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Estimating Bohm’s quantum force using Bayesian statistics
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In this paper we develop an approximate methogyplior estimating the multidimensional quantum
density associated with a statistical bundle of de Broglie—Bohm trajectories. The quantum density
is constructed as a discrete sum of nonequivalent Gaussian components. We incorporate the ideas of
Bayesian statistical analysis and an expectation-maximization procedure to compute an approximate
guantum force that drives the statistical ensemble quantum trajectorie200® American Institute

of Physics. [DOI: 10.1063/1.1604772

I. INTRODUCTION this approach can be used to determine the ground-state den-
sity and energy of a multidimensional quantum-mechanical

The fundamental objective in statistical analysis pertaingystem.

to the development of probabilistic models that can explain ~ The organization for the rest of this paper is as follows:

and predict the observations of interesting physical proin Sec. Il we discuss quantum-mechanical paths and briefly

cesses. The capacity to estimate the effectiveness of a statigview the key features of the de Broglie—Bohm interpreta-

tical model goes hand in hand with the ability to improve itstion of quantum mechanics. Section Il introduces the mix-

explanatory and predictive powers. Problems related to thiture modet>!*approximation and expectation-maximization

idea are encountered throughout the biological, physical, andlgorithm'® that are used to estimate the quantum density. In

social sciences. In some cases, it is possible to construct®ec. IV we present some benchmark calculations, which are

model that incorporates prior knowledge and experience imepresentative of our methodology. Finally, Sec. V con-

terms of a femor more often many!adjustable parameters. cludes.

The primary goal is then to find a particular set of parameters

that best explains the observed data and can predict the likely

out.come of new observatpns. The mgthema_\tlgal formallsn|1|_ THEORETICAL BACKGROUND

which quantifies these notions is provided within the Baye-

sian construction of statistical analysifn the Bayesian ap- A. Classical versus quantum paths

proach, probabilities are treated subjectively as a degree of According to Newton’s second law, the physical motion

belief rather than a frequency of observation. Though thigy 5 particle is characterized by a space-time pdth that
distinction is somewhat controversial, Bayesian statistics argajisfies the equations of motion

crucially important to probabilistic learnirfggecision mak- _
ing theory, and statistical inference problems. In the quantum () =p(t)/m, )
physics I|ter_ature, Bay_eS|an_probal:_)|I|t|es have recently been p()=—VV[r(t)], )
addressed in connection with a diverse range of problems
including many-body potential energy surfaééshe control ~ Wheremis the mass of the particle andVV(r) is the force
of open quantum systemigjuantum tomographymeasure- associated with an externally applied potential energy field.
ment theory in quantum logic devicés® and quantum [N principle, the positior and momentunp of a classical
Monte Carlo simulation&l12 particle can be determined with arbitrary precision, and it is
In the present paper we develop an approximate methvell known that exactly specifying the initial_ conditiomg _
odology for estimating the multidimensional quantum distri- ="(0) and po=p(0) will completely determine the parti-
bution function associated with a statistical ensemble of d&l€’s trajectory for all time. S _
Broglie—Bohm space-time trajectories. The scheme that we [N quantum mechanics, however, the situation is quite
propose is built upon a parametrized Gaussian model for th@ifferent. The precision with which andp can be simulta-
quantum density. We explore the advantages and limitation@&0usly known is limited by Heisenberg's uncertainty prin-
of this model and outline an iterative procedure based upofiPle: ArAp=#/2. The dynamical properties of a particle are
Bayesian probability theory for finding a set of GaussianemPodied in a complex wave functiaf(r,t) that satisfies
parameters that mimics the true density function. This fittedhe time-dependent Scldinger equation
density is then used to compute an approximate quantum 2

h
force, that drives the ensemble of trajectories. We show how  idy(r,t)=— ﬁVzt//(r,t)JrV(r)w(f,t)- ©)
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spaced®r about the point. From this point of view, indi- is determined by the phase amplitude of the wave function.
vidual physical particles are treated as statistical objects, anidor notational convenience we will drop the explicit depen-
the notion that particles follow definite paths in space-time isdence orr andt. Substituting Eqs(5) and (6) into Schra-
apparently a meaningless concept in quantum mechanics. inger's equation and equating the real and imaginary compo-
One way to rationalize this disparity among the classicanents, yields a pair of coupled partial differential equations

and quantum theories is due to the Feynman path integral dp=—V-(pv) @)
approach to quantum mechani€sAccording to Feynman'’s ! '
analysis, a path(t) connecting two points in space-time is 3S=—(Q+V)— tmv?, (8

associated with a complex phase faater exp(S, /%) deter-

mined by the classical action which are easily identified as the continuity equation and a

generalized Hamilton—Jacobi equation, respectively. The

to1 . quantum potential terr®@=Q(r,t), given by
SC,[r(t)]zf dszmrz—V(r) (4) ., )
0 0= he|{Vep 1(Vp } ©
along the path. The probability amplitude with which a par- am| p 2\ p | |

ticle makes a transition from an initial point0) to some distinguishes Eq(8) from a purely classical equation and
final point (r,t) is expressed as the sum of phase factorgncapsulates the nonlocal influenceyobn the trajectory of
over all possible paths connecting the two points. For gnhe particle. The quantum potential is often interpreted as an
quantum-mechanical particle, no particular path is preferredyternal energy or “shape” energy associated with the curva-
therefore we must consider an infinite number of paths i re of the guantum density. We can explicitly inclu@énto

order to compute the transition probability. For macroscopigne equations of motion for the particle by introducing a
objects, however, the classical action is much larger han material time derivative

implying that the net contribution of phase in the transition
amplitude is due to the path that minimizes the classical dif=af+v-Vf (10)
action. Hence the most probable path for a macroscopic obsych that the field equations of motion feand S are given
ject will be a trajectory that also satisfies the classical equapy
tions of motion. Feynman’s treatment is particularly enlight-
ening because it allows us to discuss both classical and
guantum-mechanical phenomena on an equal footing, that is,
in terms of an ensemble of all possible paths that effectively
reduces to the classical trajectory in the limit thas small.  where the notation; signifies the time rate of change in the
inertial reference frame of a particle moving along the tra-
jectory r(t) with velocity v(r(t),t). It is evident from the
right-hand side of Eq(12) thatd,S represents a generalized
Lagrangian£(r(t),t) for the quantum-mechanical system.
Another formulation of quantum mechanicsoilg téegrms of aTaking V£, we have the relations
ensemble of paths is due to the work of de Brogdlie’ and :
Bohm2°-2n the de Broglie—Bohm interpretation of quan-  ° —VQ+V)/m, (13
tum mechanics one assumes that a quantum-mechanical sys- r=v=VS/m, (14)
tem is physically composed of two parts: a warel a point

particle. Mathematically, the wave is represented by a WavgvhICh appear to be a quantum-mechanical analogue of New-

function (r,t) that satisfies Eq(3) and is associated with ton's equatipns that bears a quantum force teig _V.Q
the probability density(r,t)=|¢(r,t)|2 for finding the par- supplementing the classical force. We make a special note

ticle when its exact position is unknown. Regardless 01here to emphasize that the fieldsS v, and all their deriva-

whether or not it can be observed, the particle always 1‘0II0W§'Ves n Eqs.(ll)—(l_4) are _|mpI|C|tIy _evaluated along_ the
a precisely defined trajectory. The wave function plays a dipathrz_r(t), a_lnd this path IS t_he trajectory qf a physically
rect physical role in this by influencing the particle’s trajec- rgal point particle, at least within the de Broglie—Bohm para-
tory through the introduction of a nonlocal “quantum poten—d'gm'
tial” that gives rise to all nonclassical behavior including
zero-point energy, tunneling, and self-interference effects. C. Quantum hydrodynamic trajectories

To see this influence, we begin by writing the wave func-

dip=—pV-v, (11

dS= Smv?2—(Q+V), (12)

B. de Broglie—Bohm interpretation

tion in complex polar form It is fairly obvious from Eqs(11)—(14) that if the wave
1o _ function for a system were known, one would simply need to
P(r,t)=p(r,t)"“exdiS(r,t)/A], (5 choose an initial position vectar0) to completely specify

where the density(r,t) and phase(r,t) (quantum action the state of the system for all time. While this feature of the

are real functions dependent upon space and time. The paf€ IBroghe—Bohlll”nf programhshmdef?d af use.;ulbunterprketlvfe
ticle is assumed to follow a definite trajectoryt) along ©0h We are still faced with the often formidable task o

which its velocity solving the time-dependent Schiinger equation.
To remedy this situation, we begin by formally introduc-
r=v(r(t),t)=VS(r(t),t)/m (6) ing an ensemble of quantum trajectories
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R ={ry(1),...ra(t)}, (15) D. Computational considerations

, o o Numerical solutions of the time-dependent Sclinger
which are distinguished from one another by their initial po-gqation are traditionally obtained by calculating the short-
sitions at timet=0. Just as one can construct a conceptualj e quantum propagator using fast Fourier transfofhs,
ensemble of fictitious fluid particles to represent a classicaljie pasis sets, or discrete variable representafionypi-
fluid, we have established an analogous ensemble of probey  the computational over-head associated with these
ability fluid elements to sustain the quantum density, phasggchniques scales exponentially with the dimensionality of
a_md velocity field. The theoretical groundwork for the evolu-hq physical problem. Trajectory-based methodologies, on
tion of these “particles” has already been laid out. One No-he ther hand, offer tremendous numerical scaling advan-
table exception is that Eq$ll) and (12) are now to be aqes  especially for high dimensional systems where
defined over a whole ensemble of quantum trajectories thafagitional techniques are not feasible. In particular, the
simultaneously satisfy the set of differential equations giverye Broglie—Bohm interpretation of quantum mechanics

by has inspired a growing number of theoretical and computa-

) tional studies involving a wide range of problems such as

Vi=VL(ri(t),1), (16 reactive scattering dynami&?” tunneling system&~3!

_ mixed quantum/classical simulatioffs;>® electronic trans-

Ni=Vvi. (1 itions 25~38photodissociatiod?~**mixed quantum statés;**

_ o _ _ and quantum dissipatidfi—*’

Given an initial wave function/(r;(0),0) defined over The quantum trajectory metha@®TM), developed by
the ensemble of point®(0), we can simultane_ously solve Wyatt and co-worker&28 incorporates the ideas of compu-
Egs.(11) and(12) to reconstruct the wave function at a later (ational fluid dynamics to solve the hydrodynamic field equa-
time t according to the relation tions over a discrete ensemble of quantum fluid elements.

1 Using finite element methods, the fluid particles are arranged
_ — (. _ = e into small neighborhoods over which a moving weighted
vin(v.0 w(r,(O),O)exy{ 2 fOV v(rl(s),s)ds) least square$MWLS) fitting proceduré® is used to locally
- expand the hydrodynamic fielgs(more typically logp), S,
XEXF{_J /j(ri(s),s)ds), (18 and_v ina simple polynomlal_ basis. Or_1ce the fields an(_j their
fi Jo derivatives are known, the integrals in E48) along with
solutions to Eqs(16) and (17) are evaluated over a short
where the wave function is represented point-wise along théme step. While this strategy scales almost linearly with the
ensemble of path®(t). We emphasize that there is no ap- number of trajectories, its versatility in practice is hindered
proximation in Eq.(18), and it is a formal solution to the by the fact that the ensemble of particles generally tends to
Schralinger equation evaluated explicitly over a set of hy-become extremely disorganized for anharmonic systems
drodynamiclike quantum trajectories. making it difficult, if not impossible, to fit the quantum hy-

A few comments on the behavior of quantum trajectoriesdrodynamic fields. This becomes especially apparent around
are in order. First, the single-valuednessydf,t) requires  the nodes of the wave function, where the fitting errors will
that quantum trajectories must not intersect one another. ifften times cause the quantum trajectories to cross one an-
two trajectories were to cross, it would imply that the waveother leading to spurious numerical results. Very
function has two distinct values of phase at the same point ifecently*®>°new methods in adaptive grids have been devel-
space-time. Similarly, trajectories are not allowed to crosped to formulate a reconstruction of the wave function over
through nodal regions of the wave function where the phasan ensemble of generalized hydrodynamic trajectories that
is discontinuous and the probability of finding a particle isavoids the problem with quantum nodes and provides a much
zero. This restriction is strictly upheld by the influence of themore stable framework for solving the hydrodynamic equa-
guantum force, which is very intense around nodal surfacesions of motion.

Moreover, if the ensemble of trajectories are initially distrib-  Another application of the de Broglie—Bohm theory in-
uted according to the probability densjtyr,0), then the en-  cludes the development of semiclassical approximation strat-
semble will be representative pfr,t) for all time. This is  egies for including quantum effects into otherwise classical
simply a consequence of the statistical assumptiogf@nt)  calculations. Garashchuk and Rassoo¥ have recently

and is consistent with the continuity of quantum probability presented a semiclassical methodology based upon de
density. Finally, in the limit that:—0, the ensemble equa- Broglie—Bohm trajectories that is formally insensitive to tra-
tions of motion decouple, and the trajectories will evolvejectory crossings and also avoids explicitly solving the con-
independently of one another according to Newton's equatinuity equation. In this approximate methodology, the quan-
tions. tum density is convoluted with a minimum uncertainty

In essence, the de Broglie—Bohm picture depicts aGaussian wave packet and expanded in a linear combination
guantum-mechanical system in terms of an ensemble of cosf Gaussian functions
related particle trajectories. Though the true particle follows
a unique trajectory, it is inextricably coupled to an ensemble
pf alternate paths by the influence of the wave function act- p(X)~f(x)=> c2ex] —aZ(x—Xp)]. (19)
ing through a quantum force. n
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The Gaussian parametess{c,,X,,a,} in Eq.(19) are de- M
termined by minimizing the functional p(l’)ZE p(r,cm), (23
m
F:f [p(x)—f(x)]2dx (200  where p(r,cy,) is the probability that a randomly chosen

member ofR has the configuration and is a variant of the

using an iterative procedure which explicitly involves solv- Mh Gaussian cluster designateddyy. Each Gaussian clus-
ing the set of equationsF/ds,= 0. The parametrized density €r iS parametrized by a weigp(cy,), a mean position vec-
leads to an approximate quantum potent@QP) that is O Mm. and a vector pf var|ancesﬁ1._We can aIso_ replace
used to propagate an ensemble of trajectories. Garashchifi¢ variance vector with a full covariance matfy, if nec-
and Rassolov have presented results for Eckart barrier tugSsary- — o o .
neling that improve upon the Herman—Kluck semiclassical ~ BY definition,” each joint probability in Eq(23) is re-
initial value representatiofiVR) method® and are shown to Iated_ to a pair of conditional probabilities according to the
agree quite well with exact quantum-mechanical results. A¢lation

similar idea has also been explored by Donoso and pny ¢ y=p(c,)p(r|cm)=p(r)p(cy/r), (24)
Martens*~>®for propagating a correlated ensemble of quan-

tum trajectories in phase Space_ Fonowing Wigner’sWhere the forWard Conditional probabilip’(ﬂcm) refeI’S to
analysis>’ quantum effects are introduced into the equationghe probability that a randomly chosen variantcaf has the

of motion by including a series of nonclassical force terms,configuration r.  Conversely, the posterior probability
p(cy|r) refers to the probability that the configuration point

q=p/m, (2)  r is a variant of the clustec,,. In probability theory the
. o 2ki1 o factorsp(r) and p(c,,) are marginal probabilities; however,
= V() S 7\ =937 V(q) d5°p(q,p) we shall simply refer to them as the quantum density and
P ( k=1 \2i (2k+1)!  p(q,p) weight of themth Gaussian cluster, respectively. The expan-
sion weights are strictly positive semidefinite and sum to

that give the quantum corrections to Hamilton's equations inynity. Substituting the first equality of E€4) into Eq. (23)
increasing powers ofi. These terms involve higher-order we have

spatial and momentum derivatives of the potential energy
and probability distribution function, respectively. For sys- B
tems where the potential surface has a finite number of non- p(r)—Em: P(Cm)P(r[Cr).,
zero derivatives the series in EQ2) truncates. Donoso and )
Martens have introduced a Gaussian ansatz to describe tHd1ere we can specify the form qf(r|cy) to reflect our
instantaneous local structure p{q,p) about a trajectory. Pelief thatp(r) is a mixture of Gaussian components. We
The phase space “quantum force” is evaluated in terms ofXplore this approximation with two different Gaussian clus-
Gaussian parameters which are computed by taking locdfr models. _

moments of dynamical variables over the phase space en- The first model assumes that each cluster is completely
semble. In the following section we present an approaci$éParable and takes the form of a product over the
based upon Bayesian statistical analysis for simulating th&la-dimensional configuration space,

dynamics of a qua.ntum-.mechanlcal systgm by propagating Ny
an ensemble of trajectories with nonclassical forces. p(rlc =11

. (22

M
(25)

e (o mma®2hg)  (26)
2mon g

The second model explicitly takes into account nonseparable
IIl. DENSITY ESTIMATION correlations in configuration space and incorporates the full

A. Mixture model covariance matrix,

-1

Suppose thatR={rq,...,ry} is an ensemble of (o

de Broglie—Bohm fluid elements that statistically represents p(rlcm) =
a multidimensional quantum probability density. Such a dis-

tribution of data points can be generated from a Metropolidn comparison with the separable case, the fully covariant
sampling procedure or perhaps from the output of a quanturmodel can represent more complicated density structures
Monte Carlo simulatior?®>°In order to propagate these par- with fewer clusters; however, this is at the cost of greater
ticles in time we must evaluageand its derivatives for every computational expense. For low dimensional systems it is
member in the ensemble. Instead of solving the hydrodyadvantageous to use the fully covariant model, but in high
namic field equations explicitly, we intend to extract this dimensions it is much more efficient to use a larger number
information directly from the ensemble of trajectories. of separable clusters. The principle at work here is related to

We assume that the quantum density can be representéite idea of collective correspondence discussed by Héller

by a mixture modéf* determined by summing a finite regarding the cooperative effort of overlapping Gaussian
numberM of Gaussian components or “clusters.” The mix- wave packets to describe position-momentum correlations in
ture model decomposition is expressed as a sum of joinphase space. It is also feasible to construct a mixture model
probabilities that incorporates any combination of covariant and separable

[ 1
e e 2D
r
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degrees of freedom especially if there is reason to do story information that the particle gives to theth cluster.
based on the symmetry of the physical problem. Hence the cluster which best descrilbbgswill have the larg-
est posterior probability for that point.

The circular structure in Eq923)—(35) provides the
framework for an iterative procedure known as the
expectation-maximizatiotEM) algorithm3~1°that seeks to

Now that we have established a model to work with, thefing a set of parameters that gives the best estimate for the
trick is to determine the Gaussian paramete(sy), mm,  density of R. Computing the forward and posterior prob-
and C, (or o). The mean position vector and covariance gpilities determines how well an arbitrarily parametrized
matrix of the clusters are defined by the moments of thenixture model isexpectedo represent the ensemble. Evalu-
forward conditional probabilities ating the sums in Eq¥32)—(34) gives rise to a new set of

parameters that is said toaximizethe log-likelihood,

pin= | oI CRa, 29

B. Expectation maximization

L=In]] p(r,) (36)

Cm= — ) T(r— dr. 29
" f(r ) (= i) (T | Cpy) I 29t the distribution. A likelihood is a probability measure re-

For the separable case, the variances are given by the dia?—rring to the outcome of an event that is already known to
onal elementsrfniz(cm)”. Rearranging Eq(24) and sub- ave occurred. The log likelihood of the distribution is a

stituting into Eqé.(28) and (29), we can write these param- measure of how well the overall density model describes the

eters as whole collection of data points. The EM algorithm works
very much like the variational principle, in that there is a
_J’ p(r)p(Cplr) dr (30) likelihood equation defined over parameter space,
m— c )
p(cm) chLZOu (37)
Cm:J’ (r_ﬂm)T(r_Mm)wdr, (31  such thatL is a maximum for models that are effective in
P(Cm) describing the ensemble’s distribution. Furthermore, it can be

which are easily approximated by a pair of Monte Carloshown that the update rules in E¢82)—(34) move the clus-
sums over the ensemble of de Broglie—Bohm particles,  ters through parameter space in the direction al®pd-,

N that is, in the direction that improves the density estimate.
~ The cycle of estimating the expected distribution function
~ rapP(CmiThn), 32
Fm™ Np(c) ; P(Crlf) 32 and maximizing the log-likelihood is repeated iteratively un-
N til a satisfactory estimate of the density is achieved.
C ~ 1 S (o= o) (F— ) P(CrlTr) (33) It is important to realize that finding the maximum like-
™ Np(cp) & " oMo AmamEmeas lihood estimate of a distribution is not always a well-defined

roblem. In fact, there are generally multiple roots to the
ikelihood equation, and it is not necessarily guaranteed that
there is a global maximum. While this is an important prob-
1 XN lem, our main concern here is simply to find acceptable
P(Cm)~ NEn: P(CrnlTn).- (349 set of parameters that approximately represents the quantum
density. However, one problem that we will need to address
The posterior term(cy|r,) for each data point in Egs. concerns the numbén of Gaussian clusters used in the den-
(32)—(34) are evaluated directly from the forward probabili- sjty estimate. For a Gaussian wave packet evolving in a para-
ties according to Bayes’ formula, bolic potential field the answer is simple, but in general we
will never really know how many clusters to use. When a
P(Cm)P(rnlCm) / : o o
. (350  wave packet bifurcates at a potential barrier, it will often
Z P (Cm)P(Fo] Cm) develop complicated oscillations and nodal structures that
In some sense, the ensemble of particles can be vieweate impossible to capture with Gaussians. Though there are
as a data set that catalogs the results of many successisgtistical methods for “guessing” the number of compo-
measurements on an ensemble of identically prepared quanents in a statistical data set, we do not incorporate them
tum systems. Each member of the ensemble wields an equlaére. Instead, we simply try to use a minimum number of
amount of information describing the underlying probability Gaussian clusters that gives reasonable results.
distribution. The key to understanding how this information  The overall scheme of the mixture model approximation
is distributed among the Gaussian clusters is containednd EM algorithm is as follows: First we generate the en-
within Bayes’ formula. From a Bayesian viewpoint the nu- semble of probability fluid elements, usually a Gaussian den-
merator in Eq.(35) essentially reduces to a measure of howsity packet, via some appropriate sampling technique. The
well the clusterc,,, describes the fluid element with configu- EM algorithm is initialized by choosing a set of parameters
rationr,. The sum in the denominator is a measure how welfor a pre-set number of Gaussian clusters. Typically the ini-
the particle at, is described by all of the clusters. The ratio tial clusters are given a uniform weighpt(c,,)=1/M. The
of the two quantities then determines the fraction of explanamean position vectors are randomly selected from the do-

A similar expression for the expansion weights in terms of
sum overR is given by

p(Cm| rn) =
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FIG. 1. The contours reflect a multivariate probability distribution com-

prised of four Gaussian components with nonzeyaovariances. The solid  FIG. 2. This figure illustrates the EM algorithm for the data pictured in Fig.
black lines represent the half widths of the Gaussian components. The en- using 16 separable Gaussian clusters. The contours reflect the approxi-
semble of gray points are generated from the exact probability distributiormated probability density during the course of the EM fitting routine. The
function via a Metropolis sampling procedure and are taken as the input datalack dots correspond to the average position of the Gaussian cluster, and
for the EM algorithm. The black squares labelgdandr, are tagged data the solid black ellipses represents the Gaussian half width contours.

points discussed later in Figs. 4 and 5.

main of the ensemble. The initial variances are chosen to bgregate near the mean &, and the estimated density does
large enough to encompass the entire ensemble and the crd¥¥ reflect any details of the exact distribution. After about
terms C);; are zero. We cycle through the expectation-ten EM cycles, the clusters begin sorting out the structure of
maximization routine until the parameters converge to arthe density. By 100 EM cycles, the clusters have found all
acceptable density estimate. Convergence can be evaluati@yr Gaussian components of the distribution and are strug-
in a number of ways by monitoring the cluster parametersgling to recover the proper covariance in each component.
the conditional probabilities, the log-likelihood, or any com- The separable clusters are hindered in this because they have

bination thereof. no freedom to rotate in they plane and must work collec-
tively to capture thexy correlations. At 400 cycles we can
IV. COMPUTATIONAL RESULTS see that the separable clusters have performed fairly well in

finding the positions and relative orientations of the density
components; however, the estimated density is somewhat
distorted from the true distribution. The density estimate can
To illustrate some of the points in the previous section,be improved by including more sampling points and more
we demonstrate the convergence of the EM algorithm usinglusters, but this also increases the computational demand.
a known probability distribution function. In Fig. 1 we have Figure 3 illustrates the performance of the fully covari-
plotted the contours of a bivariate probability distribution ant model using four nonseparable clusters to describe the
function p(x,y) consisting of four equally weighted non- same data set. As expected, the fully covariant model per-
separable Gaussian components. The solid lines reflect tHerms much better than the separable case because the exact
half width contours of each component and their orientatiorprobability distribution is rigorously a mixture of four
with respect to thex andy axes. The gray points correspond equally weighted nonseparable Gaussian components. After
to an ensembl&R of 2000 variants ofo(x,y), which were  one EM cycle, the nonseparable clusters also collect near the
randomly generated using a Metropolis sampling algorithmmean ofR; however, they immediately develop nonzero off-
Two of these data points, labelad and r,, have been diagonal covariances. Between 10 and 20 EM cycles, the
tagged for later discussion. clusters locate the individual density components. By 50
In Fig. 2 we show the evolution of 16 separable Gausseycles, the clusters have established have a stable configura-
ian clusters over the course of the EM fitting algorithm. Thetion, which very closely mimics the true probability distribu-
contour plots indicate the relative intensity of the fitted den-tion.
sity at various stages of the EM fit. The black dots and ovals  Essentially, the EM algorithm performs a parallel search
correspond to the:,,’'s and o, contours for the individual over the Gaussian parameter space and looks for regions
Gaussian clusters. The initial random guess for the clusters ishere the clusters will be most effective in describing the
not illustrated. After one EM cycle, the clusters tend to ag-data points. To help quantify the collective effort of the clus-

A. Bivariate distribution with multiple nonseparable
Gaussian components
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FIG. 5. Plot(a) shows four nonseparable forward probabilities at the tagged
FIG. 3. This figure illustrates the EM algorithm for the data pictured in Fig. data pointr; as a function of EM cycles. Pldb) shows the corresponding
1 using four nonseparable Gaussian clusters. Compared to the separafi@sterior probabilities. Plotéc) and (d), respectively, depict the four non-
case, the fully covariant model gives much more accurate results with lesgeparable forward and posterior probabilities at the data point.at
clusters and fewer EM cycles.

) ) o interesting because they reflect the fraction of explanatory
ters, we examine the forward and posterior probabilities ahs\er a data point gives to each of the cluster. The curve
the tagged data points andr,. First, notice in Fig. 2 that  ¢rossing at roughly 105 EM cycles reflects that the originally

there is never more than one or two Gaussian clusters cegpminant cluster is eventually displaced by a different cluster
tered near the point, . Figures 4a) and 4b), respectively,  hat hecomes nearly centeredrat The situation forr, is

show how thep(r|cm)'s andp(Cm|r1)’s evolve for the sepa-  anai0gous to that for, but is complicated by the fact that
rable cluster model. Both plots indicate that for the first 75qre s greater overlap between multiple clusters. The for-
EM cycles there is really only one cluster which dominatesyarq and posterior probabilities at the poiatare shown in
the density estimate at;. The posteriors are particularly Figs. 4c) and 4d), respectively. Ultimately one cluster
dominates the density estimaterat however, this is to a
lesser extent than at .

! ® ! (—-\ P In Fig. 5 we plot the forward and posterior probabilities
0.8 0.8 \ atr, andr, for the fully covariant model. It is clear that the
“E.06 / = 06 \ behavior of the nonseparable Gaussian clusters is consistent
':= 04 [~ . F 0.4 / with the separable ones. The exception to this is that the fully
k- r \\ k- / covariant clusters converge to a stable configuration in fewer
02, / 02/ N EM cycles. This point is highlighted by Fig. 6, where we plot
ol = 0 the log-likelihoodL for several different density fits. The
0 100 200 300 0 100 200 300 separable cases are designated with,a where the integer
EM cycles EM cycles

m indicates how many Gaussians were used to perform the
fit. Likewise, C, refers to a fully covariant cluster fit witm

1 © 1 @ nonseparable Gaussian components. The plateaus in the log-
0.8 0.8 — _ likelihood indicate that the EM algorithm is converging upon
3 06l = 06l 11/ a root of the likelihood equation. It is conceivable that the
o : /\‘ E EM algorithm could essentially become stuck at a local
N=) L 04 . . .
& a v maximum or even a saddle point that does not give a par-
0.2 /\_ ticularly good density estimate. For these situations it is nec-
0 bs——’« essary to incorporate a small random perturbation in the clus-
0 100 200 300 0 100 200 300 ter parameters in order move the fit away from such
EM cycles EM cycles anomalous regions of parameter space. Another problem is

that a cluster might become too focused on a single data
FIG. 4. Plot(a) shows 16 separable forward probabilities at the tagged datapoint This is described as a root of the likelihood equation
point r; as a function of EM cycles. Plotb) shows the corresponding ’

posterior probabilities. Plot&) and (d), respectively, depict the separable YiNg on the exterior C_’f parameter space. When this happens,
forward and posterior probabilities at the data pointat the variance and weight of the cluster become exceedingly
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only one cluster and is exact for all time. For nontrivial prob-
lems, however, the quantum density will generally exhibit a
very complicated structure in configuration space. Clearly,
the mixture model approximation will not be able to capture
the exact intricacies of a realistic quantum distribution. Con-
sequently, it is not feasible, using the present formulation of
our methodology, to obtain numerically accurate quantum
densities for nonstationary systems. Ground-state quantum
densities, on the other hand, are characteristically much sim-
pler than their excited-state and nonstationary counterparts.
We believe our approach will be most useful for determining
the ground-state properties of high dimensional systems.

For stationary systems the quantum force exactly coun-
terbalances the classical force, and the ensemble of quantum
trajectories does not evolve in time. The ground state can
then be realized from a nonstationary state by adding a small
damping term to Eq(16),

- 6500

- 6750
- 7000
= - 7250

- 7500

- 7750

- 8000

20 60 80 100

40
EM cycles V=Fo—VV/m—1v, (39)

FIG. 6. Plot of the log-likelihood vs number of EM cycles for various it . r—
density estimates of the data illustrated in Fig. 1. The notadigrand C,, where y represents a small dissipative coefficient. This fict

refers to a density fit performed witin Gaussian clusters using the sepa- tOUS friction, in turn, causes the ensemble particles to lose a
rable and fully covariant model, respectively. small amount of kinetic energy at each time step in the simu-
lation. For a classical ensemble, the distribution collapses to
) ) o ) a delta functiofs) centered about the minimum energy
small and in numerical applications will often round to zero, j4infs) of the potential surface. For the quantum-mechanical
causing some terms in Eq7) and(26) and(32) and(33)  gnsemble, however, as the distribution becomes increasingly
to diverge. This problem can be avoided in practice by addq o, the quantum force becomes very strong and requires
ing a small fraction to the diagonal covariances in B38).  the ensemble to maintain some minimum finite width. At
This imposes an artificial boundary in parameter space thfnger simulation times an equilibrium is reached, and the
forces the Gaussian clusters away from the exterior roots. yegting distribution is representative of the ground-state

o quantum density. The corresponding ground-state energy can
B. Ground state of methyl iodide be resolved to within the statistical error of a Monte Carlo

Now that we have highlighted some key features of thentegration over the ensemble elements.
mixture model approximation and EM algorithm, we turn 10 illustrate this, we demonstrate the convergence of an
our attention to a problem with more physical merits. Ininitial Gaussian ensemble to the ground-state distribution for
order to propagate the quantum ensemble in time we mudbe Ch—I stretching/bending modes of the lowest electronic
compute both the classical and quantum forces acting on th¥ate of methyl iodide. For our purposes this provides a non-
ensemble particles. Given a maximum likelinood estimatdrivial anharmonic potential surface to test our methodology.
for p in the form of Eqs.(26) or (27), it is a fairly straight- ~ The vibrational system is treated as a single particte (

forward exercise in bookkeeping to compute an approximate™ 20 000 amu) evolving on a two-dimension@D) model
quantum force, potential-energy surface developed by Shapiro and

Bersohr? The potential-energy curves for this anharmonic
surface are depicted in Fig. 7 by the gray contour lines. In
Fig. 7(a) we illustrate a numerically exact representation of
(39) the ground-state density obtained by diagonalizing the
Hamiltonian of the system using a 2D discrete variable rep-
in terms of the Gaussian parameters. The quantum and claesentation(DVR). The grid points indicate the minimum
sical forces are then used to drive the ensemble of trajectaiumber of Chebychev quadrature points required to obtain
ries by integrating Eqg.16) and(17) over a short time step convergence in the lowest energy eigenvalue. Obviously, a
using a Verlet leapfrog-type method. The EM algorithm ismuch larger grid would be necessary to perform a dynamical
repeated using the previously fit cluster parameters as thealculation on this system.
starting point. Recycling the old parameters significantly de-  Figures Th) and 7c) illustrate the estimated density for
creases the number of EM cycles required to obtain convemoth the separable and fully covariant models, respectively.
gence in the next density estimate. The whole process dfhe black ovals represent the half width contours of the
alternating between EM cycles and Verlet steps continue§&aussian clusters. There are four clusters in separable case
until we have integrated the equations of motion to somend two for the fully covariant model. The various contour
appropriate final time. plots labeled), (2), and(3) correspond to snapshots of the
For a Gaussian density packet evolving on a paraboliestimated density at different points in the simulation. For
potential surface, the mixture model approximation requiredoth models, the initial densitfl) is Gaussian, and all but

h
Fo=am

V3 V(Vp-Vp) [V?p Vp-Vp|Vp
p 2p? p p? p
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2 g (a) e e e at the cost of greater computational effort and slower con-

15 15| vergence.

o 1 3
05 % ; 3 05| ® i 2 3 V. CONCLUSIONS
- ® [~4 ®

Rc-n,

0 0 In this paper we have explored a new strategy for deter-
05 -0s| mining the quantum density associated with a statistical en-
e semble of de Broglie—Bohm space-time trajectories. Our
3.3t 451{5 335 6 65 3.5 b ‘E 3 95 165 65 methodology incorporates Bayesian probabilities and a mix-
el -1 ture model approximation to calculate a parametrized esti-
2 o - 1000 @ matg .of. Bohm’s quantum forcg. The ex.pecyation-
15 L 'g maximization procedure u§ed to fit the density is not
o g - l sensitive to trajectory crossings because the error associated
B 50 | with an individual rogue trajectory is essentially washed out
&) Q ! | | . L. .
& g 0 Ll | b.y' the.statlstlcal ensgmble. Moreoyer, because the density
< 600 N ML L fitting is formulated in terms of simple sums over data
-03 &~ ‘ points, our method is easily extended to high dimensions and
35 4 45 5 55 6 65 297150 200 250 300 330 400 can be conveniently implemented on parallel computers.
Re- 1072 steps Given a statistical ensemble of probability fluid ele-

ments, we can estimate the quantum force in terms of a set of

FIG. 7. Plots(a) and(b) show the relaxation of a Gaussian wave packet in . - . .
an anharmonic potential well for both the separable and fully covariantGauSSIan flttmg parameters. Addmg a small viscous drag to

models, respectively. The gray contours reflect the potential-energy curvédl€ equations of motion slowly removes excess kinetic en-
for a model of CHI. The shaded contours indicate the shape of the approxi-ergy from the system. After a sufficient equilibration time the
mated density aftetl) 0, (2) 10000, and(3) 40000 Verlet time steps, ensemble is representative of the ground-state distribution

respectively. The solid curves represent the half width contours of the A ] .
Gaussian clusters. Pldt) shows the numerically accurate DVR ground and can be used to gather statistics on ground state properties

state and the associated grid of quadrature points.(@lshows the energy ~ SUCh as the zero-point energy and other expectation values.
of the estimated density as a function of time steps. The dotted and soliThe approach we have described in this paper should be
data correspond to the separable and nonseparable models, respectivalyjitaple for simulating the ground-state distribution of high
while the dashed horizontal line represents the DVR energy. . . . .
dimensional vibrational systems such as weakly bound
atomic and molecular van der Waals clusters. It may be
worthwhile to investigate the use of Gaussian mixture mod-
els in connection with “smoothed” phase space distributions
one of the clusters are redundant. As the ensemble is propauch as the Husimi distribution. Since Husimi functions are
gated the individual clusters behave differently from one angenerally less complicated than the corresponding density
other. The contour$2) show the quantum density at an in- matrices and Wigner functions, the mixture model approxi-
termediate time after roughly 10000 Verlet time step$ ( mation is expected to provide a more accurate representation
=1 atomic time unit At longer times an equilibrium is of dynamical systems. Such a scheme could be used for ex-
achieved and the contou() are representative of the quan- amining mixed states and quantum dissipation in phase
tum ground state. In Fig.(d) we plot the energy of the space. Another possibility is to employ higher-order cluster-
system relative to the bottom of the potential well as a funcing models that can account for more complicated functional
tion of the number of Verlet time steps. The DVR energy atdependence such as nodal structures. This may be useful for
591 cm* serves as a benchmark and is indicated by theimulating vibrationally excited states, electronic densities,
dashed horizontal line. The dotted and solid energy curvesr calculating dynamical correlation functions. These topics
are for the separable and nonseparable models, respectivelill be addressed in future studies.
Dropping the first 20 000 time steps we find that the average
energy for the separable case is 67828.1 cmi %, which is ~ ACKNOWLEDGMENTS
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