
Section 4

Linear Diophantine

Equations

A Diophantine equation is an equation involving a number of variables all
of whose coefficients are integers and to which we seek solutions which are
integers.

Diophantine Equations with One Variable: These are essentially un-
interesting: one simply attempts to solve them as ordinary equations by
any method possible and then examines whether the solutions obtained are
integers or not.

The behaviour becomes much more interesting if we consider an equation
involving two variables.

Example 4.1 Consider
x + y = 1.

For every choice of x there is a unique solution for y, namely y = 1 − x.
Thus the equation has infinitely many solutions, all of the form (x, 1 − x)
for x ∈ Z.

Example 4.2 Consider the equation

x + 2y = 1.

This time we see that a solution for x cannot be arbitrary: it must also be an
odd number. On the other hand, given any y there is always a solution for x,
namely x = 1 − 2y. Thus this equation also has infinitely many solutions,
all of the form (1 − 2y, y) for y ∈ Z.

Example 4.3 Consider the equation

3x + 6y = 1.
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This equation has no solutions: the left-hand side is always a multiple of 3
no matter what choice is made for x and y, while the right-hand side is not
a multiple of 3.

Let us now move on to consider the general situation. We start by
defining the object of concern.

Definition 4.4 A linear Diophantine equation (in two variables) is an equa-
tion of the form

ax + by = c

where a, b and c are integers.

In view of our previous discussion, we have the following natural ques-
tions to consider:

• Under what conditions does the above equation have integer solutions?

• If the equation does have solutions, how many solutions does it have?

• How can we find all the solutions?

In view of the last example, it should be unsurprising that the common
divisors of a and b are of relevance. We shall address each of these questions
in turn.

Existence of Solutions

Consider the general linear Diophantine equation

ax + by = c (4.1)

where a, b and c are integers. Assume that a and b are both non-zero (so
the equation genuinely involves two variables). Let

d = gcd(a, b).

Then d divides both a and b so we may write

a = da1 and b = db1

for some integers a1 and b1.
Suppose that we do have a solution (x0, y0) to the equation. This means

ax0 + by0 = c. Now since d divides a and b, we deduce d | (ax0 + by0); that
is, d | c.

Conversely suppose d | c. Write c = dc1. We make use of part (ii) of
Theorem 2.6. It tells us that there exist integers u and v such that

d = ua + vb.
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Hence upon multiplying c1 we obtain

uac1 + vbc1 = dc1;

that is,
a(uc1) + b(vc1) = c.

Therefore (uc1, vc1) is a solution of the equation.

Conclusion: The equation has a solution if and only if d | c.

Number of Solutions

Suppose that we do have a solution (x0, y0) to Equation (4.1). We can find
other solutions by taking

x = x0 + b1t, y = y0 − a1t

for any integer t. Indeed

ax + by = ax0 + ab1t + by0 − ba1t

= (ax0 + by0) + (da1b1t − db1a1t)

= c + 0 = c.

Since t can be any integer we deduce that our equation has infinitely many
solutions.

Finding all Solutions

We have (under the condition d | c) infinitely many solutions to our lin-
ear Diophantine equation. But could there be others about which we are
currently unaware?

We shall need the following result in the course of our discussion.

Lemma 4.5 Let r, s and t be integers and assume that r and s are coprime.

If r | st, then r | t.

Recall that to say r and s are coprime is to say that their greatest
common divisor is 1.

Proof: gcd(r, s) = 1, so by part (ii) of Theorem 2.6, there exist integers
u and v such that

ur + vs = 1.

Therefore
t = t(ur + vs) = utr + vst.

Now r | st by assumption, while clearly r divides utr. Hence r | (utr + vst),
so r | t, as claimed. ¤
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Now let us return to our linear Diophantine equation (4.1). Suppose we
have fixed one solution (x0, y0) to (4.1). Let (x, y) be any other solution. So
we have

ax + by = c = ax0 + by0.

Hence
a1d(x − x0) = b1d(y − y0).

Dividing by d gives
a1(x − x0) = b1(y − y0).

Now a1 = a/d and b1 = b/d, so we have gcd(a1, b1) = 1 (see Question 3 on
Tutorial Sheet II). Hence a1 and b1 are coprime, while the above equation
tells us

a1 | b1(y − y0).

Hence Lemma 4.5 tells us that

a1 | (y0 − y).

This means that y0 − y = a1t for some t ∈ Z. Substituting into the above
equation gives

a1(x − x0) = b1a1t.

Therefore
x − x0 = b1t.

Hence x = x0 + b1t and y = y0 − a1t.
So we have shown that all solutions to (4.1) arise in the form we previ-

ously presented.
We summarise our finding as follows:

Theorem 4.6 Let a, b and c be integers with a and b not both zero.

(i) The linear Diophantine equation

ax + by = c

has a solution if and only if d = gcd(a, b) divides c.

(ii) If d | c, then one solution may be found by determining u and v such

that d = ua + vb and then setting

x0 = uc/d and y0 = vc/d.

All other solutions are given by

x = x0 + (b/d)t, y = y0 − (a/d)t

for t ∈ Z.
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Example 4.7 We shall find all solutions of

77x + 42y = 35.

First we calculate gcd(77, 42) using the Euclidean Algorithm:

77 = 42 · 1 + 35

42 = 35 · 1 + 7

35 = 7 · 5 + 0

So
gcd(77, 42) = 7.

Since 7 does divide 35, this means that the linear Diophantine equation
does have integer solutions. To actually find the solutions we first reverse
the steps in the Euclidean Algorithm:

7 = 42 − 35

= 42 − (77 − 42)

= (−1) · 77 + 2 · 42.

So we take u = −1 and v = 2. One solution is then

x0 = (−1) · 35/7 = −5, y0 = 2 · 35/7 = 10.

All the solutions are given by

x = x0 + (42/7)t = −5 + 6t

y = y0 − (77/7)t = 10 − 11t

where t ∈ Z.

We can also apply these techniques to other types of problem, for exam-
ple:

Example 4.8 A customer bought some apples and some oranges, 12 pieces

of fruit in total, and they cost him £1.32. If an apple costs 3p more than an

orange, and if more apples than oranges were purchased, how many pieces

of each fruit were bought?

Solution: Let x be the number of apples bought. Then 12 − x is the
number of oranges bought. Let y be the cost of an apple. Then y − 3 is the
cost of an orange. We obtain the following equation

xy + (12 − x)(y − 3) = 132.
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Therefore

xy + 12y − 36 − xy + 3x = 132

3x + 12y = 168

x + 4y = 56

We can solve this equation by inspection:

x = 56 − 4t, y = t (for t ∈ Z).

But we have further requirements: 6 < x < 12, so

6 < 56 − 4t < 12.

Therefore

44 < 4t < 50

11 < t < 121

2
.

Hence t = 12. We deduce that

x = 8, y = 12.

So the customer bought 8 apples at 12p each and 4 oranges at 9p each.
(Finally check our working: 8 · 12 + 4 · 9 = 132.)

Example 4.9 Suppose that we have available postage stamps in two de-

nominations: 5p and 7p. What values can one make using combinations of

stamps?

(E.g., 10 = 5 + 5, 12 = 5 + 7, etc.)

Solution: We are asking for what values of c does

5x + 7y = c

have (non-negative) solutions? Now gcd(5, 7) = 1, so our theory tells us that
the equation does always have solutions (but possibly they are negative and
one cannot put a negative number of stamps on a parcel!)

Let us instead follow the standard method and adjust at the appropri-
ate point to ensure we are getting non-negative solutions. First apply the
Euclidean Algorithm:

7 = 5 · 1 + 2

5 = 2 · 2 + 1

2 = 1 · 2 + 0.
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(So the greatest common divisor is indeed 1.) Reversing these steps:

1 = 5 − 2 · 2

= 5 − 2(7 − 5)

= 3 · 5 + (−2) · 7.

So take u = 3, v = −2. One solution to the linear Diophantine equation is
then:

x0 = 3c, y0 = −2c.

The general solution to the problem is then

x = 3c − 7t, y = −2c + 5t.

To achieve non-negative solutions we require

3c − 7t > 0, i.e., t 6 3c/7

and

−2c + 5t > 0, i.e., t > 2c/5.

Hence we require that the integer t lie between 2c/5 and 3c/7; that is, that
there is at least one integer between these numbers. How far apart are they?

3c/7 − 2c/5 = (15c − 14c)/35 = c/35.

Hence if c > 35, this gap is > 1 and there definitely will be an integer in the
region we want. Thus for c > 35, non-negative solutions exist.

Conclusion: Any value of 35p or greater can be achieved using 5p and 7p
stamps.

(Values smaller than 35p will have to be checked by hand.)

In fact, it turns out that the crucial point here is that the a and b we
are considering here (5 and 7) are coprime. Provided we know this there
will always be some point beyond which all integers can be achieved using
a combination of multiples of a and b.

Theorem 4.10 Let a and b be coprime positive integers. Then every num-

ber c > ab can be expressed as λa + µb with λ and µ non-negative integers.

The proof is omitted, but essentially it is the same argument as supplied
to solve the above problem.
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