
NADA

Numerisk analys och datalogi Department of Numerical Analysis
Kungl Tekniska Högskolan and Computer Science
100 44 STOCKHOLM Royal Institute of Technology

SE-100 44 Stockholm, SWEDEN

Fast Division of Large Integers

A Comparison of Algorithms

Karl Hasselström
d98-kha@nada.kth.se

TRITA-InsertNumberHere

Master’s Thesis in Computer Science (20 credits)
at the School of Computer Science and Engineering,

Royal Institute of Technology, February 2003
Supervisor at Nada was Stefan Nilsson

Examiner was Johan Håstad

Abstract

I have investigated, theoretically and experimentally, under what circumstances
Newton division (inversion of the divisor with Newton’s method, followed by di-
vision with Barrett’s method) is the fastest algorithm for integer division. The
competition mainly consists of a recursive algorithm by Burnikel and Ziegler.

For divisions where the dividend has twice as many bits as the divisor, Newton
division is asymptotically fastest if multiplication of two n-bit integers can be done
in time O(nc) for c < 1.297, which is the case in both theory and practice. My
implementation of Newton division (using subroutines from GMP, the GNU Mul-
tiple Precision Arithmetic Library) is faster than Burnikel and Ziegler’s recursive
algorithm (a part of GMP) for divisors larger than about five million bits (one and
a half million decimal digits), on a standard PC.

Snabb division av stora heltal

En jämförelse av algoritmer

Sammanfattning

Jag har undersökt, ur både teoretiskt och praktiskt perspektiv, under vilka omstän-
digheter Newtondivision (invertering av nämnaren med Newtons metod, följd av
division med Barretts metod) är den snabbaste algoritmen för heltalsdivision. Den
främsta konkurrenten är en rekursiv algoritm av Burnikel och Ziegler.

För divisioner där täljaren har dubbelt så många bitar som nämnaren är Newton-
division snabbast asymptotiskt om multiplikation av två n-bitars heltal kan göras
på tid O(nc) med c < 1.297, vilket är fallet både teoretiskt och i praktiken. Min
implementation av Newtondivision (som använder subrutiner från GMP, GNU:s
multiprecisionsaritmetikbibliotek) är snabbare än Burnikel och Zieglers rekursiva
algoritm (en del av GMP) för nämnare större än cirka fem miljoner bitar (en och en
halv miljon decimala siffror), på en vanlig PC.

Preface

This is my Master’s thesis at the Department of Numerical Analysis and Computer
Science (Nada) at the Royal Institute of Technology in Stockholm, Sweden.

The subject of this project was invented by myself and my supervisor Torbjörn
Granlund of Swox AB, primary maintainer of the bignum library GMP (see section
1.2). He spent a great deal of time helping me, and just generally explaining various
aspects of bignum programming and discussing new ideas with me. Hopefully, I was
able to produce at least a modest amount of useful feedback.

My supervisor at Nada was Stefan Nilsson; it was his inviting Torbjörn Granlund
as a guest lecturer on bignum arithmetic that gave me the idea of this project in the
first place.

The code that I have written as a part of this project is not production quality
yet, but my intention is to improve it until it is fit to be incorporated in GMP – not
because I am paid to do that, but because GMP is free software (see section 1.3).

Contents

1 Introduction 1
1.1 What Is the Problem? . 1
1.2 GMP . 1

1.2.1 My Contribution . 2
1.3 Terminology . 2

2 Simple Algorithms for Arithmetic 4
2.1 Schoolbook Addition . 4
2.2 Schoolbook Subtraction . 5
2.3 Schoolbook Multiplication . 6

3 Division Algorithms 9
3.1 Schoolbook Division . 9
3.2 Divide-and-Conquer Division . 13
3.3 Division With Preinverted Divisor 16

4 Inversion Algorithms 19
4.1 Inverting with General Division . 19
4.2 Newton Inversion . 19
4.3 Newton Inversion, Again . 22

4.3.1 Newton Division . 26

5 Which Division Algorithm Is Fastest? 29
5.1 Implementing Newton Inversion and Barrett’s Algorithm 29
5.2 Test Runs . 30

5.2.1 Comparison of Newton Inversion, Barrett’s Algorithm and
Divide-and-Conquer Division 30

5.2.2 Divide-and-Conquer versus Newton Division 34
5.2.3 Newton versus Divide-and-Conquer Inversion 38

5.3 Conclusions . 40

References 41

A Multiplication Algorithms 42

A.1 Karatsuba’s Algorithm . 42
A.2 Toom’s Algorithm . 43
A.3 FFT Multiplication . 44
A.4 Multiplication In Practice . 45

B Tedious Math 47
B.1 Inequalities From Taylor Series . 47
B.2 Asymptotic Growth Rate of Sums . 47

Chapter 1

Introduction

1.1 What Is the Problem?

Computers have special hardware to do arithmetic on limited-size integers (and often
floating-point numbers as well). This hardware only handles small integers, typically
no larger than 32 or 64 bits. However, since even the smaller of those is greater than
a billion, they are sufficient for the needs of almost all applications. (The same is
true for floating-point numbers; they are typically represented with a precision well
in excess of ten decimal digits.)

But not all numbers are small. The popular RSA encryption algorithm (intro-
duced in [8]) needs integers that are at least several hundred bits long. Practical
experiments with number-theoretic conjectures will often require arithmetic on large
numbers as well, with ‘large’ limited only by the number of CPU-years the algorithm
will take at that precision. Some numerical algorithms need more precision for in-
termediate results than the hardware operations give, to compensate for rounding
errors, cancellation and such.

Then, of course, there are people who want to compute π to billions of digits,
or render a really tiny piece of the Mandelbrot fractal (so that coordinates with a
hundred significant digits are required), and other such worthwhile projects.

To sum it up, there is a need for high-precision arithmetic. And just as the vast
majority of applications do not need more precision than the hardware arithmetic
gives, most of those who do need more do not need that much more. But some do.

1.2 GMP

GMP, the GNU Multiple Precision Arithmetic Library[3], is a software library that
provides routines for doing arithmetic on arbitrarily large integers. (Furthermore, I
should mention that it is also free software; see the terminology section below.) For
many arithmetic operations, it uses different algorithms depending on the size of
the operands, since for small operands, simple but asymptotically slow algorithms

1

are often faster than complicated but asymptotically fast algorithms; most asymp-
totically fast algorithms are fast because they spend time doing various pre- and
postprocessing stages that makes things easier for the heaviest parts, but for small
inputs the overhead of this preprocessing makes them perform less than spectacu-
larly. In practice, this overhead is often even greater than one would think after
having studied the theory, because when programming a simple algorithm, the pro-
grammer can be more clever (and thus squeeze more useful operations per second
out of the computer) without getting confused. For example, GMP implements
many simple algorithms (and subroutines of not so simple algorithms) in assembly
language for lots of processors, taking factors such as the processor pipeline into
account.

Currently, GMP implements all the multiplication algorithms discussed in ap-
pendix A. During compilation, the speed of each algorithm is measured for different
operand sizes to determine the points where one algorithm starts to be faster than
another.

GMP implements the schoolbook (algorithm 3.2) and divide-and-conquer (al-
gorithm 3.3) algorithms for division, but not Newton inversion (algorithm 4.2) or
Barrett’s algorithm (algorithm 3.5). However, since theorems 3.6, 3.10 and 4.3 im-
ply that Barrett’s Algorithm together with Newton inversion is asymptotically faster
than divide-and-conquer division when one has fast enough multiplication, maybe
it should.

1.2.1 My Contribution

I have implemented Newton inversion and Barrett’s algorithm, and pitted them
against GMP’s divide-and-conquer division. The intent being, of course, to either
submit them to the GMP maintainers for possible inclusion into future versions of
the library, or to prove that the breakeven point is too high for Newton and Barrett
to be of practical interest on today’s computers1.

When doing arithmetic, there is one other thing besides speed that is important:
correctness. Dividing fast is of no use if the result is not correct. This makes for some
interesting mathematical tightrope-walking when I prove that the algorithms I have
implemented actually work, since both Newton inversion and Barrett’s algorithm
are at heart slightly inexact.

1.3 Terminology

Radix point refers to the point separating the integer and fraction part of a number
(this is the same thing as ‘decimal point,’ but without implying that the base is ten).
Integer digit means ‘digit to the left of the radix point,’ and fraction digit means
‘digit to the right of the radix point.’

1However, in that case they may still become practical in the future; their asymptotic superiority
guarantees that as long as computers keep getting faster, the upper limit of practical interest must
eventually overtake the breakeven point.

2

The phrase ‘x is k bits [long]’ means that x is a number (not necessarily an
integer) whose representation uses k binary digits.

Bignum is the synonym for ‘arbitrary precision arithmetic’ often used by those
who frequently need to refer to that concept.

Free software is software that anyone is free to do exactly what they want with, ex-
cept denying other people the same freedom. The GNU project defines free software
like this2:

‘Free software’ is a matter of liberty, not price. To understand the
concept, you should think of ‘free’ as in ‘free speech,’ not as in ‘free beer.’

Free software is a matter of the users’ freedom to run, copy, distribute,
study, change and improve the software. More precisely, it refers to four
kinds of freedom for the users of the software:

Freedom 0 The freedom to run the program, for any purpose.

Freedom 1 The freedom to study how the program works, and adapt
it to your needs. Access to the source code is a precondition for
this.

Freedom 2 The freedom to redistribute copies so you can help your
neighbor.

Freedom 3 The freedom to improve the program, and release your im-
provements to the public, so that the whole community benefits.
Access to the source code is a precondition for this.

One way to make your program free is to release it under the GNU General Public
License (GPL), or the Lesser General Public License (LGPL; this is the license
GMP uses). You can find the text of these licenses, as well as everything else
you always wanted to know about free software but were too shy to ask, at http:
//www.gnu.org/.

2The quote is from http://www.gnu.org/philosophy/free-sw.html.

3

Chapter 2

Simple Algorithms for Arithmetic

The first step on the way to arbitrary-precision arithmetic is to realize that we all
(hopefully) know how to add, subtract, multiply and divide using pencil and pa-
per. These four algorithms are known as the schoolbook algorithms (for addition,
multiplication, etc.), because that is where they are taught.

We will only concern ourselves with positive integers from now on, because oper-
ations on other kinds of numbers, such as floating-point and fractions, reduce easily
to operations on integers.

We represent our integers in base β ∈ N, β ≥ 2. An arbitrary number (less than
βk) can then be uniquely written N = ak−1β

k−1 + ak−2β
k−2 + . . . + a1β

1 + a0 for
some integers ai, 0 ≤ ai < β (these are the digits). For example, if β = 10, we can
write any number less than 10k as N = 10k−1ak−1 + 10k−2ak−2 + . . . + 10a1 + a0,
where each of the ai is one of the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. Ten is an
unlikely base, however; in practice, β will always be a power of two, often 232 or 264.

The hardware is assumed capable of the following arithmetic operations:

• Adding two single-digit numbers a and b, giving a single-digit result a+ b (or
a+ b− β if a+ b ≥ β).

• Subtracting one single-digit number b from another single-digit number a,
giving a single-digit result a− b (or a− b+ β if a− b < 0).

• Multiplying two single-digit numbers a and b, giving the two-digit result ab.

• Dividing a two-digit number a by a single-digit number b, giving the single-digit
quotient �a/b� and the single-digit remainder a mod b. (Since the quotient
must fit in one digit, we require that �a/b� < β for this operation to work.)

2.1 Schoolbook Addition

Algorithm 2.1 is the schoolbook algorithm for addition. For every pair of digits with
the same index, starting with the least significant, it adds the digits to produce the
corresponding digit of the result. If the result digit is β or more, it subtracts β from

4

Algorithm 2.1 Schoolbook addition

Input Two nonnegative integers A and B, and an integer k such that A < βk and
B < βk.

Output The sum C = A+B.

1. Let A = ak−1β
k−1+ak−2β

k−2+. . .+a1β
1+a0 and B = bk−1β

k−1+bk−2β
k−2+

. . .+ b1β + b0.

2. i ← 0

3. q ← 0

4. (a) ci ← ai + bi + q mod β

(b) q ← �ai+bi+q
β �.

(c) i ← i+ 1

(d) If i = k, return C = qβk + ck−1β
k−1 + . . .+ c1β + c0.

(e) Goto step 4a.

the current digit and remembers (in the variable q) that it has to add 1 to the result
of the position immediately to the left.

I will leave the proofs of the following two theorems to the reader:

Theorem 2.1. Algorithm 2.1 returns the sum C of A and B. The most significant
digit of C (that is, the digit with index k) is 0 or 1.

Theorem 2.2. Algorithm 2.1 stops after k iterations of the loop, and thus adds
two n-digit numbers in Θ(n) time.

2.2 Schoolbook Subtraction

Algorithm 2.2 is the schoolbook algorithm for subtraction. As you can see, it is very
similar to the addition algorithm: it proceeds from the least to the most significant
pair of digits, but it subtracts instead of adding, and if the result digit is less than
zero, it adds β to that digit and remembers to add −1 to the result of the position
immediately to the left.

Note what happens when B > A. The result should have been negative then,
but the algorithm returns βk + A−B instead (which is a positive number). If this
behavior is undesirable, you might want to make sure that A ≥ B before using this
algorithm.

Again, I state some theorems without their (easy) proofs:

Theorem 2.3. Algorithm 2.2 returns C = A − B and q = 0 if A ≥ B, and C =
βk +A−B and q = −1 otherwise. In both cases, qβk + C = A−B.

5

Algorithm 2.2 Schoolbook subtraction

Input Two nonnegative integers A and B, and an integer k such that A < βk and
B < βk.

Output The difference C = A − B, if A ≥ B, or C = βk + A − B otherwise. A
borrow-out flag q, which is 0 in the first case and −1 in the second case.

1. Let A = ak−1β
k−1+ak−2β

k−2+. . .+a1β
1+a0 and B = bk−1β

k−1+bk−2β
k−2+

. . .+ b1β + b0.

2. i ← 0

3. q ← 0

4. (a) ci ← ai − bi + q mod β

(b) q ← �ai−bi+q
β �.

(c) i ← i+ 1

(d) If i = k, return C = ck−1β
k−1 + . . .+ c1β+ c0 and the borrow-out flag q.

(e) Goto step 4a.

Theorem 2.4. Algorithm 2.2 stops after k iterations of the loop, and thus subtracts
two n-digit numbers in Θ(n) time.

2.3 Schoolbook Multiplication

Algorithm 2.3 is almost, but not quite, identical to the algorithm one learns in
school. In both algorithms, the problem of multiplying a k-digit number by an m-
digit number is reduced to m multiplications of the k-digit number by the individual
digits in the m-digit number, and then adding the results; the difference is that with
the pencil-and-paper algorithm, one first computes all the partial products and then
adds them, while algorithm 2.3 first computes the first product, then computes the
second product and adds it to the first in one step, then computes the third product
and adds it to the sum in one step, etc. The first method is preferable if one cannot
overwrite previous partial results easily, while the second is preferable if overwrites
are possible and one wishes to save space (either paper or memory).

Lemma 2.5. In algorithm 2.3, we have 0 ≤ tj < β2 and 0 ≤ qj < β for all j.

Proof. We proceed by induction on j. It is obviously true for q−1, since it is zero.
Now, provided that 0 ≤ qj−1 < β, we have tj = ci+j + qj−1 + aibj ≥ 0+0+0 · 0 = 0
and tj = ci+j+ qj−1 +aibj ≤ (β−1)+(β−1)+(β−1)(β−1) = β2−1 < β2. (Since
the cn are assigned modulo β, we have 0 ≤ cn < β for all n.) And now that we know
that 0 ≤ tj < β2, we have that qj = � tjβ � ≥ 0 and qj = � tjβ � ≤ �β2−1

β � = β − 1.

6

Algorithm 2.3 Schoolbook multiplication

Input Two nonnegative integers A and B, and two integers k and m such that
A < βk and B < βm.

Output The product C = AB.

1. Let A = ak−1β
k−1 + ak−2β

k−2 + . . . + a1β
1 + a0 and B = bm−1β

m−1 +
bm−2β

m−2 + . . .+ b1β + b0.

2. cn ← 0 for all 0 ≤ n ≤ m− 1

3. i ← 0

4. (a) j ← 0

(b) q−1 ← 0

(c) i. tj ← ci+j + qj−1 + aibj

ii. ci+j ← tj mod β

iii. qj ← � tjβ �
iv. j ← j + 1
v. If j < m, goto step 4(c)i.

(d) ci+m ← qj−1

(e) i ← i+ 1

(f) If i < k, goto step 4a.

5. Return C = ck+m+1β
k+m+1 + ck+mβk+m + . . .+ c1β + c0.

Theorem 2.6. Algorithm 2.3 returns the product C of A and B.

Proof. We will prove by induction that after step 4d, Ci = ci+mβi+m+ . . .+c1β+c0
is the product of B and A = ai−1β

i−1 . . .+ a1β
1 + a0, and that for 0 ≤ n ≤ i+m,

0 ≤ cn < β.
It is true for i = 0, since for every digit bj in B, we add a0bjβ

j to C, and every
digit cn we write satisfies 0 ≤ cn < β, the most significant one because 0 ≤ q < β
and the others because they are modulo β.

Assuming it is true for i, it is true for i + 1 as well, since for every digit bj in
B, we add ai+1bjβ

j+i+1 to Ci, and every digit cn we write satisfies 0 ≤ cn < β, as
before.

Theorem 2.7. Algorithm 2.3 stops after km iterations of the inner loop, and thus
multiplies two n-digit numbers in Θ(n2) time.

Proof. The outer loop is executed once for i = 0, once for i = 1, and so on, the last
one being i = k − 1. That makes a total of k times. The same reasoning applied to

7

the inner loop says that it executes m times for every run of the outer loop.

There is one thing of particular interest among these two results, besides the fact
that the schoolbook algorithm is correct: it takes Θ(n2) time to multiply two n-bit
numbers. Addition and subtraction only take Θ(n) time (which is obviously optimal
since we have to read all the input), and we can afford that much, but for large n,
quadratic time is hopelessly slow. Essentially, if the algorithm is linear then the
limiting factor is the computer’s memory, whereas if the algorithm is quadratic, the
limiting factor is the amount of time one is willing to wait.

Lucky for us, then, that there are faster multiplication algorithms. You will find
a few in appendix A, but understanding them is not a prerequisite for the rest of
this report; just noting how fast they are is enough.

8

Chapter 3

Division Algorithms

Integer addition, subtraction and multiplication all give results that are integers.
This is not the case for division, so we need to specify a little more carefully exactly
what kind of answer we want.

Consider two integers A and B, with A ≥ 0 and B > 0. When we divide A
(the dividend) by B (the divisor), we want an integer quotient Q and an integer
remainder R such that A = BQ + R and 0 ≤ R < B. These numbers have the
following properties:

• Since 0 ≤ R < B and A ≥ 0, we must have Q ≥ 0 and R ≤ A.

• Since Q = A−R
B is an integer, A−R must be divisible by B. There is exactly

one R between 0 and B − 1 that satisfies this, so R is uniquely defined. It
follows that Q is uniquely defined as well.

• Q = A−R
B = A

B − R
B ≤ A

B and Q = A−R
B = A

B − R
B > A

B − 1, so Q = �AB �.

• R = A−BQ = A mod B.

3.1 Schoolbook Division

The essentials of this section are from Knuth[6]. For pedagogic reasons, I have split
up the algorithm into one main part (algorithm 3.2) and one subroutine (algorithm
3.1).

The entire subject of schoolbook division rests on a rather neat little fact: when
dividing an (n+1)-digit number by an n-digit number, we may disregard the n− 1
least significant digits of both numbers, so that we get a 2-by-1 division; the quotient
will be almost correct anyway. This is stated more precisely is theorem 3.1:

Theorem 3.1. The approximate quotient q computed in step 3 of algorithm 3.1
satisfies qc ≤ q ≤ qc + 2, where qc is the correct quotient.

Proof. We consider the two inequalities separately:

9

Algorithm 3.1 Schoolbook division subroutine

Input Two integers A and B, such that 0 ≤ A < βn+1 and βn/2 ≤ B < βn.

Output The quotient �A/B� and the remainder A mod B.

1. If A ≥ Bβ, compute the quotient q and remainder r of (A−Bβ)/B recursively,
and return β + q and r.

2. Let A = anβ
n + an−1β

n−1 + . . .+ a1β + a0 and B = bn−1β
n−1 + bn−2β

n−2 +
. . .+ b1β + b0.

3. q ← �βan+an−1

bn−1
�, or β − 1 if that cannot be computed (due to the result being

greater than β − 1).

4. T ← qB

5. If T > A, q ← q − 1 and T ← T −B.

6. If T > A, q ← q − 1 and T ← T −B.

7. Return the quotient q and the remainder R = A− T .

qc ≤ q: If q = β − 1, we are home free since qc ≤ β − 1. Otherwise we have q =
�(βan + an−1)/bn−1� > (βan + an−1)/bn−1 − 1, so that qbn−1 > βan + an−1 −
bn−1, and since this is an integer inequality, qbn−1 ≥ βan + an−1 − bn−1 + 1.
It follows that

A− qB ≤ A− qbn−1β
n−1

≤ (anβn + . . .+ a0)− (anβ + an−1 − bn−1 + 1)βn−1

= an−2β
n−2 + . . .+ a0 − βn−1 + bn−1β

n−1

< bn−1β
n−1

≤ B (3.1)

The same is true per definition for the correct quotient (A− qcB < B), so we
must have that q ≥ qc.

q ≤ qc + 2: We will prove this by contradiction. Assume to the contrary that q ≥
qc + 3. We have

q ≤ anβ + an−1

bn−1
=

anβ
n + an−1β

n−1

bn−1βn−1
≤ A

bn−1βn−1
<

A

B − βn−1
(3.2)

since A ≥ anβ
n + an−1β

n−1 and B < (bn−1 + 1)βn−1.

10

Now, the relation qc > A/B − 1 implies that

3 ≤ q − qc <
A

B − βn−1
− A

B
+ 1

=
AB

B2 −Bβn−1
− AB −Aβn−1

B2 −Bβn−1
+ 1

=
A

B

(
βn−1

B − βn−1

)
+ 1 (3.3)

so that
A

B
> 2

B − βn−1

βn−1
≥ 2(bn−1 − 1) (3.4)

Finally, since β− 4 ≥ q− 3 ≥ qc = �A/B� ≥ 2(bn−1 − 1) (the last inequality is
true since 2(bn−1−1) is an integer), we have bn−1 ≤ β/2−1, so that B < βn/2.
However, B ≥ βn/2, so we have a contradiction.

Corollary 3.2. Algorithm 3.1 returns the correct quotient and remainder.

Proof. If A ≥ Bβ, we return the correct quotient and remainder by induction on A.
Otherwise, theorem 3.1 guarantees that the approximate quotient is not too small,
and at most two greater than the correct quotient, so the two correction steps of
algorithm 3 are sufficient to make the quotient correct. The remainder must then be
correct too, since it is A− qB. (The correction steps work as intended since qB > A
if and only if q > �A/B�, because q > �A/B� ⇔ q ≥ �A/B�+ 1 > A/B ⇔ qB > A
and q ≤ �A/B� ≤ A/B ⇔ qB ≤ A.)

Theorem 3.3. Algorithm 3.1 takes O(n) time.

Proof. Since A < βn+1 ≤ 2Bβ, this algorithm calls itself recursively at most once.
The rest of the algorithm clearly runs in O(n) time, since it calls a constant number
of subroutines that all run in O(n) time.

Algorithm 3.2 is schoolbook division. It is capable of dividing any two positive
integers A and B, as long as the most significant digit of B is at least β/2. Since
B �= 0, we can always coerce B into this form without affecting the result by
multiplying both A and B by some suitable (small, single-digit) constant1.

Step 4 can be done by simply splitting the digits of A into an upper and a lower
half, since we represent numbers as a sequence of digits in base β. For the same

1In a practical application, where β is a power of two, it is always possible to pick a small
constant that is a power of two, so that the multiplication can be done by fast bit- operations.

11

Algorithm 3.2 Schoolbook division

Input Two integers A and B, such that βm−1 ≤ A < βm and βn/2 ≤ B < βn.

Output The quotient �A/B� and the remainder A mod B.

1. If m < n, return the quotient 0 and the remainder A.

2. If m = n, then if A < B, return the quotient 0 and the remainder A; if A ≥ B,
return the quotient 1 and the remainder A−B.

3. If m = n + 1, compute the quotient and remainder of A/B using algorithm
3.1 and return them.

4. A′ ← �A/βm−n−1� and s ← A mod βm−n−1

5. Compute the quotient q′ and the remainder r′ of A′/B using algorithm 3.1.

6. Compute the quotient q and remainder r of βm−n−1r′+s
B recursively.

7. Return the quotient Q = βm−n−1q′ + q and remainder R = r.

reason, βm−n−1r′ + s can be constructed simply by concatenating the digits of r′

and s (since 0 ≤ s < βm−n−1). The same goes for βm−n−1q′ + q, since

q = �β
m−n−1r′ + s

B
�

≤ �β
m−n−1(B − 1) + (βm−n−1 − 1)

B
�

= �β
m−n−1B − 1

B
�

= βm−n−1 + �−1
B

�
< βm−n−1 (3.5)

This means that algorithm 3.2 can be informally stated as follows: ‘Divide the
n + 1 most significant digits of A by the n digits of B. If A only had n + 1 digits,
we are done. If not, the quotient of that division is the most significant digit of the
total quotient. Get the remaining digits of the quotient and the total remainder
by dividing the remainder followed by the ignored digits of A.’ This is at least
somewhat reminiscent of what I was taught in school, although it still sounds more
precise than I remember it.

Theorem 3.4. Algorithm 3.2 returns the correct quotient and remainder.

Proof. If m ≤ n, the quotient and remainder are obviously correct. If m = n + 1,
algorithm 3.2 returns the correct remainder and quotient by corollary 3.2.

12

Otherwise, m > n + 1 so that m − n − 1 ≥ 1. A′ < βn+1 since A < βm, so the
conditions of algorithm 3.1 are met.

The quotient we return is

Q = βm−n−1q′ + q = βm−n−1A
′ − r′

B
+

βm−n−1r′ + s− r

B

=
βm−n−1A′ + s− r

B

=
A−R

B
(3.6)

so we have A = BQ+R. Since 0 ≤ R < B by induction (βm−n−1r′+s < βm−1 ≤ A),
Q and R are the correct quotient and remainder.

Theorem 3.5. Algorithm 3.2 runs in O(mn) time if m > n.

Proof. Let the algorithm run in T (m,n) time. The recursive call takes T (m− 1, n)
time, and the rest takes O(n) time2. We stop recursing when m ≤ n+ 1, so we run
the body of the algorithm O(m−n) times. This means that T (m,n) ∈ O(mn).

3.2 Divide-and-Conquer Division

Burnikel and Ziegler[2] describe a divide-and-conquer division algorithm, based on
schoolbook division. There are two algorithms, algorithms 3.3 and 3.4, that call each
other recursively; they both divide one integer by another and return the quotient
and remainder.

I will not give the correctness proofs here; Burnikel and Ziegler spend a number
of pages doing precisely that. However, the overall idea is quite simple:

Algorithm 3.3 is a description of how to divide a dividend of 2n digits by a divisor
of n digits by seeing each group of n/2 digits as one large digit, so that we get a
4 digits by 2 digits division, and simply use schoolbook division (algorithm 3.2) on
those huge digits.

Algorithm 3.4 divides 3n digits by 2n digits, by grouping n digits into one huge
digit so that we have a 3 digits by 2 digits division. This division is computed just as
in algorithm 3.1, by ignoring all but the most significant (huge) digit of the divisor,
and the two most significant digits of the dividend, calling algorithm 3.2 to compute
that approximate quotient, and then correcting it.

Let the time it takes to divide 2n digits by n digits using algorithm 3.3 be T (n),
and let M(n) be the time it takes to multiply two n-digit numbers. Then T (n) =
2T ′(n/2)+K, where T ′(n) is the time it takes to divide 3n digits by 2n digits using
algorithm 3.4, and K is the constant time we spend juggling pointers and the like.
Similarly, T ′(n) ≤ T (n) + M(n) + Ln, since we may or may not call algorithm

2If one does not implement the body of the function very carefully, it will take O(max(m−n, n))
time. If m /∈ O(n), this is not in O(n).

13

Algorithm 3.3 Divide-and-conquer division (2 by 1)

Input Two nonnegative integers A and B, such that A < βnB and βn/2 ≤ B < βn.
n must be even.

Output The quotient �A/B� and the remainder A mod B.

1. Let A = A3β
3n/2 +A2β

n+A1β
n/2 +A0 and B = B1β

n/2 +B0, with 0 ≤ Ai <
βn/2 and 0 ≤ Bi < βn/2.

2. Compute the high half Q1 of the quotient as Q1 = A3βn+A2βn/2+A1

B with re-
mainder R1 using algorithm 3.4.

3. Compute the low half Q0 of the quotient as Q0 = R1βn/2+A4

B with remainder
R0 using algorithm 3.4.

4. Return the quotient Q = Q1β
n/2 +Q0 and the remainder R = R0.

Algorithm 3.4 Divide-and-conquer division (3 by 2)

Input Two nonnegative integers A and B, such that A < βnB and β2n/2 ≤ B <
β2n. n must be even.

Output The quotient �A/B� and the remainder A mod B.

1. Let A = A2β
2n + A1β

n + A0 and B = B1β
n + B0, with 0 ≤ Ai < βn and

0 ≤ Bi < βn.

2. If A2 < B1, compute Q̂ = �A2βn+A1

B1
� with remainder R1 using algorithm 3.3;

otherwise, let Q̂ = βn − 1 and R1 = (A2 −B1)βn +A1 +B1.

3. R̂ ← R1β
n +A4 − Q̂B0

4. If R̂ < 0, R̂ ← R̂+B and Q̂ ← Q̂− 1.

5. If R̂ < 0, R̂ ← R̂+B and Q̂ ← Q̂− 1.

6. Return Q = Q̂ and R = R̂.

14

3.3, and apart from that we do one n-by-n multiplication and spend an additional
amount of time linear in n.

So we have T (n) = 2T ′(n/2)+K ≤ 2(T (n/2)+M(n/2)+Ln/2)+K = 2T (n/2)+
2M(n/2)+Ln+K, and expanding T again we get T (n) ≤ 2(2T (n/4)+2M(n/4)+
Ln/2 + K) + 2M(n/2) + Ln + K = 4T (n/4) + 4M(n/4) + 2M(n/2) + 2Ln + 2K.
Expanding it log2 n times, so that we reach the bottom of the recursion, we get

T (n) ≤ nT (1) +
log2 n∑
i=1

2iM(n/2i) + Ln log2 n+K log2 n

=
log2 n∑
i=1

2iM(n/2i) +O(n logn) (3.7)

If M(n) ≤ Dnc for some c > 1, so that M(n/2i) ≤ M(n)/2ic, we get

log2 n∑
i=1

2iM(n/2i) = M(n)
log2 n∑
i=1

(21−c)i

=
21−c − (21−c)log2 n+1

1− 21−c M(n)

=
1− n1−c

2c−1 − 1
M(n)

<
1

2c−1 − 1
M(n) (3.8)

(Note that the term n1−c that we discard grows insignificant when n is moderately
large, unless c is very close to 1.)

For example, M(n) = Dn2 (schoolbook multiplication) gives T (n) < M(n) +
O(n log n), and M(n) = Dnlog23 ≈ Dn1.585 (Karatsuba; see section A.1) gives
T (n) < 2M(n) + O(n log n). M(n) = Dnlog35 ≈ Dn1.465 (Toom-3; see section
A.2) gives T (n) < (2log3 5−1 − 1)−1M(n) + O(n logn) ≈ 2.630M(n) + O(n logn).
Figure 3.1 illustrates how the number of multiplications per division changes with
the exponent; note that division is pretty much exactly as fast as multiplication
when c = 2, and that the number of multiplications required for one division seems
to grow towards infinity when c approaches 1.

If, on the other hand, M(n) ≤ Dn logk n or M(n) ≤ Dn logk n log logn, we get
(setting f(n) = logk n or f(n) = logk n log log n)

log2 n∑
i=1

2iM(n/2i) =
log2 n∑
i=1

nf(n/2i) = n

log2 n∑
i=1

f(n/2i) (3.9)

Theorems B.3 and B.4 tell us that the remaining sum is in Θ(f(n) log n), so in
both cases we have that T (n) ∈ Θ(M(n) log n).

We state these results as a theorem:

15

0

5

10

15

20

25

1.0 1.2 1.4 1.6 1.8 2.0
exponent c

number of multiplications

Figure 3.1. The relation between multiplication time and division time (with algo-
rithm 3.3) when the multiplication time is Θ(nc).

Theorem 3.6. If the time it takes to multiply two n-digit numbers is M(n) = Dnc

for some c > 1, then algorithm 3.3 takes at most 1
2c−1−1

M(n) +O(n logn) time.
If M(n) = Dn logk n or M(n) = Dn logk n log log n, then algorithm 3.3 runs in

time Θ(M(n) log n).

3.3 Division With Preinverted Divisor

If integer division were exact, we could compute A/B by first computing 1/B, and
then multiplying (this is the way division is done with rational numbers, by the way).
Now, integer division is not exact, but it is possible to compute an approximation
to 1/B (or to �βn/B� for some n, to be precise), and then multiply with A to get an
approximation to the quotient and remainder (for a cost of about one multiplication
each). These approximations are good enough that they can be corrected in linear
time.

Algorithm 3.5 (originally published by Barrett[1]) is taken from Burnikel and
Ziegler[2], who describe it very briefly. I have modified the algorithm to require a
less precise inverse (after a suggestion from Torbjörn Granlund) and to correct the
approximate quotient and divisor using addition and subtraction instead of division.
The proofs are mine.

Lemma 3.7. At step 5a in algorithm 3.5, Rk = A−BQk.

16

Algorithm 3.5 Barrett’s method

Input Two nonnegative integers A and B such that βn−1 ≤ B < βn and A < βm

for some positive integers n and m, with 1 ≤ n ≤ m ≤ 2n. A nonnegative
integer µ such that µ− a ≤ βm

B ≤ µ+ b for some nonnegative numbers a and
b.

Output The quotient Q = �A/B� and the remainder R = A−BQ.

1. A1 ← �Aβ−(n−1)�
2. Q1 ← �A1µβ

−(m−n+1)�
3. R1 ← A−BQ1

4. k ← 1

5. (a) If 0 ≤ Rk < B,

i. return Q = Qk and R = Rk.

(b) If Rk < 0,

i. Rk+1 ← Rk +B

ii. Qk+1 ← Qk − 1

(c) else,

i. Rk+1 ← Rk −B

ii. Qk+1 ← Qk + 1

(d) k ← k + 1

(e) Goto step 5a.

Proof. It is trivially true the first time we reach step 5a. And if it was true for
k = n, it will be true for k = n + 1, since both sides of the equality are either
increased or decreased by B in each iteration of the loop. The lemma now follows
by induction.

Theorem 3.8. If algorithm 3.5 returns Q and R, then R = A−BQ and 0 ≤ R < B,
so Q and R are the quotient and remainder of the division A/B.

Proof. Lemma 3.7 proves the first part of the theorem. The second part follows from
the fact that the algorithm never halts unless the condition in step 5a is fulfilled.

Theorem 3.9. Algorithm 3.5 halts after at most a + 2 or b + 1 iterations of the
loop (whichever is greater).

17

Proof. We required that µ ∈
[
βm

B −a, β
m

B +b
]
. Step 1 guarantees that A1 ∈

(
A

βn−1 −
1, A

βn−1

]
, and step 2 says that Q1 ∈

(
A1µ

βm−n+1 − 1, A1µ
βm−n+1

]
.

Now,

A1µ ∈
((

A

βn−1
− 1

)(
βm

B
− a

)
,

A

βn−1

(
βm

B
+ b

)]
(3.10)

So

A1µ

βm−n+1
∈

(
β−(m−n+1)

(
A

βn−1
− 1

)(
βm

B
− a

)
, β−(m−n+1) A

βn−1

(
βm

B
+ b

)]

=

((
A

βm
− 1

βm−n+1

)(
βm

B
− a

)
,
A

βm

(
βm

B
+ b

)]

=
(
A

B
− Aa

βm
− βn−1

B
+

a

βm−n+1
,
A

B
+

Ab

βm

]
⊂

(
A

B
− (a+ 1),

A

B
+ b

]
(3.11)

since A < βm and B ≥ βn−1.
It is now easy to see that

Q1 ∈
(

A1µ

βn+1
− 1,

A1µ

βn+1

]
⊂ (

A/B − (a+ 2), A/B + b
]

(3.12)

and since
A/B ∈ [�A/B�, �A/B�+ 1

)
(3.13)

we have that
Q1 ∈ (�A/B� − (a+ 2), �A/B�+ (b+ 1)

]
(3.14)

All that is left to note is that every iteration of the loop takes Qk one step closer
to �A/B�, and according to equation 3.14 we can make at most a+2 or b+1 steps
(whichever is greater) before Qk = �A/B�.
Theorem 3.10. If the time it takes to multiply two n-digit numbers is M(n), then
algorithm 3.5 runs in 2M(n) +O(n) time.

Proof. We do two multiplications, A1µ and BQ1, that are not mere shifts. Other
than that, all we do is obvious O(n)-operations like addition, subtraction, trunca-
tion, shifting and comparisons. Theorem 3.9 guarantees that we do only a constant
number of them.

18

Chapter 4

Inversion Algorithms

Barrett’s method (algorithm 3.5) requires as input an integer approximation of βn

divided by a large integer N . This problem is exactly the same as computing a
limited-precision approximation to 1/N , except that we have to move the radix
point around a bit.

I will present two ways of computing inverses, one obvious and one slightly more
far-fetched.

4.1 Inverting with General Division

Given an integer N and a (small) integer n, we can trivially find �βn

N � by explic-
itly constructing the number βn and then using a general division routine such as
algorithm 3.2 or 3.3 (using Barrett’s algorithm is not an option, since it needs the
inverse we are trying to compute).

Obviously, as long as we can disregard the O(n) time it takes to construct the
number βn, this inversion algorithm takes exactly as long as the division algorithm
we use.

4.2 Newton Inversion

Newton’s method is a well-known way to find roots of differentiable functions. Ba-
sically, to find a root to f(x) = 0, you start with some approximation to the root
x0, and then compute successively better approximations using the rule

xi+1 = xi − f(xi)
f ′(xi)

(4.1)

Newton’s method is somewhat picky about the initial approximations – finding one
is usually the hardest part of the entire algorithm – but if it converges at all, it
converges quadratically, that is, the number of correct digits doubles with every
iteration1.

1With one exception: if the derivative is zero at the root, the convergence is only linear.

19

By setting f(x) = 1/x−b, and thus f ′(x) = −1/x2, we get a series that converges
to 1/b:

xi+1 = xi +
1/xi − b

1/x2
i

= xi + xi − bx2
i = 2xi − bx2

i (4.2)

Note that there is not any division in the equation any longer; because of this, it
can actually be useful.

Equation 4.2 is the foundation of Newton inversion. The trick is to write this in
a way that works with integers, and then to prove that the result is always correct.
Not surprisingly, the second of these is the more formidable task.

Algorithm 4.1 and its correctness proof are from Knuth[6]. I have changed the
algorithm slightly, and made the proof twice as long by spelling it out in a more
comfortable level of detail.

Note that this algorithm assumes a base of β = 2. It is trivial to adapt to any
base that is a power of two (which should cover all actual implementations), but for
any other base one would have to do some real work to prove that the algorithm
still works.

Algorithm 4.1 Newton inversion

Input A real number v such that 1
2 ≤ v < 1, and a (small) integer n.

Output An approximation z to 1/v such that |z − 1/v| < 2−2n .

1. z0 ← 1
4� 32

4v1+2v2+v3
�, where vi is the ith most significant fraction digit of v.

2. k ← 0.

3. (a) sk ← z2
k.

(b) tk ← v truncated so that exactly 2k+1 + 3 fraction digits still remain.

(c) uk ← tksk, truncated so that exactly 2k+1 +1 fraction digits still remain.

(d) wk ← 2zk.

(e) zk+1 ← wk − uk.

(f) k ← k + 1.

(g) If k < n, goto step 3a. Otherwise, return zk and terminate.

Theorem 4.1. In algorithm 4.1, we have

zi ≤ 2 and |zi − 1/v| < 2−2i
(4.3)

for all i.

Proof. Let δk = 1/v − zk; what we want to prove is that |δk| < 2−2k .

20

Base case Let v′ = 4v1 + 2v2 + v3 = �8v�. We have

δ0 = 1/v − z0 = 1/v − 1
4
�32
v′
�

= 1/v − 8/v′ +
32/v′ − �32/v′�

4

=
v′ − 8v
vv′

+
32/v′ − �32/v′�

4
(4.4)

We make the following observations:

• 0 ≤ 32/v′−�32/v′�
4 < 1

4 since 32/v
′−�32/v′� is the fraction part of a positive

number.

• −1
2 < v′−8v

vv′ ≤ 0, since v′ − 8v = �8v� − 8v ∈ (−1, 0] and vv′ = v�8v� ≥
1
2 × 4 = 2.

It follows that −1
2 < δ0 < 1

4 , so |δ0| < 1
2 = 2−20 which is what we wanted to

make sure.

Inductive case Now assume that |δk| < 2−2k and zk ≤ 2. Let Ak = tksk − uk be
the amount truncated in step 3c; clearly, 0 ≤ Ak < 2−2k+1−1.

δk+1 = 1/v − zk+1 = 1/v − wk + uk

= 1/v − 2zk + tkz
2
k −Ak

= δk − zk + z2
kv − z2

kv + tkz
2
k −Ak

= δk − zk(1− zkv)− z2
k(v − tk)−Ak

= δk − (1/v − δk)vδk − z2
k(v − tk)−Ak

= vδ2
k − z2

k(v − tk)−Ak (4.5)

Since 0 ≤ vδ2
k ≤ δ2

k < (2−2k
)2 = 2−2k+1 and 0 ≤ z2

k(v−tk)+Ak < 4(2−2k+1−3)+
2−2k+1−1 = 2−2k+1 , we have that |δk+1| < 2−2k+1 .

The only thing left to verify is that zk ≤ 2 for all k. It is trivially true for k = 0.
So assume it is true for zk, and that |δk| < 2−2k . Then we have three cases:

1. If tk = 1
2 , then ti =

1
2 for i ≤ k. And since z0 = 2, the recursion zi+1 = 2zi− 1

2z
2
i

says that zi = 2 for 0 ≤ i ≤ k + 1.

2. If tk > 1
2 , but tk−1 = 1

2 so that zk = 2 and tk ≥ 1
2 + 2−2k+1−3, then 2zk −

tkz
2
k = 4(1 − tk) ≤ 4(1

2 − 2−2k+1−3) = 2 − 2−2k+1−1. Now let Ak be the
amount truncated in step 3c, as before. Since Ak < 2−2k+1−1, we have zk+1 =
2zk − tkz

2
k +Ak < 2.

21

3. If tk−1 > 1
2 , then v ≥ 1

2 + 2−2k−3 so that 1/v < 2 − 2−2k−1 + 2−2k+1−3 (see
theorem B.2). Since |δk+1| < 2−2k+1 means that δk+1 > −2−2k+1 , we have

zk+1 = 1/v − δk+1 < 2− 2−2k−1 + 2−2k+1−3 + 2−2k+1

= 2− 2−2k−1 + 9 · 2−2k+1−3

= 2− 2−12−2k
+ 9 · 2−3

(
2−2k

)2

= 2− 1
2

(
2−2k − 9

4

(
2−2k

)2
)

= 2− 1
2
2−2k

(
1− 9

4
2−2k

)
< 2 (4.6)

for k ≥ 1.

The observant reader will have noticed that these are not in fact two unrelated
induction proofs; as stated in the ‘Inductive case’ steps, the dependencies are as
follows:

• |δk| < 2−2k and zk ≤ 2 together imply |δk+1| < 2−2k+1 .

• |δk+1| < 2−2k+1 and zk ≤ 2 together imply zk+1 ≤ 2.

(The base cases do not have any such dependencies.) Clearly, if we prove that
|δk+1| < 2−2k+1 before we prove that zk+1 ≤ 2, we will be OK.

4.3 Newton Inversion, Again

Algorithm 4.2 is basically the same as algorithm 4.1, but I have generalized it slightly
to make it more suited for translation to program code. In particular, there are three
major improvements (in order of decreasing importance and increasing difficulty to
prove correct):

1. The base case does not involve only the three most significant bits of the
operand, but a much larger and variable number of bits.

2. There is the option of increasing the number of fraction digits by one less in
each iteration of the loop.

3. As long as certain rules are obeyed, there is no harm in keeping a few more
fraction digits around than is strictly necessary.

Before the algorithm starts, one has to determine the constants ki. The only
restrictions are that for all i, either ki+1 = 2ki or ki+1 = 2ki − 1, and that ki = n
for some i. The idea is that they be computed as follows: kI = n; then for every

22

Algorithm 4.2 Newton inversion, again

Input A real number v with m fraction digits, such that 1
2 ≤ v < 1, and a (small)

integer n.

Output An approximation z to 1/v such that |z − 1/v| ≤ 2−n.

1. i ← 0

2. z0 ← 1/v, truncated so that at least k0 fraction digits remain. (Use some other
inversion algorithm, such as schoolbook or divide-and-conquer division.)

3. (a) If ki = n, return zi and terminate.

(b) si ← z2
i .

(c) ti ← v truncated so that exactly 2ki + 3 + hi fraction digits still remain,
0 ≤ hi ≤ 2ki.

(d) ui ← tisi, truncated so that at least 2ki+1+hi fraction digits still remain.

(e) wi ← 2zi.

(f) zi+1 ← wi − ui.

(g) i ← i+ 1

(h) Goto step 3a.

i ≥ 0, ki = �ki+1/2�. The number I is chosen such that k0 is a suitable size for the
basecase algorithm.

This scheme is used in place of simply doubling k, so that we minimize operand
length at every iteration of the loop instead of simply doubling it until we have at
least as much precision as was asked for, then truncate.

For example, say the required precision is 41000 bits and the breakeven point
below which the basecase algorithm is faster is 1000 bits. The simple approach is
to do a basecase of 1000 bits, then double the precision in each iteration of the
loop until it reaches 64000 bits, and last of all truncate to 41000 bits. The smart
approach is to calculate the ki as above; see table 4.1. In both cases we have the
base case and six iterations of the loop, but the precision required in each step is
significantly less in the second case.

The reason for allowing hi extra fraction digits in the truncation steps is con-
venience; if one machine word holds g bits, then it is possible to always round the
number of fraction digits up to an integer multiple of g when truncating, which
makes life simpler.

Theorem 4.2. In algorithm 4.2, we have

zi ≤ 2 and |zi − 1/v| < 2−ki (4.7)

for all i.

23

Simple Smart
k0 1000 641
k1 2000 1282
k2 4000 2563
k3 8000 5125
k4 16000 10250
k5 32000 20500
k6 64000 41000

Table 4.1. Precision in each iteration of the Newton loop using the simple and smart
values of ki.

Proof. Let δi = 1/v − zi; what we want to prove is that |δi| < 2−ki .

Base case For i = 0, we have 1/v− 2−k0 < z0 ≤ 1/v after step 2. This means that
δ0 = 1/v − z0 < 2−k0 , and δ0 ≥ 0. So |δ0| ≤ 2−k0 , as required.

Inductive case Assume that |δi| < 2−ki . Let Ai = tisi − ui be the amount trun-
cated in step 3d; clearly, 0 ≤ Ai < 2−2ki−1. From equation 4.5 (modified
slightly), we have that δi+1 = vδ2

i − z2
i (v − ti)−Ai.

Since 0 ≤ vδ2
i ≤ δ2

i < (2−ki)2 = 2−2ki and 0 ≤ z2
i (v − ti) + Ai < 4 · 2−2ki−3 +

2−2ki−1 = 2−2ki , we have that |δi+1| < 2−2ki ≤ 2−ki+1 .

The only thing left to verify is that zi ≤ 2 for all i. It is trivially true for i = 0 since
v ≥ 1

2 . So assume it is true for zi. Then we have three cases:

1. If ti = 1
2 , then tj = 1

2 for all j ≤ i. And since z0 = 2, the recursion zj+1 =
2zj − 1

2z
2
j says that zj = 2 for 0 ≤ j ≤ i+ 1, so zi+1 = 2.

2. If ti > 1
2 , but ti−1 = 1

2 so that zi = 2 and ti ≥ 1
2 +2−2ki−3−hi , then 2zi− tiz

2
i =

4(1 − tk) < 4(1
2 − 2−2ki−3−hi) = 2 − 2−2ki−1−hi . Now let Ai = tisi − ui, as

before. Since Ai < 2−2ki−1−hi , we have zi+1 = 2zi − tiz
2
i +Ai < 2.

3. If ti−1 > 1
2 , then v ≥ 1

2 + 2−2ki−1−3−hi−1 so that 1/v < 2 − 2−2ki−1−1−hi−1 +
2−4ki−1−3−2hi−1 (see theorem B.2). Since |δi+1| < 2−ki+1 means that δi+1 >
−2−ki+1 , we have

zi+1 = 1/v − δi+1

< 2− 2−2ki−1−1−hi−1 + 2−4ki−1−3−2hi−1 + 2−ki+1

≤ 2− 2−2ki−1−1−hi−1 + 2−4ki−1−3−2hi−1 + 2−4ki−1−3

= 2− 2−2ki−1−1−hi−1(1− 2−2ki−1−2−hi−1 − 2−2ki−1−2+hi−1)
< 2 (4.8)

when hi ≤ 2ki.

24

Theorem 4.3. If the time it takes to multiply two n-digit numbers isM(n) ∈ Θ(nc)
for some c > 1, then algorithm 4.2 takes at most

(
1 + 2

2c−1

)
M(n) +O(n) time.

If M(n) ∈ O(n1+ε) for arbitrarily small ε, then algorithm 4.2 takes at most
3M(n) +O(n) time.

Proof. We make log2 n iterations of the loop. Each of them takes M(k/2)+M(k)+
O(k) time. This sums to

log2 n∑
i=1

(
M(2i−1) +M(2i) +O(2i)

)
= O(n) +

log2 n∑
i=1

(
M(2i−1) +M(2i)

)
= O(n) +M(1) +M(n) + 2

log2 n−1∑
i=1

M(2i)

= O(n) +M(n) + 2
log2 n−1∑
i=1

M(2i) (4.9)

If M(n) = Cnc, the sum is

log2 n−1∑
i=1

M(2i) =
log2 n−1∑
i=1

C(2i)c

= 2C
log2 n−1∑
i=1

(2c)i

= 2C
2c(1− (n/2)c)

1− 2c

= M(n)
2

2c − 1
− 2C

2c

2c − 1
(4.10)

so the time is
O(n) +

(
1 +

2
2c − 1

)
M(n) (4.11)

Table 4.2 lists how many times slower than multiplication Newton inversion is
asymptotically for some particularly interesting values of c. Figure 4.1 shows the
same thing for all interesting values of c.

Note that in the degenerate case c = 1, M(n) ∈ O(n) and thus the factor 3
is not important since we have disregarded other linear factors (however, if C is
sufficiently large compared to the factor hidden in the O(n) term, 3 will not be such
a bad guess).

IfM(n) ∈ O(n1+ε) for arbitrarily small ε (the examples n logk n and n logk n log log n
come to mind), then it can be approximated by Cn1+ε(n), where ε(n) → 0 as n → ∞.
Asymptotically, the behavior will be identical to the case M(n) = Θ(n), but the

25

c Number of multiplications
1 3.000
log3 5 2.136
log2 3 2.000
2 1.667

Table 4.2. The execution time of algorithm 4.2 relative to that of multiplication
when the multiplication time is Θ(nc).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.0 1.2 1.4 1.6 1.8 2.0
exponent c

number of multiplications

Figure 4.1. The relation between multiplication time and inversion time (with
algorithm 4.2) when the multiplication time is Θ(nc).

convergence may be much slower. Ironically, in this case we do not have to worry
about the O(n) term, since we only approach linear time, without ever getting there.

4.3.1 Newton Division

Combining Newton inversion with Barrett’s method gives a division algorithm that
takes precisely two multiplications extra time compared to Newton inversion alone.

Figure 4.2 is a combination of figures 4.1 (with two multiplications added to
the time for Barrett’s algorithm) and 3.1. It indicates that for multiplication time
M(n) ∈ O(nc), with c less than about 1.3, Newton division is asymptotically supe-
rior to divide-and-conquer division. This figure is actually c = log2(3/2+

√
11/12) ≈

26

0

5

10

15

20

25

1.0 1.2 1.4 1.6 1.8 2.0
exponent c

number of multiplications

Newton division
divide-and-conquer division

Figure 4.2. The relation between multiplication time and division time when the
multiplication time is Θ(nc).

1.297; it is the solution of the equation

1
2c−1 − 1

= 3 +
2

2c − 1
(4.12)

(The left hand side is from equation 3.8, the right hand side is from equation 4.11
plus 2 for Barrett’s algorithm.)

If we want to do k divisions using the same divisor (but with different dividends),
we can get away with less work than simply k times one Newton division, since we
need only invert the divisor once. This moves the breakpoint to

c = log2

8k + 1 +
√
16k2 + 8k + 9

4k + 2
(4.13)

which is the solution to the equation

k

2c−1 − 1
= 2k + 1 +

2
2c − 1

(4.14)

When k increases from one, c decreases quite rapidly at first, but already at k = 100
it is almost log2 3, the value on which it converges as k → ∞ (see table 4.3). It
is no coincidence that c converges to the same exponent we have in Karatsuba
multiplication, since that same exponent makes the divide-and-conquer algorithm
require exactly two multiplications per division; Barrett’s algorithm always takes

27

k c

1 1.297
2 1.402
3 1.452
4 1.481
5 1.499
10 1.540
100 1.580
1000 1.584
10000 1.585

Table 4.3. For k divisions by the same divisor, the constant c such that multi-
plication in time O(nc) makes Newton and divide-and-conquer division equally fast
asymptotically.

precisely two multiplications per division, and the inversion can be neglected since
we only do it once.

Using the same divisor several times is not just a toy problem. When evaluating
ab mod c for large integers a, b and c, one efficient method is repeated squaring
and modular reduction; the modular reduction consists of finding the remainder of
different numbers divided by c. Such powers occur in RSA cryptography (see, for
example, [8] where it was first introduced). Similarly, when dividing kn digits by n
digits, we essentially do k divisions with different 2n-digit dividends and a constant
n-digit divisor.

Newton division is the fastest known division algorithm, given that we use a fast
enough multiplication algorithm, such as FFT (or Toom-9 or higher; see table A.1);
in particular, it is asymptotically faster than divide-and-conquer division by more
than just a constant factor, and asymptotically 5 times slower than multiplication.
If we do several divisions by the same divisor, Newton division is even more favor-
able; for example, using Toom-3 multiplication, Newton division is asymptotically
superior for four or more divisions. Divide-and-conquer division always wins if we
use Karatsuba multiplication (or slower), though.

28

Chapter 5

Which Division Algorithm Is Fastest?

Are Newton inversion and Barrett’s method superior to Burnikel and Ziegler’s re-
cursive algorithm in practice? I have built rather optimized Newton and Barrett
algorithms on top of the low-level interface to GMP. The Burnikel-Ziegler algorithm
is a part of GMP (built and tuned by far better programmers than myself), so I did
not have to make that as well.

5.1 Implementing Newton Inversion and Barrett’s Algo-
rithm

I implemented both algorithms in plain C, a rather low-level high-level language.
My approach to making them run fast is nothing revolutionary, just a few rules of
thumb:

• Never allocate memory dynamically; I demand a pointer to one big chunk of
scratch space as input to the algorithm, and then use that exclusively, being
careful to reuse space when two temporary variables are not live simultane-
ously.

• Do magic with pointers to avoid copying (parts of) operands. Numbers are
represented with a pointer to the least significant digit and a small integer
that says how many digits there are; for example, truncating can be done by
decreasing the integer and advancing the pointer.

• The non-integer numbers in Newton inversion are implemented with integer
operations just like everything else; all I have to do is keep track of where the
radix point is, and multiply or divide numbers with powers of β to align their
radix points before I add or subtract them, but this is all just more pointer
juggling.

• Call optimized GMP subroutines for all my arithmetic needs; most of these
work on operands in-place, avoiding the need to copy big operands.

29

Bits Algorithm
– 800 Schoolbook

801 – 6016 Karatsuba
6017 – 237536 Toom-3

237537 – FFT

Table 5.1. Ranges for different multiplication algorithms on the test machine.

• Do not use assembly language or obscure tricks to make fast constant-time
operations go even faster, since the GMP subroutines hide all the performance-
critical inner loops where such extreme measures would be called for.

The idea is, simply put, to make sure that all the time is spent in calls to GMP
subroutines, by not doing expensive things that are not necessary. This works very
well for Newton inversion and Barrett’s algorithm because, as I wrote above, the
inner loops are hidden inside the GMP subroutines. This is clearly true in Barrett’s
algorithm, since it deals exclusively with numbers as large as its inputs; as for
Newton inversion, it does start small, but virtually all time is spent in the last few
iterations where numbers are almost as large as the input, so the first few iterations,
which are the only ones possibly not totally dominated by subroutine calls, can be
neglected.

5.2 Test Runs

The computer used for these test runs was a 1467 MHz AMD Athlon. For multi-
plication of two n-bit numbers, table 5.1 shows which algorithm was used for which
range of n.

5.2.1 Comparison of Newton Inversion, Barrett’s Algorithm and Divide-
and-Conquer Division

Figures 5.1 through 5.3 show the execution time for Newton inversion, Barrett’s
algorithm and divide-and-conquer division1 for a wide range of operand sizes2 (mul-
tiplication is also plotted for comparison). Note that when the operand size is given
as n bits, that means a division of 2n by n bits, or a multiplication of n by n
bits. For small operands, all three algorithms seem to take about twice as long as
multiplication, but past about 104 bits (where Toom-3 kicks in) divide-and-conquer
division starts taking noticeably more time, and past a few million bits (where FFT
multiplication kicks in) Newton inversion starts taking a little bit more time than
Barrett’s method.

1Below 2817 bits, GMP actually uses schoolbook division for this machine, since it is faster.
2Actually, they show almost the entire range of reasonable operand sizes for this particular

computer. The limiting factor is the amount of available memory, most of which is eaten by
inefficient memory use in the FFT multiplication routine.

30

0.00

0.05

0.10

0.15

0.20

0.25

0 2000 4000 6000 8000 10000
operand size (bits)

time (ms)

Newton inversion
Barrett’s algorithm

Divide-and-conquer division
multiplication

Figure 5.1. Execution time in seconds, small operands.

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100
operand size (thousand bits)

time (ms)

Newton inversion
Barrett’s algorithm

Divide-and-conquer division
multiplication

Figure 5.2. Execution time in seconds, medium-sized operands.

31

0

5

10

15

20

25

0 5 10 15 20 25 30
operand size (million bits)

time (s)

Newton inversion
Barrett’s algorithm

Divide-and-conquer division
multiplication

Figure 5.3. Execution time in seconds, large operands.

Figures 5.4 through 5.6 try to make things a bit more clear by giving execution
times as a multiple of the multiplication time for that operand size, instead of in
seconds. This makes a lot of sense since all three algorithms spend virtually all their
time in the multiplication routine.

For small operands, we see that divide-and-conquer division is slightly faster
than the others, but the difference is diminishing. From about 7000 bits on, when
the multiplication routine switches to Toom-3, it is slower.

Barrett’s algorithm takes twice as long as multiplication as long as the operands
are not very small. The same goes for Newton inversion, until a few million bits.
After that, it increases slowly and then seems to stabilize (more or less) at 2.5
multiplications.

32

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

0 2000 4000 6000 8000 10000
operand size (bits)

time (multiplications)

Newton inversion
Barrett’s algorithm

Divide-and-conquer division

Figure 5.4. Execution time in multiples of multiplication time, small operands.

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

0 20 40 60 80 100
operand size (thousand bits)

time (multiplications)

Newton inversion
Barrett’s algorithm

Divide-and-conquer division

Figure 5.5. Execution time in multiples of multiplication time, medium-sized
operands.

33

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0 5 10 15 20 25 30
operand size (million bits)

time (multiplications)

Newton inversion
Barrett’s algorithm

Divide-and-conquer division

Figure 5.6. Execution time in multiples of multiplication time, large operands.

5.2.2 Divide-and-Conquer versus Newton Division

The comparisons in the previous section are interesting and all, but there is one
question they do not answer: can Newton division beat divide-and-conquer division?
I ran some tests; the result is shown in figures 5.7 through 5.9, still with times relative
to multiplication time.

As one would expect from figures 5.4 through 5.6, Newton division takes four
times the multiplication time for small operands, and about 4.5 times for large
operands. Divide-and-conquer division is the same as before, steadily increasing
with operand size. The breakeven point seems to be at around 5 · 106 bits, or 1.5
million decimal digits.

There is one feature of Newton division that we have not yet exploited, however:
if we want to use the same divisor for several divisions, we need only invert it once.
So for k divisions, we use Newton inversion once and Barrett’s algorithm k times;
this is compared with k runs of divide-and-conquer division for k = 2 (figure 5.10),
k = 10 (figure 5.11) and k = 100 (figure 5.12).

The breakpoint moves steadily downwards as the number of divisions increases;
for k = 100, it seems to lie at about 15000 bits, but just one extra division was
enough to bring it down from five to just below one million bits. When k → ∞,
the asymptotic behavior can be seen by comparing divide-and-conquer division and
Barrett’s algorithm directly (as in figures 5.4 through 5.6), since the cost of inverting
the divisor is negligible.

34

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0 2000 4000 6000 8000 10000
operand size (bits)

time (multiplications)

Newton division
Divide-and-conquer division

Figure 5.7. Execution time in multiples of multiplication time, small operands.

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0 500 1000 1500 2000 2500 3000
operand size (thousand bits)

time (multiplications)

Newton division
Divide-and-conquer division

Figure 5.8. Execution time in multiples of multiplication time, medium-sized
operands.

35

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0 5 10 15 20 25 30
operand size (million bits)

time (multiplications)

Newton division
Divide-and-conquer division

Figure 5.9. Execution time in multiples of multiplication time, large operands.

3

4

5

6

7

8

9

0.0 0.5 1.0 1.5 2.0
operand size (million bits)

time (multiplications)

Newton division
Divide-and-conquer division

Figure 5.10. Two divisions with same divisor.

36

16

18

20

22

24

26

28

30

32

0 50 100 150 200
operand size (thousand bits)

time (multiplications)

Newton division
Divide-and-conquer division

Figure 5.11. Ten divisions with same divisor.

160

180

200

220

240

260

280

300

320

0 5 10 15 20 25 30 35 40 45 50
operand size (thousand bits)

time (multiplications)

Newton division
Divide-and-conquer division

Figure 5.12. A hundred divisions with same divisor.

37

5.2.3 Newton versus Divide-and-Conquer Inversion

Since repeated division with the same divisor forces the breakeven point between
divide-and conquer and Newton division as low as maybe 104 bits, we cannot be sure
that Newton inversion is faster than computing the inverse using divide-and-conquer
division (see section 4.1). Indeed, for operands small enough that schoolbook mul-
tiplication is the algorithm of choice, theorem 3.6 says that inversion should take
about M(n) time, which is almost certain to be faster than Newton inversion.

Figures 5.13 through 5.15 show the situation. The breakpoint is at about 104

bits, which is pretty much the same as the asymptotic breakpoint between Newton
and divide-and-conquer division. This means that even though inversion by division
is not useful on this computer with this exact software, a small perturbation of the
relative speed of things is enough to make it so.

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

0 2000 4000 6000 8000 10000
operand size (bits)

time (multiplications)

Newton inversion
Naive inversion

Figure 5.13. Execution time in multiples of multiplication time, small operands.

38

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

0 20 40 60 80 100
operand size (thousand bits)

time (multiplications)

Newton inversion
Naive inversion

Figure 5.14. Execution time in multiples of multiplication time, medium-sized
operands.

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0 5 10 15 20 25 30
operand size (million bits)

time (multiplications)

Newton inversion
Naive inversion

Figure 5.15. Execution time in multiples of multiplication time, large operands.

39

5.3 Conclusions

I think I may safely say that theory and experiments did not clash too badly.
The observed behavior of divide-and-conquer division (algorithm 3.3) in figures

5.4 through 5.6 coincides remarkably well with the behavior predicted by theorem
3.6; the same is true for Barrett’s algorithm (algorithm 3.5, figures 5.4 through 5.6,
theorem 3.10). Newton inversion (algorithm 4.2) can also be seen (in figures 5.4
through 5.6) to be conforming to theory (theorem 4.3), although at first glance one
would guess that it was going to converge to something like 2.5 multiplications,
whereas the theory says 3 (it certainly fooled me, for one).

Especially when looking at figures 5.1 and 5.4, it seems that the difference in
running time between Newton inversion, Barrett’s algorithm and divide-and-conquer
division is almost too small; they are all supposed to run in time 2M(n)+O(n) since
Karatsuba multiplication is the multiplication algorithm of choice for that operand
size, true, but . . . that small a difference? They are totally different algorithms,
after all, so why do not implementation differences disrupt the predicted similarity
in running time?

The likely explanation is that although they are different, what I wrote above
about Newton inversion and Barrett’s algorithm is largely true for divide-and-
conquer division as well: virtually all time is spent in GMP subroutines, specifi-
cially the multiplication subroutine, so the parts of the algorithms that take time
are actually nearly identical.

On the practical side, Barrett’s algorithm is certainly useful for those cases where
we have several divisions with the same divisor; and Newton inversion is the inversion
method of choice for all but the smallest numbers. Newton division when we cannot
reuse the inverted divisor is a more dubious bet, though; five million bits is awfully
large. However, given that computers keep getting faster3, five million bits will
not be as much in a few years as it is today. Moreover, seemingly minor tinkering
with the program code can move the breakeven points between different algorithms
by miles; one modification that is sure to invalidate my measurements is the total
rewrite of GMP’s FFT multiplication that is being planned.

3And that algorithm complexity is almost linear – if not for that, hardware improvements would
not mean nearly as much.

40

References

[1] Paul Barrett. Implementing the Rivest, Shamir and Adleman public-key encryp-
tion algorithm on a standard digital signal processor. In Advances in cryptology:
CRYPTO ’86: proceedings, volume 263 of Lecture Notes in Computer Science,
pages 311–323. Springer-Verlag, 1987.

[2] Christoph Burnikel and Joachim Ziegler. Fast Recursive Division. Research
Report MPI-I-98-1-022, Max-Planck-Institut für Informatik, Im Stadtwald, D-
66123 Saarbrücken, Germany, October 1998.

[3] Torbjörn Granlund et al. GNU Multiple Precision Arithmetic Library 4.1.2,
December 2002. http://swox.com/gmp/.

[4] Anatolii Karatsuba and Yu Ofman. Multiplication of multidigit numbers on
automata. Doklady Akademii Nauk SSSR, 145(2):293–294, 1962.

[5] Anatolii Karatsuba and Yu Ofman. Multiplication of multidigit numbers on
automata. Soviet Physics-Doklady, 7(7):595–596, 1963. Translated from [4].

[6] Donald E. Knuth. The Art of Computer Programming II: Seminumerical Algo-
rithms. Addison–Wesley, Reading, Massachusetts, second edition, 1981.

[7] Colin Percival. Rapid multiplication modulo the sum and difference of highly
composite numbers. Math. Comp., 72:387–395, 2003.

[8] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications of
the ACM, 21(2):120–126, February 1978.

[9] Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer Zahlen.
(German) [Fast multiplication of large numbers]. Computing, 7(3–4):281–292,
1971.

[10] Chee Yap and Chen Li. QuickMul: Practical FFT-based Integer Multiplication.
Technical report, Department of Computer Science, Courant Institute, New
York University, October 2000.

41

Appendix A

Multiplication Algorithms

The text in this chapter is largely based on Knuth[6].

A.1 Karatsuba’s Algorithm

We want to compute the product of the two n-digit nonnegative integers x and y.
Assume that n is a power of two, and write x = a+ βn/2b and y = c+ βn/2d, where
a, b, c and d are four nonnegative n/2-digit numbers. (We have simply divided the
digits of x and y into an upper and a lower half.)

Now the product can be written as xy = (a+βn/2b)(c+βn/2d) = ac+βn/2(ad+
bc) + βnbd. Using the identity ad + bc = (a + b)(c + d) − ac − bd, we can compute
xy with only three n/2-by-n/2-digit multiplications and a few additions1.

Algorithm A.1 is Karatsuba’s algorithm (first published in [4], English translation
in [5]). It calls itself recursively three times to compute the three products, and does
a few additions and shifts2.

If Karatsuba’s algorithm on two n-digit numbers takesMK(n) time, thenMK(n) =
3MK(n/2) + O(n), because of the three recursive calls and the linear-time school-
book additions. This recurrence relation has the solution MK(n) ∈ O(nlog2 3).
Since log2 3 ≈ 1.585, Karatsuba’s algorithm beats schoolbook multiplication for
big enough n.

Note that Karatsuba’s algorithm is easily extended to handle cases where n is
not a power of two, by not splitting the factors exactly in half. The time will still
be O(nlog2 3) as long as the ratio of the split is bounded by a constant (proof left
as an exercise to the reader), but the more even the split, the faster the algorithm.

1Well, actually the product (a + b)(c + d) might be n/2 + 1 by n/2 + 1 digits, but that does not
matter – it takes at most O(n) extra time compared to an n/2-by-n/2-digit multiplication. Just
let a + b = e + βn/2f and c + d = g + βn/2h, where f and h are single-digit numbers, so that
(a + b)(c + d) = eg + βn/2(eh + fg) + βnfh. eg is n/2 by n/2 digits, fh is just 1 by 1 digit, and eh
and fg are n/2 by 1 digits and can be computed in O(n) time using schoolbook multiplication.

2Multiplication by powers of the base β are accomplished in constant time by simply offsetting
one number relative to another when doing a subsequent addition.

42

Algorithm A.1 Karatsuba’s algorithm

Input Two nonnegative integers x and y, each represented by n digits, where n is
a power of two.

Output The product xy.

1. If n = 1, just return the product xy.

2. Let x = a+ βn/2b and y = c+ βn/2d.

3. Compute t1 = ac using Karatsuba’s algorithm.

4. Compute t2 = bd using Karatsuba’s algorithm.

5. Compute t3 = (a+ b)(c+ d) using Karatsuba’s algorithm.

6. t4 ← t3 − t2 − t1

7. Return the product t1 + βn/2t4 + t2.

(Of course, you could pad x and y with enough zeros to make the number of digits
a power of two, but this way is generally faster.)

A.2 Toom’s Algorithm

Karatsuba’s algorithm is a special case (for r = 2) of an algorithm that splits each
factor in r parts and then computes the original product using 2r−1 multiplications
of numbers the size of these parts. This is Toom’s algorithm (algorithm A.2).

It works as follows: Consider both n-digit operands to be (r− 1)-degree polyno-
mials, X(t) and Y (t), with n/r-digit coefficients. Evaluate them at 2r−1 points; this
can be done in linear time, using only additions and multiplication by constant-size
numbers (since we only need 2r − 1 different points, and r is a constant). Multiply
those values pairwise so as to obtain the values of the product polynomial Z(t) at
the same points; this takes 2r − 1 multiplications of numbers with n/r digits. Cal-
culate the 2r − 1 2n/r-digit coefficients of Z(t), using only addition, subtraction,
and multiplication and division by constant-size numbers (this is a linear equation
system with 2r − 1 equations and 2r − 1 unknowns). Now, the original product is
Z(n/r), which is easily evaluated using additions and shifts.

The only part of this algorithm that does not run in linear time are the 2r − 1
recursive calls; if Toom’s algorithm on two n-digit numbers takes MT (n) time, then
MT (n) = (2r−1)MT (n/r)+O(n). This recurrence relation has the solutionMT (n) ∈
O(nlogr(2r−1)). Table A.1 shows this for some values of r (it also indicates the fact
that when one has a specific r in mind, one can refer to the algorithm as ‘Toom-r’).

43

Algorithm A.2 Toom’s algorithm

Input Two nonnegative integers x and y, each represented by n digits. A (small)
integer r ≥ 2.

Output The product xy.

1. If n < r, compute the product xy using schoolbook multiplication.

2. s ← �n/r�
3. Let x = xr−1s

r−1 + . . .+ x1s+ x0 and y = yr−1s
r−1 + . . .+ y1s+ y0.

4. Let X(t) = xr−1t
r−1 + . . .+ x1t+ x0 and Y (t) = yr−1t

r−1 + . . .+ y1t+ y0.

5. Evaluate X(t) and Y (t) for 2r − 1 (small) values of t, and compute the value
of Z(t) = X(t)Y (t) for those t, using 2r − 1 recursive calls to this algorithm.

6. Compute the 2r − 1 coefficients of Z(t).

7. Return the product Z(s).

By setting r large enough, we can get a multiplication algorithm that runs in time
O(n1+ε) for any ε > 0.

When implementing Toom’s algorithm, one can either implement it for arbitrary
r or for just a few particular values. The bigger r is, the faster it will be for sufficiently
large operands, but the overhead (everything except the recursive calls) grows with
r, so for small operands a small r is better.

GMP implements only Toom-3 (and Karatsuba’s algorithm of course), for the
simple reason that FFTmultiplication is faster than Toom’s algorithm for all operand
sizes for large enough r, where ‘large enough’ is not very large at all; GMP maintainer
Torbjörn Granlund expects that a suitably optimized FFT might be faster than all
Toom algorithms except Toom-2 (which is equivalent to Karatsuba’s algorithm) on
some machines, and there are certainly no plans to implement a Toom-4.

A.3 FFT Multiplication

The overhead in Toom’s algorithm is in O(n) for any fixed r. However, it grows
rather maliciously with r (more than quadratically), so that if we let r be a func-
tion of n in order to automatically choose larger r as n grows, we end up with
O(n2

√
2 logn log n) if we choose r(n) optimally[6].

There is, however, a clever way to do it faster. If, instead of choosing evaluation
points more or less arbitrarily, we pick roots of unity, the evaluation and interpolation
steps are in fact a Discrete Fourier Transform (DFT) and its inverse (which is almost
the same thing). This is just a name change, however; we still have to do the exact

44

Algorithm Exponent
Toom-2 (Karatsuba) log2 3 ≈ 1.585
Toom-3 log3 5 ≈ 1.465
Toom-4 log4 7 ≈ 1.404
Toom-5 log5 9 ≈ 1.365
Toom-6 log6 11 ≈ 1.338
Toom-7 log7 13 ≈ 1.318
Toom-8 log8 15 ≈ 1.302
Toom-9 log9 17 ≈ 1.289
Toom-10 log10 19 ≈ 1.279
Toom-100 log100 199 ≈ 1.149

Table A.1. Running time of Toom’s algorithm.

same amount of work, O(r2) arithmetic operations on numbers with O(log r) digits.
But, if r is a power of two we may compute the DFT using the Fast Fourier Transform
(FFT) algorithm, reducing the complexity to O(r log r) operations.

There is a catch, though: Z (and Q and R) have only two roots of unity, 1 and
−1. This forces us to pretend that our numbers live in a ring that has enough roots
of unity, such as C or Zp for some prime p; both of these are used in practice.

• Computing in C is convenient since there are infinitely many roots of unity
(exπi is a root of unity for every x ∈ Q). The problem is that floating point
computations are inherently inexact; see Percival[7] for more details.

• Computing in Zp gives provably exact results, but making it as fast as comput-
ing in C is difficult, mostly because processor manufacturers feel that floating
point multiplication performance is more important than integer multiplication
performance (and because the math involved is trickier). One variant of this
is to compute modulo several small primes, and then at the end reconstruct
the result modulo their product using the Chinese Remainder Theorem; this
might prove very fast in practice since the several small primes can be chosen
to fit in machine words.

FFT multiplication can be done in a variety of ways, all of which involve a trade-
off between simplicity, asymptotic efficiency and low overhead. The asymptotically
fastest known algorithm, by Schönhage and Strassen[9], runs in timeO(n log n log log n),
but as Yap and Li[10] point out, it may not be preferable in practice.

A.4 Multiplication In Practice

In practice, the multiplication algorithms are not as disjunct as this appendix sug-
gests; not only does a practical implementation choose which multiplication algo-
rithm to start with based on the size of the operands (see table 5.1), but that choice

45

is made every time a multiplication algorithm makes a recursive call. Both algo-
rithms A.1 and A.2 explicitly call themselves recursively, but in practice they should
call whichever multiplication algorithm is fastest. Karatsuba could call the school-
book algorithm, and Toom-n might call schoolbook, Karatsuba, or any Toom-m for
m ≤ n.

This will always make things faster (measured in seconds), since the breakpoints
where we switch between algorithms are based on measurements, but will not affect
the asymptotic complexity.

46

Appendix B

Tedious Math

B.1 Inequalities From Taylor Series

Lemma B.1. For 0 < x < 1,

1− x <
1

1 + x
< 1− x+ x2 (B.1)

Proof. Taylor series expansion of 1
1−x around x = 0 gives 1

1−x = 1+x+x2+x3+ . . .,
for |x| < 1. Changing the sign of x, we get 1

1+x = 1−x+x2−x3+. . .. The inequalities
follow from the fact that, for 0 < x < 1,

∞∑
i=n

(−1)ixi = (−1)nxn
∞∑
i=0

(−1)ixi =
(−1)nxn

1 + x
(B.2)

which is strictly less than 0 if n is odd, and strictly greater than 0 if n is even.

Theorem B.2. For k ≤ −2,

1
1
2 + 2k

< 2− 2k+2 + 22k+3 (B.3)

Proof. Using lemma B.1, we get

1
1
2 + 2k

=
2

1 + 2k+1
< 2(1− 2k+1 + 22k+2) = 2− 2k+2 + 22k+3 (B.4)

The fact that k ≤ −2 ensures that 0 < 2k+1 < 1, so that the conditions for the
lemma are fulfilled.

B.2 Asymptotic Growth Rate of Sums

Theorem B.3.
logn∑
i=1

logk
n

2i
∈ Θ(logk+1 n) (B.5)

47

Proof. Let n = 2s. We have

logn∑
i=1

logk
n

2i
=

s∑
i=1

logk
2s

2i

=
s∑

i=1

(s− i)k

=
s−1∑
j=0

jk (B.6)

Now, this sum is bounded by∫ s−1

0
jkdj <

s−1∑
j=0

jk <

∫ s

0
jkdj (B.7)

and since ∫
xk =

xk+1

k + 1
+ C (B.8)

we conclude that

log n∑
i=1

logk
n

2i
=

s−1∑
j=0

jk

∈ Θ(sk+1)
= Θ(logk+1 n) (B.9)

Theorem B.4.

logn∑
i=1

logk
n

2i
log log

n

2i
∈ Θ(logk+1 n log logn) (B.10)

Proof. This proof is more or less a copy of that for theorem B.3. Let n = 2s, as
before. We have

log n∑
i=1

logk
n

2i
log log

n

2i
=

s∑
i=1

logk
2s

2i
log log

2s

2i

=
s∑

i=1

(s− i)k log(s− i)

=
s−1∑
j=0

jk log j (B.11)

48

Now, this sum is bounded by∫ s−1

0
jk log jdj <

s−1∑
j=0

jk log j <

∫ s

0
jk log jdj (B.12)

and since ∫
xk log xdx = −

∫
xk+1

k + 1
1
x
dx+

xk+1

k + 1
log x

=
xk+1 log x
k + 1

− xk+1

(k + 1)2
+ C (B.13)

we conclude that

logn∑
i=1

logk
n

2i
log log

n

2i
=

s−1∑
j=0

jk log j

∈ Θ(sk+1 log s)
= Θ(logk+1 n log log n) (B.14)

49

