A problem from Technology Review's Puzzle Corner: Oct 3, 2003
How many different resistances can be obtained by combining 10 one ohm resistors?

A solution by Joel Karnofsky, 2/23/04

Conceptually this problem is easy: Model a resistor network as a graph with two distinguished nodes,
where edges correspond to resistors, nodes to junctions and the distinguished nodes to the points
across which the resistance is computed. Then, generate all such 10 edge graphs and compute the
resistance for each (using Kirchoff's laws) and collect all the unique values. The practical problem is that
the enormous number of such graphs makes a brute force approach unrealistic.

Two ideas will be used to reduce the number of graphs considered. First, a unique normal form will be
used to represent each isomorphism equivalence class of graphs, so that redundant graphs can be
eliminated as new ones are generated recursively by adding edges. Second, since it is easy to compute
the resistance of a graph that can be decomposed into either the serial or parallel combination of two
smaller graphs, it is only necessary to generate indecomposable ones.

Some terminology. A graph will always have two distinguished nodes. A subgraph of a graph has the
same distinguished nodes. The 0-graph is the graph with two nodes and no edges. The 1-graph has
two nodes and one edge connecting them. A parallel decomposition means splitting a graph into two
subgraphs whose intersection is the 0-graph and union is the entire graph. A serial decomposition
means selecting a non-distinguished node so that the graph can be split into two parts, each of which is
a graph with the selected node and one of the original distinguished nodes as its new distinguished
nodes and where the intersection of these graphs is just the selected node and their union is the original
graph. A d-path is a loop-free path between the distinguished nodes. Two d-paths are said to intersect if
they have an interior node in common.

We need to show the following: A serial/parallel indecomposable graph with more than one edge: is
connected, has no 1-graph subgraphs and contains a subgraph of the form we will call an h-graph. An
h-graph consists of exactly two non-intersecting d-paths and a third, loop-free path connecting interior
points on the first two. The simplest h-graph has 5 edges.

A sketch of a proof is: First, if the graph is not connected, it is the parallel combination of its connected
components, made into subgraphs by including, if necessary, the distinguished nodes. If it contains a
1-subgraph, it is the parallel combination of this subgraph and its complement. To prove the h-graph
property we need two facts:

First, a connected, serial indecomposable graph with no 1-subgraphs contains at least two non-
intersecting d-paths. To start, by connected, there is at least one d-path and it has some interior nodes
since 1-subgraphs are excluded. It is clear that in a serial indecomposable graph all d-paths cannot
have some interior node in common (otherwise the graph could be split into serially connected parts at
this node). In particular there must be at least one other d-path. Now consider the two d-paths (ps, p2)
that have the fewest intersections at interior points over all pairs of d-paths. If they don't intersect, we
are done. Otherwise, starting from one distinguished point, let n; be the first node of intersection of p;
and p,. By serial indecomposability, there must be a third d-path (ps) that does not pass through n;. If ps
intersects p: or p, before ny, let n, be the last such intersection on p; and, without loss of generality,
assume it is on p;. If the portion of p; following n, does not intersect p; or p,, then the paths p, and p; up
to n; followed by ps after n, do not intersect and we are done. Otherwise, let n; be the first intersection of
ps with p; or p; after n, (which must be after n; on p; and p,. Without loss of generality (by swapping
portions of p; and p; after n;), we can assume ns is also on p.. Now, the paths p, and p; up to n; followed
by ps up to n; followed by p: after n; do not intersect at or before n; on p, and n; on p; and from then on
are the same as the original p, and pi, so the new paths have at least one fewer intersections than the
originals. But this contradicts the minimality property of p: and p., so they must not intersect at all. The
case where p; does not intersect p; or p, until after n; is similar.
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Second, if a connected, parallel indecomposable graph is modified so that each distinguished node is
separated into distinct copies for each incoming edge, the resulting graph (without distinguished nodes)
is connected. This is clear since the original graph is connected and the connected components of the
resulting graph can be rejoined at their copies of the distinguished node and then combined in parallel to
make the original graph. In particular, there is a d-path through any edge connected to nodes 1 or 2.

Now we can prove the h-graph property of a serial/parallel indecomposable graph with more than one
edge. Consider the modified version of this graph as in the previous paragraph. We know it is
connected and we can pick two, nonintersecting paths that are d-paths in the original graph. One at a
time, remove edges and nodes from this graph as follows. If there are any loops, remove an edge from
one, but not an edge from either of the special paths. When there are no loops, remove a leaf edge and
node from the remaining tree, but again not from the special paths. Because this procedure preserves
the connectedness of the graph, it clear that when it stops the remainder corresponds to an h-graph
subgraph of the original graph. This finishes the sketch of a proof.

Notice that the procedure in the last paragraph can be run in reverse: starting with an h-graph,
repeatedly either add an edge connecting two nodes, but not the distinguished ones, or add a node and
an edge connecting it to an existing node other than the distinguished ones. We have seen that any
serial/parallel indecomposable graph with more than one edge can be built in this way, starting from
some h-graph.

Based on computations described below, the number of non-isomorphic, serial/parallel indecomposable
graphs with number of edges from five through ten respectively is: 1, 5, 37, 226, 1460, 9235. These
relatively modest numbers make the computation of the desired resistances feasible.

What follows is Mathematica code that implements the above ideas. (Mathematica code is not easy to
read. This note should not be considered program documentation.)

The basic data structure looks like this example (of the unique five edge h-graph):
graph[4, {edge[1,3],edge[1,4],edge[2,3],edge[2,4],edge[3,4]}]

In graph[nodes,edges], nodes is the number of nodes, with the actual nodes named by the numbers from
1 to nodes and edges is a list of edges, with each edge represented as edge[nodel,node2]. ltis allowed
to have repeated copies of the same edge (corresponding to resistors wired in parallel). In the code
below, for each edge the node numbers are in order, there is at least one edge ending on every node
and nodes 1 and 2 are always the distinguished nodes.

Here is code that computes all non-isomorphic h-graphs with a specified number of edges (>= 5):

hGraphs[edges_]:=Flatten[Table[
graph[edges-1,Join[line[1,3,1i,2],1line[1,i+1,j,2],1line[hl,j+1,edges-1,h2]]],
{i,3,Floor[(edges+1)/2]},{j,i+1,edges-1},{h1,3,Floor[(i+3)/2]},
{h2,i+1,If[0ddQ[i]&&h1==Floor[(i+3)/2],Floor[(j+i+1)/2],j]1}
11;

line[first_,second_,nextLast_,last_]/;second>nextLast:={edge[first,last]};
line[first_,second_,nextLast_,last_]:=Join[

{edge[first,second]}, edge@@@Partition[Range[second,nextLast],2,1], {edge[last,next
Last]}

1;

Here is code that takes a graph and adds one edge in all the ways discussed above; first across all pairs
of nodes other than 1,2 and then from all nodes other than 1 and 2 to a new node:

oneMore[graph[nodes_,edges_]]:=Join[
normalForms[nodes,Rest@Flatten|
Table[Append[edges,edge[i,j]],{i,nodes-1},{j,i+1,nodes}],1]1],
normalForms[nodes+1,Table[Append[edges,edge[i,nodes+1]],{i,3,nodes}]]
1;
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The above code uses the following to generate graphs in a normal form in which edges are sorted in
Mathematica's order and the first such graph in sort order is chosen from all isomorphically equivalent
graphs, which are generated by taking all permutations of the nodes that do not interchange
distinguished and non-distinguished nodes.

normalForms[nodes_,edgeLists_]:=With[{
permRules=With[{list=Range[3,nodes]},
DeleteCases[Thread[list->#],HoldPattern[x_->x_]]&/@Permutations[list]
1

3,
graph[nodes,normalForm[#/.permRules]]&/@edgeLists

normaiForm[fullList_]:=First@Map[Sort,Join[fullList,fullList/.{1—>2,2—>1}],{0,—2}];

When adding the last edge of interest to a graph, it turns out to be faster to not generate normal forms,
since the time to compute them is greater than the time to compute resistances, even allowing for the
many isomorphically equivalent graphs whose resistances will be computed. That this is not done in
general is because the number of graphs grows much too large if equivalent ones are not eliminated in
early steps. Also, there is no need to add edges leading to new nodes in the last step, since they cannot
affect the resistance. Here is code used to add the last edge:

lastOne[graph[nodes_,edges_]]:=Rest@Flatten[Table[
graph[nodes,Append[edges,edge[i,j]]1],{i,nodes-1},{j,i+1,nodes}],1];

Using all the above, here is how the non-isomorphic, serial/parallel indecomposable graphs with more
than one and at most 10 nodes and a non-compressed batch with 11 nodes are computed. Starting with
5, the smallest possible number of edges, new graphs are iteratively generated by adding one edge in all
possible ways to graphs with one fewer edge and the result combined with any h-graphs with the new
number of edges. This takes about 2 hours on a 433 Mhz computer. (Only about 3 minutes if the goal is
10 rather than 11 nodes.)

graphs[5]=hGraphs[5];
Do[
graphs[i]=Union@Flatten[Join[hGraphs[i],oneMore/@graphs[i-1]]],
{i,6,10}
1;
graphs[11]=Union@Flatten[Join[hGraphs[11],lastOne/@graphs[10]]];

Given a graph, it is now necessary to compute its effective resistance. This is done using Kirchoff's laws
to generate a set of linear equations for Mathematica to solve. First, all adjacent edges, ones sharing a
common node, are found, then all adjacent nodes, ones connected by an edge. If there are any nodes
with only one other adjacent (a resistor is dangling), the code stops because this graph will have the
same resistance as the smaller one gotten by deleting the node. Next, all d-paths are found by starting
at node 1, recursively going from one node to all those adjacent to it and stopping a path at node 2 or
when a previously encountered node is seen again.

Now, for each d-path, an equation is generated which sets the sum of variables associated with each
edge on the path equal to one. The sign of the variable is set to minus if the edge on the path is
traversed from a higher to lower node number. This equation corresponds to thinking of a 1 volt potential
applied from node 1 to 2 and sums the voltage drops (using that the resistances are all 1 ohm) along the
path. A second set of equations is generated, one for each node other than 1 and 2, which sets the sum
of the signed variables associated with the edges adjacent to the node equal to zero. This corresponds
to the sum of currents into a node being zero.

In general, these equations are not adequate to deduce all the currents in the graph, but they are enough
to get those for all edges adjacent to node 1 (in particular because there is a d-path though each such
edge for indecomposable graphs), which is what Mathematica's Solve function is told to do. The sum of
these currents is the total current flowing out of node 1 and, given the 1 volt assumption, one over this
sum is the effective resistance. Here is the code:
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resistance[graph[nodes_,edges_]]:=Module[{adjacentEdges, firstEdges,paths},

adjacentEdges=Split[Sort[Join[edges,Reverse/@edges]],First[#1]==First[#2]&];
adjacentNodes=Union/@Map[Last,adjacentEdges, {2}];
If[Min@@(Length/@adjacentNodes)==1,Return[1]];

paths=Reap[nextNode[{1}]1]1[[-1,-111;
firstEdges=First[adjacentEdges];
1/Plus@@(x@e@@firstEdges/.First@Solve[
Join[
Thread[Plus@@@Apply[x,Partition[#,2,1]&/@paths, {2}]==1 1,
Thread[Plus@@@Apply[x,Drop[adjacentEdges,2],{2}]==0]

1,
x@@@firstEdges,
x@@@Complement [edges, firstEdges]

D
1;

nextNode[path_]:=Scan[
If[#==2,Sow[Append[path,2]],If[FreeQ[path,#],nextNode[Append[path,#]]1]11&,
adjacentNodes[[Last[path]]]
1;

x[i_,j_1/;i>j=—x[]j,1];

Putting this all together, it is possible to compute the number of unique resistances for graphs with
successively increasing numbers of edges. For one edge, the 1-graph has resistance 1 and the other
graph with one edge, with three nodes and the edge leading to the non-distinguished node, has infinite
resistance. Recursively, the code includes any values from serial/parallel indecomposable graphs with
the next number of edges and all serial and parallel combinations of earlier values whose edge counts
total to the new number. Here is the code:

values[1]={1,Infinity};graphs[_]={};

values[n_]:=values[n]=Union@Flatten[{
resistance/@graphs[n],
Table[Outer[serialParallel,values[n-i],values[i]],{i,1,Floor[n/2]}]

s
serialParallel[Infinity,Infinity]=Infinity;
serialParallel[vl_,v2_]:={vl+v2,1/(1/v1+1/v2)};

To compute the number of resistances for graphs with from one to eleven edges, the above is called
with:

Table[Length@values[i],{i,11}]
and produces (the answer!):
2, 4, 8, 16, 36, 80, 194, 506, 1400, 4039, 12044

In particular, the answer for the original 10 resistor problem is 4039.
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Given all the computation, it seems worthwhile to say a little more about the results.

2
First, an empirical formula for estimating the number of resistances for n resistors is 2" * -04(n—3)
The ratios of the estimated to true value for n=1,...,11 are:

1.117, 1.028, 1., 1.028, 0.9931, 1.027, 1.028, 1.012, 0.9923, 0.9864, 1.003
but there is no reason the believe the formula extrapolates well.

Next, considering the 4039 resistance values for 10 resistors, the following plot has a blue dot for each
value, with x,y coordinates from the denominator and numerator respectively. There is a red dot
corresponding to any lowest terms fraction not in the computed data. A point is left white if the
corresponding fraction is not in lowest terms. The axis upper limits (both 130) are the largest values for
the computed resistances.
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In addition to the blue points being so densely clustered, another notable thing about the plot is how
symmetrical it is about the x =y line, This implies that if some circuit has resistance a/b then some other
circuit likely has b/a. In fact, for 9 or fewer resistors, this symmetry is perfect. However, for 10 resistors
the following values are achieved, but not their inverses:

Y 1 W Y 103 YW 110 103 130 103 115 16 109 98 101
106" 109’ 103° 98’ 101’ 8’ 91’ 8 * 101’ 8 ' & ' 77’ 77’ 6/’ 67
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