities at the tagged d
point r1 as a function of EM cycles. Plot~b! shows the corresponding
posterior probabilities. Plots~c! and ~d!, respectively, depict the separab
forward and posterior probabilities at the data point atr2 .
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interesting because they reflect the fraction of explanat
power a data point gives to each of the cluster. The cu
crossing at roughly 105 EM cycles reflects that the origina
dominant cluster is eventually displaced by a different clus
that becomes nearly centered atr1 . The situation forr2 is
analogous to that forr1 but is complicated by the fact tha
there is greater overlap between multiple clusters. The
ward and posterior probabilities at the pointr2 are shown in
Figs. 4~c! and 4~d!, respectively. Ultimately one cluste
dominates the density estimate atr2 , however, this is to a
lesser extent than atr1 .

In Fig. 5 we plot the forward and posterior probabilitie
at r1 andr2 for the fully covariant model. It is clear that th
behavior of the nonseparable Gaussian clusters is consi
with the separable ones. The exception to this is that the f
covariant clusters converge to a stable configuration in fe
EM cycles. This point is highlighted by Fig. 6, where we pl
the log-likelihood L for several different density fits. The
separable cases are designated with asm , where the integer
m indicates how many Gaussians were used to perform
fit. Likewise,Cm refers to a fully covariant cluster fit withm
nonseparable Gaussian components. The plateaus in the
likelihood indicate that the EM algorithm is converging upo
a root of the likelihood equation. It is conceivable that t
EM algorithm could essentially become stuck at a lo
maximum or even a saddle point that does not give a p
ticularly good density estimate. For these situations it is n
essary to incorporate a small random perturbation in the c
ter parameters in order move the fit away from su
anomalous regions of parameter space. Another problem
that a cluster might become too focused on a single d
point. This is described as a root of the likelihood equat
lying on the exterior of parameter space. When this happ
the variance and weight of the cluster become exceedin

.
ble

ss

ta

FIG. 5. Plot~a! shows four nonseparable forward probabilities at the tagg
data pointr1 as a function of EM cycles. Plot~b! shows the corresponding
posterior probabilities. Plots~c! and ~d!, respectively, depict the four non
separable forward and posterior probabilities at the data point atr2 .
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small and in numerical applications will often round to ze
causing some terms in Eqs.~27! and ~26! and ~32! and ~33!
to diverge. This problem can be avoided in practice by a
ing a small fraction to the diagonal covariances in Eq.~33!.
This imposes an artificial boundary in parameter space
forces the Gaussian clusters away from the exterior root

B. Ground state of methyl iodide

Now that we have highlighted some key features of
mixture model approximation and EM algorithm, we tu
our attention to a problem with more physical merits.
order to propagate the quantum ensemble in time we m
compute both the classical and quantum forces acting on
ensemble particles. Given a maximum likelihood estim
for r in the form of Eqs.~26! or ~27!, it is a fairly straight-
forward exercise in bookkeeping to compute an approxim
quantum force,

FQ5
\

4m F¹3r

r
2

¹~¹r•¹r!

2r2
2S ¹2r

r
2

¹r•¹r

r2 D ¹r

r G
~38!

in terms of the Gaussian parameters. The quantum and
sical forces are then used to drive the ensemble of traje
ries by integrating Eqs.~16! and ~17! over a short time step
using a Verlet leapfrog-type method. The EM algorithm
repeated using the previously fit cluster parameters as
starting point. Recycling the old parameters significantly
creases the number of EM cycles required to obtain con
gence in the next density estimate. The whole proces
alternating between EM cycles and Verlet steps contin
until we have integrated the equations of motion to so
appropriate final time.

For a Gaussian density packet evolving on a parab
potential surface, the mixture model approximation requi

FIG. 6. Plot of the log-likelihood vs number of EM cycles for variou
density estimates of the data illustrated in Fig. 1. The notationsm andCm

refers to a density fit performed withm Gaussian clusters using the sep
rable and fully covariant model, respectively.
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only one cluster and is exact for all time. For nontrivial pro
lems, however, the quantum density will generally exhibi
very complicated structure in configuration space. Clea
the mixture model approximation will not be able to captu
the exact intricacies of a realistic quantum distribution. Co
sequently, it is not feasible, using the present formulation
our methodology, to obtain numerically accurate quant
densities for nonstationary systems. Ground-state quan
densities, on the other hand, are characteristically much s
pler than their excited-state and nonstationary counterpa
We believe our approach will be most useful for determini
the ground-state properties of high dimensional systems

For stationary systems the quantum force exactly co
terbalances the classical force, and the ensemble of quan
trajectories does not evolve in time. The ground state
then be realized from a nonstationary state by adding a s
damping term to Eq.~16!,

v̇5FQ2¹V/m2gv, ~39!

whereg represents a small dissipative coefficient. This fic
tious friction, in turn, causes the ensemble particles to los
small amount of kinetic energy at each time step in the sim
lation. For a classical ensemble, the distribution collapse
a delta function~s! centered about the minimum energ
point~s! of the potential surface. For the quantum-mechani
ensemble, however, as the distribution becomes increasi
narrow, the quantum force becomes very strong and requ
the ensemble to maintain some minimum finite width.
longer simulation times an equilibrium is reached, and
resulting distribution is representative of the ground-st
quantum density. The corresponding ground-state energy
be resolved to within the statistical error of a Monte Ca
integration over the ensemble elements.

To illustrate this, we demonstrate the convergence of
initial Gaussian ensemble to the ground-state distribution
the CH3– I stretching/bending modes of the lowest electro
state of methyl iodide. For our purposes this provides a n
trivial anharmonic potential surface to test our methodolo
The vibrational system is treated as a single particlem
520 000 amu) evolving on a two-dimensional~2D! model
potential-energy surface developed by Shapiro a
Bersohn.62 The potential-energy curves for this anharmon
surface are depicted in Fig. 7 by the gray contour lines.
Fig. 7~a! we illustrate a numerically exact representation
the ground-state density obtained by diagonalizing
Hamiltonian of the system using a 2D discrete variable r
resentation~DVR!. The grid points indicate the minimum
number of Chebychev quadrature points required to ob
convergence in the lowest energy eigenvalue. Obviousl
much larger grid would be necessary to perform a dynam
calculation on this system.

Figures 7~b! and 7~c! illustrate the estimated density fo
both the separable and fully covariant models, respectiv
The black ovals represent the half width contours of
Gaussian clusters. There are four clusters in separable
and two for the fully covariant model. The various conto
plots labeled~1!, ~2!, and~3! correspond to snapshots of th
estimated density at different points in the simulation. F
both models, the initial density~1! is Gaussian, and all bu
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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one of the clusters are redundant. As the ensemble is pr
gated the individual clusters behave differently from one
other. The contours~2! show the quantum density at an in
termediate time after roughly 10 000 Verlet time stepsdt
51 atomic time unit!. At longer times an equilibrium is
achieved and the contours~3! are representative of the qua
tum ground state. In Fig. 7~d! we plot the energy of the
system relative to the bottom of the potential well as a fu
tion of the number of Verlet time steps. The DVR energy
591 cm21 serves as a benchmark and is indicated by
dashed horizontal line. The dotted and solid energy cur
are for the separable and nonseparable models, respect
Dropping the first 20 000 time steps we find that the aver
energy for the separable case is 678.7628.1 cm21, which is
well above the DVR energy. The average energy for the n
separable model falls within reach of the DVR energy
600.6624.1 cm21. The sharp energy spikes for the nonsep
rable calculation are due to anomalous changes in the clu
parameters such as a sudden jump inmm or rotation ofCm .
These effects do not pose a significant problem since
clusters quickly respond to correct the abnormalities withi
few time steps. Filtering out these sporadic deviations
proves the accuracy of the ground-state energy estimate
significantly reduces the statistical variation 593.564.8
cm21. For the sake of comparison we have also perform
the same calculation for a mixture model with four ful
covariant clusters. The average energy for the equilibra
system improves slightly 592.663.4 cm21; however, this is

FIG. 7. Plots~a! and~b! show the relaxation of a Gaussian wave packet
an anharmonic potential well for both the separable and fully covar
models, respectively. The gray contours reflect the potential-energy cu
for a model of CH3I. The shaded contours indicate the shape of the appr
mated density after~1! 0, ~2! 10 000, and~3! 40 000 Verlet time steps
respectively. The solid curves represent the half width contours of
Gaussian clusters. Plot~c! shows the numerically accurate DVR groun
state and the associated grid of quadrature points. Plot~d! shows the energy
of the estimated density as a function of time steps. The dotted and
data correspond to the separable and nonseparable models, respec
while the dashed horizontal line represents the DVR energy.
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at the cost of greater computational effort and slower c
vergence.

V. CONCLUSIONS

In this paper we have explored a new strategy for de
mining the quantum density associated with a statistical
semble of de Broglie–Bohm space-time trajectories. O
methodology incorporates Bayesian probabilities and a m
ture model approximation to calculate a parametrized e
mate of Bohm’s quantum force. The expectatio
maximization procedure used to fit the density is n
sensitive to trajectory crossings because the error assoc
with an individual rogue trajectory is essentially washed o
by the statistical ensemble. Moreover, because the den
fitting is formulated in terms of simple sums over da
points, our method is easily extended to high dimensions
can be conveniently implemented on parallel computers.

Given a statistical ensemble of probability fluid el
ments, we can estimate the quantum force in terms of a s
Gaussian fitting parameters. Adding a small viscous drag
the equations of motion slowly removes excess kinetic
ergy from the system. After a sufficient equilibration time t
ensemble is representative of the ground-state distribu
and can be used to gather statistics on ground-state prope
such as the zero-point energy and other expectation val
The approach we have described in this paper should
suitable for simulating the ground-state distribution of hi
dimensional vibrational systems such as weakly bou
atomic and molecular van der Waals clusters. It may
worthwhile to investigate the use of Gaussian mixture m
els in connection with ‘‘smoothed’’ phase space distributio
such as the Husimi distribution. Since Husimi functions a
generally less complicated than the corresponding den
matrices and Wigner functions, the mixture model appro
mation is expected to provide a more accurate representa
of dynamical systems. Such a scheme could be used for
amining mixed states and quantum dissipation in ph
space. Another possibility is to employ higher-order clust
ing models that can account for more complicated functio
dependence such as nodal structures. This may be usefu
simulating vibrationally excited states, electronic densiti
or calculating dynamical correlation functions. These top
will be addressed in future studies.
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