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Astrodynamic Coordinates

This Numerit program (csystems) can be used to calculate and convert different types 
of astrodynamic coordinates. The following is the "main" menu for this program.

          coordinate system menu 

 <1>  Greenwich apparent sidereal time 
 <2>  classical orbital elements to eci state vector 
 <3>  eci state vector to classical orbital elements 
 <4>  spherical (adbarv) coordinates to eci state vector 
 <5>  eci state vector to spherical (adbarv) coordinates 
 <6>  classical orbital elements to equinoctial elements 
 <7>  equinoctial elements to classical orbital elements 
 <8>  geocentric coordinates to geodetic coordinates 
 <9>  geodetic coordinates to geocentric coordinates 
 <10> osculating orbital elements to mean elements 
 <11> mean orbital elements to osculating elements 
 <12> eci state vector to ecf state vector 
 <13> ecf state vector to eci state vector 

For most these menu items the user can elect to either interactively input the data or use 
"internal" data already computed by the software in one or more previous calculations.

Classical orbital elements

The following diagram illustrates the geometry of classical orbital elements.

Figure 1. Classical Orbital Elements
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The semimajor axis defines the size of the orbit and the orbital eccentricity defines the 
shape of the orbit. The angular orbital elements are defined with respect to a fundamental 
x-axis, the vernal equinox, and a fundamental plane, the equator. The z-axis of this system 
is collinear with the spin axis of the Earth, and the y-axis completes a right-handed 
coordinate system.

The orbital inclination is the angle between the equatorial plane and the orbit plane. 
Satellite orbits with inclinations between 0 and 90 degrees are called direct orbits and 
satellites with inclinations greater than 90 and less than 180 degrees are called retrograde 
orbits. The right ascension of the ascending node (RAAN) is the angle measured from the 
x-axis (vernal equinox) eastward along the equator to the ascending node. The argument 
of perigee is the angle from the ascending node, measured along the orbit plane in the 
direction of increasing true anomaly, to the argument of perigee. The true anomaly is the 
angle from the argument of perigee, measured along the orbit plane in the direction of 
motion, to the satellite's location.

Finally, the argument of latitude is the angle from the ascending node, measured in the 
orbit plane, to the satellite's location in the orbit. The argument of latitude is equal to 
u=ν + ω .

The orbital eccentricity is an indication of the type of orbit. For values of 0 ≤ e < 1, the 
orbit is circular or elliptic. The orbit is parabolic when e = 1 and the orbit is hyperbolic if 
the condition e > 1 is true.

The semimajor axis a is calculated using the following expression:

 (1)
a = 1

2
r

− v 2

µ

where r = r = r 2
x + r 2

y + r 2
z  is the scalar position and v = v = v 2

x + v 2
y + v 2

z  is the scalar 
velocity or speed of the space object.

The angular orbital elements are calculated from the equinoctial orbital elements h, k, p 
and q which are in turn calculated from the rectangular components of the body-centered 
inertial position and velocity vectors. The equinoctial orbital elements are an alternative 
set of non-singular elements which avoid computational problems when working with 
orbits with small or zero values of eccentricity or inclination.

The mathematical relationship between equinoctial and classical orbital elements is given 
by the following expressions:
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 (2)

a = a
h = esin(ω + Ω)
k = ecos(ω + Ω)
λ = M + ω + Ω
p = tan(i/2)sinΩ
q = tan(i/2)cosΩ

In the fourth equation M is the mean anomaly and λ  is called the mean longitude.

The scalar orbital eccentricity e is determined from h and k as follows:

 (3)e = h 2 + k 2

The orbital inclination i is determined from p and q using the following expression

 (4)i = 2arctan 


p 2 + q 2


For values of inclination greater than a small value ε , the right ascension of the ascending 
node Ω is given by

 (5)Ω = arctan(p, q)

Otherwise, the orbit is equatorial and there is no RAAN.

If the value of orbital eccentricity is greater than ε , the argument of perigee ω  is 
determined from

 (6)ω = arctan (h, k) − Ω

Otherwise, the orbit is circular and there is no argument of perigee. In the Numerit code 
for these calculations, ε = 10−8.

Finally, the true anomaly ν  is found from the expression

 (7)ν = λ − Ω − ω

In this computer program, all two argument inverse tangent calculations use a four 
quadrant Numerit function called atan3 to determine the correct quadrant for the angle. 
Angular orbital elements which can range from 0 to 360 degrees are also processed with a 
modulo 2π  function named modulo. This utility function ensures that all angular 
elements are "range-reduced" to a value between 0 and 2π .

Position and velocity vectors
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The body-centered, inertial rectangular components of the position and velocity vectors 
can be determined from the classical orbital elements as follows:

 (8)

rx = p[cosΩ cos(ω + ν) − sinΩ cos i sin(ω + ν)]

ry = p[sinΩ cos(ω + ν) + cosΩ cos i sin(ω + ν)]

rz = p sin i sin(ω + ν)

vx = − µ
p

cosΩ{sin(ω + ν) + esinω} + sinΩcos i{cos(ω + ν) + ecosω}

vy = − µ
p

sinΩ{sin(ω + ν) + esinω} − cosΩcos i{cos(ω + ν) + ecosω}

vz = − µ
p

sin i{cos(ω + ν) + ecosω}

In these equations p is called the semiparameter of the orbit and is calculated from 
p = a(1 − e 2). µ  is the gravitational constant of the primary or central body.

Geodetic and geocentric coordinates

The following diagram illustrates the geometric relationship between geocentric and 
geodetic coordinates of a satellite.

Figure 2. Geodetic and Geocentric Coordinates

In this diagram, δ  is the geocentric declination, φ  is the geodetic latitude, r is the 
geocentric distance, and h is the geodetic altitude.
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The exact mathematical relationship between geocentric and geodetic coordinates is given 
by the following system of two nonlinear equations

 (9)
(c + h)cosφ − rcosδ = 0

(s + h)sinφ − rsinδ = 0

where the geodetic constants c and s are given by

c =
req

1 − (2f − f 2)sin2φ

s = c(1 − f )
2

and req is the Earth equatorial radius (6378.14 kilometers) and f is the flattening factor for 
the Earth (1/298.257).

The geodetic latitude is determined using the following expression:

 (10)φ = δ + 

sin2δ

ρ



f +






1

ρ 2
− 1

4ρ


sin4δ




f 2

The geodetic altitude is calculated from

 (11)ĥ = (r̂ − 1) +





1 − cos2δ

2



f +





1
4ρ

− 1
16



(1 − cos4δ)




f 2




In these equations, ρ  is the geocentric distance of the satellite, ĥ = h req and r̂ = ρ req.

The equations for converting geodetic latitude and altitude to geocentric position 
magnitude and geocentric declination are as follows:

 (12)δ = φ +



−sin2φ
ĥ + 1




f +







−sin2φ

2(ĥ + 1)
2

+ 



1

4(ĥ + 1)
2

+ 1

4(ĥ + 1)




sin4φ






 f 2

and

 (13)ρ̂ = (ĥ + 1) + 

cos2φ − 1

2



f +






1

4(ĥ + 1)
+ 1

16


(1 − cos4φ)




 f 2
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where the geocentric distance r and geodetic altitude h have been normalized by ρ̂ = r req 

and ĥ = h req, respectively, and req is the equatorial radius of the Earth.

Another useful coordinate transformation converts the geodetic latitude, longitude and 
altitude to an Earth-centered-fixed (ECF) position vector. The three components of this 
geocentric vector are given by

 (14)rgeocentric ==





(N + h)cosφ cosλe

(N + h)cosφ sinλe

N(1 − e 2) + hsinφ






where

N =
req

1 − e 2sin2φ
e 2 = 2 f − f 2

f =  Earth flattening factor
req =  Earth equatorial radius
φ =  geodetic latitude

λe =  east longitude
h =  geodetic altitude

The geocentric distance is determined from the components of the geocentric position 
vector as follows:

 (15)r = r 2
x + r 2

y + r 2
z

The geocentric declination can be computed from the z component of the geocentric 
position vector with

 (16)δ = sin−1


rz

r



ADBARV elements

The components of the ADBARV coordinate system are as follows:

Alpha = right ascension
Delta = geocentric declination
Beta = conjugate flight path angle
A = azimuth
R = position magnitude
V = velocity magnitude
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The following diagram illustrates the geometry of the ADBARV coordinates. In this 
picture α  is the right ascension, δ  is the geocentric declination and β  is the conjugate 
flight path angle.

Figure 3. ADBARV elements

The mathematical relationships between ADBARV elements and the components of the 
ECI position and velocity vectors are as follows:

 (17)

r = r 2
x + r 2

y + r 2
z

v = v 2
x + v 2

y + v 2
z

α = tan−1(ry , rx)

δ = tan−1

rz , r 2

x + r 2
y




β = cos−1



r • v
r • v




A = tan−1r(rxvy − ryvx) , ry(ryvz − rzvy) − rx(rzvx − rxvz)

The inertial position and velocity vectors can be determined from the ADBARV elements 
with this set of equations:
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 (18)

rx = rcosδ cosα

ry = rcosδ sinα

rz = rsinδ

vx = v[cosα(−cosA sinβsinδ + cosβcosδ) − sinA sinβsinα]

vy = v[sinα(−cosA sinβsinδ + cosβcosδ) + sinA sinβcosα]

vz = v(cosA sinβcosδ + cosβcosδ)

Equinoctial elements

The relationship between classical and equinoctial orbital elements is given by the 
following expressions:

 (19)

a = a
h = esin(ω + Ω)
k = ecos(ω + Ω)
λ = M + ω + Ω
p = tan(i 2)sinΩ
q = tan(i 2)cosΩ

The mean longitude is defined by λ = M + ω + Ω,

the eccentric longitude by F = E + ω + Ω

and the true longitude by L = ν + ω + Ω.

The equinoctial form of Kepler's equation is given by

 (20)λ = F + hcosF − ksinF

We can solve for F using Newton's method as follows:

 (21)

F0 = λ

Fi+1 = Fi −



Fi + hcosFi − ksinFi − λ
1 − h sinFi − kcosFi




The position and velocity vectors in the equinoctial coordinate system are given by
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 (22)

x1 = a(1 − h 2β)cosF + hkβsinF − k

y1 = a(1 − k 2β)cosF + hkβcosF − h

x· 1 = na 2

r
hkβcosF − (1 − h 2β)sinF

y· 1 = na 2

r
(1 − k 2β)cosF − hkβsinF

where the geocentric scalar distance is calculated from

 (23)r = a(1 − h sinF−kcosF)

and n is the mean motion.

Finally, the ECI position and velocity vectors are determined from the expressions

 (24)

r = x1f + y1g

v = x· 1f + y· 1g

where the components of the f and g unit vectors are as follows:

fx = β(1 − p 2 + q 2)
fy = β(2pq)

fz = −β(2p)
and

gx = β(2pq)

gy = β(1 + p 2 − q 2)
gz = β(2p)

The constant β  is calculated from

β = 1

1 + p 2 + q 2

Earth-centered-fixed (ECF) coordinates
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The transformation of an ECI position vector reci to an ECF position vector recf is given by 
the following vector-matrix operation

 (25)recf = [T]reci

where the elements of the transformation matrix T are given by

 (26)[T] =




cosθ sinθ 0
−sinθ cosθ 0

0 0 1





where θ  is the Greenwich sidereal time at the moment of interest. Greenwich sidereal time 
is given by the following expression:

 (27)θ = θg0 + ωe t

where θg0 is the Greenwich sidereal time at 0 hours UT, ωe is the inertial rotation rate of 
the Earth, and t is the elapsed time since 0 hours UT.

The ECF velocity vector is determined by differentiating the expression given by Equation 
(25) as follows:

 (28)v ecf = [T]r· eci + [T· ]reci = [T]v eci + [T· ]reci

The elements of the [T· ] matrix are determined by differentiating the elements of the [T] 
matrix as follows:

 (29)[T· ] =




−ωe sinθ ωe cosθ 0
−ωe cosθ −ωe sinθ 0

0 0 0





The transformation from ECF to ECI coordinates involves the transpose of the 
ECI-to-ECF transformation matrices described above as follows:

 (30)

reci = [T]
T
recf

v eci = [T]
T
r· ecf + [T· ]

T

recf = [T]
T
v ecf + [T· ]

T

recf

In the Earth-centered-fixed coordinate system the x-axis points in the direction of the 
Greenwich meridian. The fundamental plane of the ECF coordinate system is the equator 
of the Earth.

The following is a typical draft output created with this software.
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convert eci state vector to classical orbital elements 

eci state vector 

rx        7475.226183658  kilometers 
ry        1103.0128215013  kilometers 
rz        2150.11864824741  kilometers 

vx        -0.0490037505580695  km/sec 
vy        6.62947126301278  km/sec 
vz        -2.7744865902077  km/sec 

classical orbital elements 

     sma (km)         eccentricity    inclination (deg)    argper (deg) 
         8000            0.025          28.5                100

    raan (deg)     true anomaly (deg)   arglat (deg)       period (min) 
          220              45                145          118.6846843

Important Note

When electing main menu options (12) or (13) be sure to calculate the Greenwich sidereal 
time, main menu option (1), before selecting either one of these program options.


